La demanda residencial del servicio de acueducto en Medellín, 1985-1991

Gustavo López - Elkin Castaño - Carlos Eduardo Vélez Lecturas de Economía. No. 37.

Introducción, 69. -I. La teoría, 70. -II. Los datos, 78. -III. El modelo, 80. -IV. Resultados del modelo, 82. -V. Conclusiones, 83. -Referencias, 89.

Introducción

El propósito de este trabajo es explicar la tendencia al descenso en el consumo mensual de agua por usuario, tanto a nivel general como para cada uno de los seis estratos socioeconómicos en que se clasifican los usuarios de la Empresas Públicas de Medellín para efectos del cobro del servicio.

La metodología general del trabajo consistió en buscar en la teoría económica las herramientas apropiadas para el análisis, seleccionar el modelo más adecuado, procesar los datos para hacerlos compatibles con el modelo escogido y, finalmente, realizar la estimación de los parámetros y la interpretación de los resultados obtenidos. Obviamente, las referencias básicas fueron el equilibrio parcial del mercado y la teoría de la demanda, pues la función de oferta está completamente determinada por la estructura de tarifas de las Empresas Públicas.

Se empleó un modelo dinámico de demanda, el cual, junto con las peculiaridades económicas del servicio de acueducto, se explica en la sección I; en el modelo se incluye una variable con la cual se quiere medir el efecto de una campaña de racionalización del consumo que las Empresas Públicas realizaron durante parte del período en estudio. En la segunda parte se hace una breve presentación de los datos empleados en la estimación, así como una síntesis de las transformaciones realizadas desde las observaciones originalmente obtenidas. En la sección III se explica el modelo empleado, en la IV se reseñan los principales resultados obtenidos. Finalmente, se muestran las conclusiones del estudio.

I. La teoría

A. El modelo empleado

La teoría económica concibe las compras que realizan los consumidores de cualquier bien o servicio como el resultado de una decisión racional, realizada de acuerdo con sus preferencias sobre conjuntos (o canastas) de bienes, que depende también del ingreso de que dispongan.

Formalmente, la decisión del consumidor se modela como la solución al problema de maximización de una función de utilidad, representativa de su orden de preferencias, sujeta a la denominada restricción presupuestal, la cual tiene en cuenta el ingreso del consumidor y supone los precios de los bienes como datos para el problema.

El resultado del proceso de optimización es un conjunto de funciones de demanda marshallianas -una para cada una de las mercancías en consideración- las cuales indican cuál sería la cantidad comprada por el consumidor en correspondencia con un conjunto de precios y con un determinado ingreso periódico:

$$X_i = f(P_1, P_2, ..., P_n, Y)$$
 i= 1, 2,..., n

Dadas las funciones de demanda que modelan la conducta de mercado de cada consumidor -o mejor, del consumidor representativose supone que ante un cambio en cualquiera de las variables relevantes el consumidor responde ajustando instantáneamente su consumo. Así, por ejemplo, si el precio de una mercancía disminuye y todo lo demás permanece constante, el consumidor aumentará inmediatamente la cantidad demandada de dicha mercancía.

Este supuesto, sin embargo, resulta muchas veces inapropiado y es preferible modelar la conducta del consumidor aceptando algún tipo de retardo en el ajuste a los cambios en las variables. Entramos entonces en el campo de la dinámica.

Una de las alternativas existentes para captar este tipo de comportamiento dinámico es el modelo de ajuste parcial. En su forma más general el modelo puede explicarse de la siguiente manera¹. Las condiciones de equilibrio estático definen un nivel óptimo de la variable independiente (Y*,), pero ese nivel no es alcanzado de inmediato, sino a través de un proceso gradual de ajustes. El proceso puede ser descrito por las siguientes ecuaciones:

$$Y_{t}^{*} = a + b.X_{t} + \varepsilon_{t}$$

$$Y_{t} - Y_{t-1} = K(Y_{t}^{*} - Y_{t-1}) \qquad 1 < K < 0$$

donde K es el coeficiente de ajuste que mide la proporción en que en cada período se reduce la diferencia entre el valor de equilibrio estático (Y*,) y el valor alcanzado en el período anterior (Y, 1). Cuando el valor de K es uno (1), el valor corriente de Y es igual a su valor de equilibrio estático y el ajuste es total e instantáneo (caso estático). Combinando las dos ecuaciones anteriores obtenemos:

¹ En Phlips (1987) aparece una exposición completa del modelo.

$$Y_{t} = aK + bKX_{t} + (1 - K)Y_{t-1} + K\varepsilon_{t}$$

que es la ecuación que debe estimarse (forma reducida del modelo). Una vez obtenidos los valores estimados de los parámetros, se puede usar esta misma ecuación para conseguir una expresión para Y,,, Y, y así sucesivamente, las cuales se van reemplazando hasta obtener finalmente:

$$Y_{t} = a + b(W_{o}. X_{t} + W_{1}. X_{t-1} + ...) + \varepsilon_{t}$$

donde

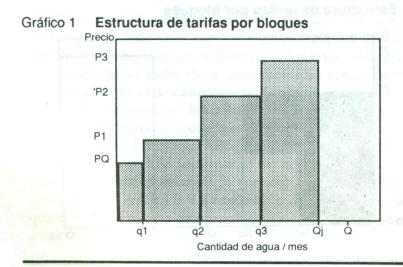
$$W_{i} = K(1 - K)^{i}, \qquad \lim \sum W_{i} = 1$$

Se puede ver, entonces, que bes el coeficiente de largo plazo, el cual mide el efecto total que un cambio en la variable X tiene sobre la variable Y, mientras que K.b mide la reacción de corto plazo o el primer período.

Como se verá luego, en este trabajo se emplea una variante del modelo de ajuste parcial que hemos presentado.

B. Peculiaridades económicas del servicio de acueducto

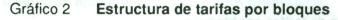
El servicio de acueducto suministrado por las EPM tiene algunas características económicas que es preciso analizar antes de proceder a procesar los datos que van a permitir la estimación de una ecuación de demanda

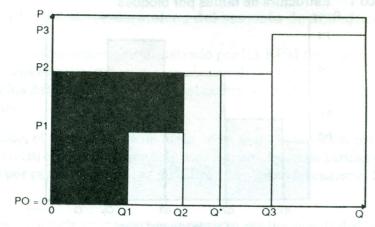

Ante todo, el servicio de acueducto no se suministra a un precio único por metro cúbico, sino que está sujeto a una tabla de tarifas por bloques² y por estratos, la cual se modifica con alguna frecuencia. Los

² Lo cual, por otra parte, es una práctica frecuente en este tipo de actividad, como puede apreciarse en la bibliografía sobre el tema.

usuarios del servicio están clasificados en estratos socioeconómicos y para cada uno de estos estratos se define una tabla de tarifas por rangos de consumo, de tal manera que si un consumidor demanda una cantidad entre 0 y Q1 metros cúbicos de agua, pagará por cada uno el precio P0; si demanda una cantidad entre Q1 y Q2, pagará P0 por cada uno de los primeros Q1 y P1 por cada uno de los siguientes metros cúbicos, y así sucesivamente. Las tarifas aumentan a medida que lo hace el rango de consumo y también son mayores para estratos socioeconómicos más altos.

Adicionalmente, durante buena parte del período considerado en este estudio existió un cargo fijo mensual, independiente de la cantidad consumida por el usuario y dependiente del estrato socioeconómico, mientras que el primer rango de consumo no se cobraba (P0 = 0).

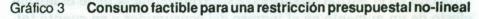

En lo que sigue, para simplificar el análisis, nos referiremos a un solo consumidor. Así, hablaremos de la demanda individual de un usuario y omitiremos de momento los problemas asociados a la agregación de estas demandas.

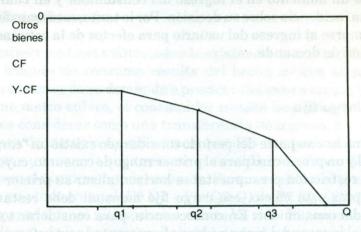


La cuenta de cobro por consumo Q_j es igual al cargo fijo mensual (CF) más el valor del área sombreada en el gráfico 1.

1. Transferencia

El primer problema vinculado a la existencia de una tarifa creciente por bloques de consumo resulta del hecho de que al pagar los primeros tramos de su demanda a precios inferiores a los que paga por el último metro cúbico, el consumidor resulta beneficiado de lo que podemos considerar como una transferencia de ingreso. En efecto, si a manera de ejemplo consideramos que sólo existen tres rangos de consumo y un usuario que consume la cantidad Q* (Véase Gráfico 2.) situada en el último rango de consumo. Por esa cantidad el consumidor estaría pagando en total: P0.Q1 + P1.(Q2-Q1) + P2.(Q*-Q2). Pero si el precio pagado por el último metro cúbico ha sido P2, suponemos que por cada uno de los anteriores habría estado dispuesto a pagar como mínimo ese mismo precio y en tal caso su gasto total habría sido P2.Q*. El área sombreada en el gráfico es un gasto no realizado y, en

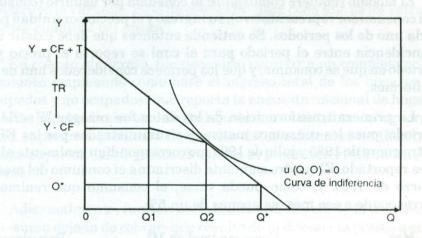

consecuencia, lo consideramos como una transferencia de ingreso implícita en el patrón de tarifas. Esta transferencia tiene el mismo efecto de un aumento en el ingreso del consumidor y en cuanto tal. tiene una incidencia sobre su decisión. Por lo tanto, esta transferencia debe sumarse al ingreso del usuario para efectos de la estimación de su función de demanda.


2. Cargo fijo

En una buena parte del período considerado existió un "cargo fijo" mensual y un precio cero para el primer rango de consumo, cuyo efecto sobre la restricción presupuestal es horizontalizar su primer tramo. Para captar este efecto, ese cargo fijo mensual debe restarse del ingreso del consumidor. En consecuencia, para considerar todos los ajustes, al ingreso del consumidor se le aumenta la transferencia y se le deduce el cargo fijo; el dato así corregido se usa para la estimación de las funciones de demanda.

3. Restricción presupuestal

El tercer problema planteado por la existencia de tarifas crecientes por bloques es el de "quebrar" la restricción presupuestal del consumidor. En el caso normalmente descrito en los textos de teoría económica. el consumidor se enfrenta a mercancías de precio único y, dado su ingreso, el espacio de canastas de bienes accesibles en el caso de dos bienes es un triángulo delimitado por una línea recta de pendiente negativa -restricción presupuestal- y el origen de las coordenadas. Pero si uno de los bienes está sometido a precios diferenciales por bloques, el resultado será que el espacio de canastas accesibles al consumidor estará delimitado por una línea quebrada, tal como se muestra en el gráfico 3. La restricción de presupuesto tendrá tantos quiebres como rangos de consumo (con sus correspondientes tarifas) existan.


Cuando observamos en un período determinado un cierto nivel de consumo del usuario, debemos suponer que la parte de la línea quebrada correspondiente a ese nivel de consumo es tangente a una curva de indiferencia, es decir, que el consumidor está maximizando su utilidad con ese consumo. La literatura económica que se ha ocupado de este problema -y es relativamente abundante- ha presentado varias opciones sobre el precio que deberá ser escogido para efectos de estimar la ecuación de demanda correspondiente. Existen al menos dos opciones interesantes: a) el precio medio, el cual coresponde al resultado de dividir el pago total hecho por el usuario por el número de metros cúbicos de agua consumidos en un período específico, y b) el precio marginal, es decir el precio que paga el consumidor por el último metro cúbico consumido. En nuestro caso hemos elegido esta última opción por ser más consistente desde el punto de vista teórico.

Ahora bien, como puede apreciarse en el gráfico 3, cuando se usa el precio marginal para la estimación de la función de demanda debe usarse como contrapartida un "ingreso virtual", es decir, el ingreso con

el cual, si el único precio fuera el marginal, la restricción presupuestal se superpondría con el último tramo de la línea quebrada. Se puede demostrar que tal "ingreso virtual" equivale al ingreso disponible del consumidor adicionado con la transferencia que acabamos de descrihir

Vale la pena mencionar también que, dada la estructura de tarifas. un cambio en el nivel de consumo puede implicar el cambio en el precio marginal y, por lo tanto, en el monto de la transferencia. Esto quiere decir que hay un efecto ingreso asociado al cambio en los niveles de consumo, si como resultado de tal cambio el consumidor se mueve de

Gráfico 4 El equilibrio del consumidor bajo estructura de tarifas por bloque

Q: nivel de consumo de Acueducto (M3)

O: nivel de consumo de otros bienes (\$)

P: precio marginal del acueducto (\$/M3) Q*,0*: niveles óptimos de consumo

P: tan a

CF: cargo fijo

TR: tranferencia implícita

Bloques de tarifas: 0,Q1; Q1,Q2; Q2,Q3; Q3 en adelante.

un rango a otro. Así mismo, el cambio en las tarifas puede acarrear este mismo tipo de consecuencias.

Tal como lo anunciamos, hasta aquí hemos supuesto la existencia de un solo consumidor, con lo cual resultaba mas fácil pasar de la teoría a su utilización empírica en el problema que nos ocupa. En la próxima sección se explicará la transformación que fue necesario hacer a los datos para adecuarlos a las características mencionadas del servicio y para pasar del caso simple aquí considerado al del "consumidor representativo" de cada estrato socioeconómico, con el cual modelamos las demandas del servicio de acueducto.

II. Los datos

El modelo requiere como datos: el consumo por usuario (consumo del consumidor representativo), su ingreso y el precio por unidad para cada uno de los períodos. Se entiende entonces que debe existir una coincidencia entre el período para el cual se reporta el precio y el período en que se consume, y que los períodos considerados han de ser uniformes

La primera transformación de los datos fue rezagar la serie un período, pues los consumos mensuales suministrados por las EPM, entre enero de 1985 y julio de 1991, no correspondían realmente al del mes reportado. El cuadro siguiente discrimina el consumo del mes de marzo de 1991 y, como puede verse, el consumo que realmente corresponde a ese mes es apenas de un 5%.

Mes	Consumo total en M ³	Participación
Enero	1.418.675	18%
Febrero	6.000.313	75%
Marzo	361.655	5%
DL + SP	230.272	3%
Total	8.015.915	100%

DL: Directas legalizadas SP: Servicios provisionales

Para algunos meses existía información acerca de la distribución del consumo total y del número de usuarios para los diferentes rangos de consumo y para cada uno de los estratos. Con esa información se calculó el consumo por usuario para cada uno de los estratos (Véase cuadro 1 del anexo).

De otra parte, el período de lectura no es uniforme, sino que oscila entre 28 y 33 días, por lo cual se consideró necesario introducir en el modelo una variable que captara el efecto de estas variaciones, para ello era preciso contar con el ciclo de medición por estrato. Sin embargo, los datos existentes sobre el ciclo de medición no corresponden tampoco al de ningún estrato en particular. Existían, en cambio, datos sobre la distribución conjunta del número de suscriptores por ciclo y por estrato para ocho períodos. Con base en esa información se construyó la variable "ciclo de medición" para cada uno de los estratos (Véase cuadro 2 del anexo).

En cuanto al ingreso, fue necesario recurrir a un complejo procedimiento empleando como base el ingreso total de los hogares (de ocupados y no ocupados) que reporta la encuesta nacional de hogares -ENH-. El procedimiento incluyó el ajuste de una distribución lognormal para superar el problema de que los datos existentes no tienen un límite superior. Los ingresos obtenidos se presentan el el cuadro 3 del

Adicionalmente, fue necesario realizar el cálculo de la transferencia-suma dejada de cobrar- que resulta de la diferencia positiva entre el precio marginal y el precio pagado por el consumo intramarginal (Véase cuadro 5 del anexo). Esta transferencia se suma al ingreso antes calculado.

El modelo requiere para su estimación dos tipos de precios: el del servicio de acueducto y el de los demás bienes. El primero se calculó con base en la estructura de tarifas del servicio de acueducto y con información acerca de la distribución de los usuarios en los diferentes rangos de consumo, para cada uno de los estratos. Dada la multiiplicidad de usuarios por estrato, se calcularon series de precio marginal para diferentes niveles de consumo y posteriormente se ponderaron con la distribución de frecuencias de consumo en los diferentes rangos. El segundo se obtuvo descontándole al índice de precios al consumidor la parte correspondiente a servicios públicos. Los precios marginales por estrato y para el consumo agregado, empleados finalmente en el modelo econométrico, se presentan en el cuadro 4 del anexo.

III. El modelo

El modelo empleado para la estimación de las funciones de demanda de acueducto en cada estrato y para la demanda agregada, pertenece a la clase de modelos de ecuaciones estocásticas estacionales en diferencias:

$$\begin{split} &(1\text{-}B^{12})^{\text{D}}.CONS_{\text{t}} = Ao + A_{\text{1}}.(1\text{-}B^{12})^{\text{D}}.CONS_{\text{t-1}} + A_{\text{2}}.(1\text{-}B^{12})^{\text{D}}.PRECIO_{\text{t-1}} \\ &+ A_{\text{3}}.(1\text{-}B^{12})^{\text{D}}.INGRESO_{\text{t}} + A_{\text{4}}.(1\text{-}B^{12})^{\text{D}}.CICLO_{\text{t}} + \\ &A_{\text{5}}.(1\text{-}B^{12})^{\text{D}}.EFPUB_{\text{t}} + \mu_{\text{t}} \end{split}$$

donde CONS es el consumo por usuario, PRECIO es el precio marginal, INGRESO es el ingreso medio, CICLO es la variable que indica la duración media del período de medición, EFPUB es una variable que toma el valor 1 desde noviembre de 1989 y su coeficiente (A_5) es una medida aproximada de la reducción en el valor del consumo por usuario debido a la campaña publicitaria, es el término de error aleatorio del modelo. Este término de error sigue un modelo arma estacional donde el período de estacionalidad es doce.

B es el operador de rezagos, de manera que cuando precede a una variable se entiende que se está tomando el valor del período inmediatamente anterior. El término $(1-B^{12})$ que precede a algunas variables indica que se toma la primera diferencia estacional cuando el período de estacionalidad es doce. D es un entero no negativo que indica el

número de diferencias estacionales en el modelo. En nuestro caso D es $uno(1) \circ cero(0)$.

Los cambios futuros en el valor medio del consumo se explican por el cambio de una unidad en el precio, en el ingreso o en ambos. Los principales indicadores de los impactos que sufrirá el valor esperado del consumo son:

- 1. El multiplicador total, que indica el valor del cambio en el largo plazo. El multiplicador total del precio es A,/(1-A,) y el multiplicador total del ingreso es A₂/(1-A₁).
- 2. Los multiplicadores de impacto, que indican el cambio inmediato en el valor del consumo cuando cambian el precio o el ingreso. En nuestro caso, el multiplicador de impacto del precio es cero (0) y el del ingreso es A,.
- 3. El multiplicador intermedio de orden J, que indica el cambio sufrido por el valor medio del consumo cuando han transcurrido J períodos.
- 4. El multiplicador intermedio estandarizado de orden J, que indica qué porcentaje del cambio total en el valor esperado del consumo se ha realizado después de J períodos.

Entre los diagnósticos empleados para la validación del modelo cabe mencionar los siguientes:

Contraste de Ljung-Box para la adecuación de modelo; chequeo de estabilidad del modelo; gráfico de residuales contra el tiempo para detectar heteroscedasticidad; gráfico de valores ajustados contra valores observados para detectar sesgos de pronósticos; contraste de Holden y Peel para detectar sesgos en los pronósticos; criterio de información de Akaike para la selección de modelo; análisis de observaciones atípicas. Los resultados de algunas de estas pruebas se pueden consultar en el informe de la investigación.

IV. Resultados del modelo

En la tabla siguiente se sintetizan algunos de los resultados principales de la estimación de los modelos para cada uno de los estratos en que se dividen los usuarios residenciales del servicio de acueducto y para el denominado consumidor representativo (modelo agregado).

En primer lugar se observa que para todos los modelos la elasticidad-precio de la demanda es negativa y su valor absoluto es menor que uno. Es decir, tanto para la totalidad de los estratos como para el consumidor representativo, el servicio de acueducto tiene demanda inelástica al precio, pero esa elasticidad va aumentando con el tiempo, seguramente porque los consumidores se van volviendo más sensibles al precio a medida que este sube (el precio marginal real para el consumidor representativo se incrementó en un 69% en el período considerado). De otra parte, la elasticidad es mayor para los estratos más bajos y disminuye en los más altos, es decir, hay mayor sensibilidad a los precios en los estratos más bajos.

La elasticidad ingreso fluctúa menos en el tiempo, aunque se nota un leve aumento. Es también ligeramente más alta en el largo plazo. El comportamiento por estratos no es estable: para el primero la elasticidad ingreso no es estadísticamente diferente de cero; al pasar del segundo al tercero la elasticidad se reduce; del tercero al cuarto y del cuarto al quinto, aumenta, y del quinto al sexto se reduce. Esto parece sugerir que desde el punto de vista de los ingresos medio-bajos el agua es un bien inferior (su consumo disminuye cuando aumenta el ingreso), en tanto que para los niveles medio, medio-alto y alto es un bien complementario de ciertos bienes de lujo, como por ejemplo el riego del jardín, el aseo del automóvil, el baño con agua caliente, la piscina, el "jacuzzi", entre otros. En cualquier caso, debe tenerse en cuenta que la desagregación del ingreso está basada en una información muy precaria que ignora las diferencias entre el ciclo económico y la dinámica de la distribución del ingreso. En ese sentido, los resultados mas sólidos son los del modelo agregado.

También se aprecia en la tabla que un alto porcentaje del cambio generado por una alteración del precio o del ingreso, se presenta en el corto plazo: 80% del impacto total del cambio de ingreso se produce en el mismo mes, y 80% del impacto del cambio en el precio se produce en el mes siguiente. En los modelos de los estratos se observan algunas variaciones, pero en todos los casos los impactos de corto plazo son superiores al 78%. Por otra parte, el 99% del impacto producido por la alteración de las variables mencionadas ocurre en un máximo de cuatro meses, es decir, éste período es en realidad el "largo plazo" para el consumidor representativo tanto en el modelo agregado como en los modelos para los estratos y en ese lapso se realizan la totalidad de los ajustes.

La campaña de ahorro logró su efecto: la disminución de la cantidad demandada por el consumidor representativo del mercado fue de un 2% (0.65 metros cúbicos por mes), lo cual equivale a ocho días de consumo por cada año de servicio. Visto por estratos el efecto es diferente, pero puede observarse que es mucho más importante en los extremos y se reduce en los estratos centrales.

V. Conclusiones

La principal característica de la demanda residencial de acueducto de las Empresas Públicas de Medellín en el período 1985-1991 fue su tendencia decreciente, tanto para el agregado como para cada uno de los estratos socioeconómicos. La disminución del consumo mensual de acueducto del usuario promedio fue de un 16% aproximadamente y ese mismo descenso fue especialmente pronunciado para los estratos de altos ingresos: 19% para el estrato cinco y 37% para el estrato seis.

De acuerdo con las proposiciones de la teoría neoclásica de la demanda, las principales causas de este descenso pronunciado y persistente de la demanda residencial de acueducto parecían ser el incremento del precio marginal y la campaña de ahorro de agua de las Empresas Públicas de Medellín durante el período. El precio marginal

Modelo de ajuste parcial

		Agreg	gado	Estr	ato 1	Estra	ato 2	Estra	ito 3	Estra	ato 4
EP	CP LP	-0.16 -0.20	-0.30 -0.38	-0.27 -0.30	-0.43 -0.48	-0.21 -0.24	-0.36 -0.42	-0.16 -0.19	-0.30 -0.35	-0.15 -0.19	-0.28 -0.35
EI	CP LP	0.28 0.36	0.31 0.38	No se Ho: A3	rechaza	0.37 0.43	0.41 0.47	0.21 0.24	0.21 0.25	0.60 0.75	0.60 0.75
A5		-0.	65	-1	.68	-0	.85	-0	.56	No se Ho: A5	rechaza = 0
(1) (2)		80 3 me)% eses		7% eses		4% eses	100 000 000	8% eses

,		Estra	ito 5	Estra	ato 6
EP	CP LP	-0.17 -0.19	-0.38 -0.41	-0.14 -0.16	-0.37 -0.43
ΕI	CP LP	0.79 0.86	0.84 0.92	0.57 0.65	0.75 0.87
A5	888		.65	-1.	.89
(1) (2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2% eses		7% eses

- (1) Porcentaje del impacto total que se alcanza en el primer período.(2) Tiempo que se tarda en completar el 99% del impacto total.

real del servicio de acueducto de las Empresas incrementó en un 69%. Y los incrementos para los estratos socioeconómicos altos estuvieron muy por encima del promedio, alcanzando 86% para el estrato cinco y 92% para el estrato seis. A pesar de que el ingreso de los hogares podría ser otra causa importante de la disminución de la demanda, su comportamiento relativamente estable durante el período lo excluía como fuente significativa de variación.

Los resultados econométricos del modelo muestran signos correctos de los parámetros estimados para las diferentes variables involucradas en la función de demanda. En el modelo agregado la elasticidad-precio de corto plazo es negativa y toma valores crecientes en el tiempo, pasando de 16% en abril de 1985 a 30% en junio de 1991. Lo anterior no debe extrañarnos pues el modelo es lineal y el comportamiento del precio y la cantidad consumida durante el período son tales que el primero tiene una tendencia monótona creciente y la segunda una tendencia monótona decreciente. De otro lado, los valores absolutos de las elasticidades precio de los diferentes estratos presentan valores decrecientes a mayor estrato socioeconómico. En tanto el estrato uno tiene elasticidades precio de corto plazo que van del 27% al 43%, el estrato cuatro muestra elasticidades que van del 15% al 28%.

La elasticidad ingreso de corto plazo para el modelo agregado varía entre un 28% al principio del período y un 38% en junio de 1991. Este comportamiento intertemporal obedece a la linealidad del modelo y a la tendencia decreciente de la cantidad consumida, acompañada de un ingreso relativamente estable. Las comparaciones inter-estrato muestran resultados heterogéneos: para el estrato uno se acepta la hipótesis nula de cero elasticidad ingreso, en tanto para el estrato dos es significativa y positiva (de 37% a 41%); el estrato tres presenta una elasticidad ingreso mucho menor y casi igual a la anterior, mientras los estratos cuatro, cinco y seis resultan con elasticidades crecientes y superiores o iguales a la elasticidad promedio. Esto parece sugerir que desde el punto de vista de los ingresos medios-bajos el agua es un bien inferior, en tanto para los niveles medio, medio-alto y alto es un bien complementario de ciertos bienes de "lujo", como por ejemplo el riego del jardín, el aseo del automóvil, el baño con agua caliente, la piscina, el "jacuzzi", entre otros.

Debemos advertir al lector que los resultados de los modelos de demanda de cada uno de los diferentes estratos deben tomarse con cautela. Esta advertencia obedece a que la desagregación del ingreso por estrato se funda sobre una información muy precaria que ignora las diferencias entre el ciclo económico y la dinámica de la distribución del ingreso. Como es bien sabido, estos márgenes de error en la medición del ingreso de cada estrato generan sesgos en la estimación del parámetro del ingreso y de los parámetros de las demás variables. De todas formas, los resultados más sólidos son los del modelo agregado de consumo, en tanto se encuentran libres del problema que acabamos de mencionar. Nosotros creemos que, dadas las dificultades de desagregar por estratos las series temporales de ingreso, una buena estimación de las elasticidades precio e ingreso para cada uno de los diferentes estratos se podría obtener con un modelo basado en información de corte transversal, como por ejemplo las encuestas de usuarios de Empresas Públicas de Medellín de 1985 y 1990.

El modelo dinámico de ajuste parcial permite estimar las elasticidades de corto y largo plazo. Nuestros resultados muestran que el impacto de un cambio en el precio se efectúa en un 80% en el mismo mes en que se altera el ingreso y un mes después de que se altera el precio. Adicionalmente, mostramos como el 99% del efecto total de un cambio una variable independiente, como el precio o el ingreso, se efectúa en tres meses para el primero y en cuatro para el último. En conclusión, el período de largo plazo no es superior a cuatro meses y el consumidor representativo realiza todos sus ajustes en este lapso.

De acuerdo a nuestras estimaciones, la campaña de ahorro logró atenuar la demanda residencial de acueducto. El consumidor representativo del mercado disminuyó su demanda en aproximadamente un 2%-0.65 metros cúbicos al mes-, lo cual equivale al consumo de ocho días por año de servicio.

Una explicación esquemática de nuestros resultados es la siguiente: en primer lugar, las variaciones de la estructura de tarifas incrementan el precio marginal del agua desplazando la función de oferta hacia arriba. Y, en segundo lugar, la campaña de ahorro, la leve disminución del ingreso del usuario y los efectos de la estructura de tarifas vía cargo fijo y transferencia implícita desplazan la función de demanda hacia la izquierda. Por lo tanto, a priori, el efecto de estática comparativa es una merma de la cantidad consumida y un efecto ambiguo sobre el precio de equilibrio. La ambigüedad del efecto sobre el precio se debe a que el desplazamiento de la función de oferta presiona el precio hacia arriba, en tanto la contracción de la demanda tiende a disminuir esa misma variable. Se trata entonces de un asunto estrictamente empírico que se despeja como resultado de nuestras estimaciones. Estas nos permiten establecer un efecto dominante de la función de oferta y, por consiguiente, un incremento del precio de equilibrio.

En resumen, del 16% de disminución en la demanda residencial de acueducto en el período 1985-1991, un 2% se explica por la campaña de ahorro, un décimo de 1% -más exactamente 0.13%- por la disminución de ingresos y el resto por el efecto de la estructura de tarifas sobre el precio marginal, el cargo fijo y la transferencia implícita.

La comparación de nuestros resultados con las de estimaciones de demanda de acueducto realizadas en otras latitudes no es una labor sencilla. Regularmente dichos mercados presentan niveles y distribuciones de ingreso y condiciones climáticas muy disímiles. Sinembargo, logramos encontrar algunos resultados aproximados a los nuestros, Forster y Beattie (1979) estiman para una zona metropolitana en los Estados Unidos (Calumet) una elasticidad precio de -0.27, igualmente Agthe, (et al. 1986) estiman una elasticidad precio de corto plazo de -0.26, sin embargo su elasticidad de largo plazo es muy superior a la nuestra y alcanza 0.59. Otros ejercicios obtienen resultados muy diferentes a los nuestros: Nieswiadomy y Molina (1989) utilizan métodos de variables instrumentales y mínimos cuadrados en dos etapas y hallan valores de elasticidad precio de -0.86 y -0.55, respectivamente, muy por encima de nuestras estimaciones. En cuanto a la elasticidad ingreso, ocurre el caso opuesto, pues la elasticidad estimada en los dos últimos casos es de 0.14. Los resultados de Gibbs (1978) no son tan alejados de los nuestros, en tanto la elasticidad ingreso es 0.51 y la elasticidad precio es igual a -0.51.

En cuanto a los escenarios de proyección y sus respectivas demandas, se emplearon cuatro escenarios de tarifas propuestos por EPM. Para cada una de las alternativas se calculó la correspondiente transferencia. Se emplearon, además, dos proyecciones de ingresos en combinación con las proyecciones del crecimiento de la población dadas por el DANE: la primera es la del Departamento de Planeación Nacional y la segunda es la de Fedesarrollo3. Adicionalmente, se hicieron pronósticos proyectando tendencialmente las variables explicativas del consumo. Los pronósticos del consumo agregado y por estrato se hicieron empleando el modelo de ajuste parcial.

Para el modelo agregado, el pronóstico tendencial es de un consumo mensual prácticamente estático (alrededor de 25 metros cúbicos por usuario y por mes), resultado de un ingreso que aumenta muy levemente y de un aumento del precio marginal real de 14% para todo el período (julio de 1991 a diciembre de 1994). Un resultado similar se encuentra en los pronósticos de consumo para los distintos estratos: apenas se observa una leve disminución del consumo.

Si se usa el escenario de Planeación Nacional, la primera alternativa de precios implica una disminución del consumo hasta llegar a 22.5 metros cúbicos por usuario a fines de 1994, mientras que en las otras tres alternativas el consumo tendría disminuciones más sensi-

³ En el escenario de Planeación resulta, finalmente, en un incremento del ingreso por usuario en un 23.5%, mientras que el de Fedesarrollo arroja un crecimiento para el período considerado de 18%.

bles del consumo por usuario que lo llevarían hasta niveles de poco más de 21 metros cúbicos mensuales.

En el escenario de ingresos de Fedesarrollo, las caídas del consumo son mayores, llegando, en la alternativa cuatro, hasta niveles de 16.7 metros cúbicos por usuario y por mes.

Ahora bien, para los dos primeros estratos las dimsminuciones del consumo son muy apreciables: en el estrato uno la alternativa cuatro reduce el consumo desde diecinueve(19) hasta unos diez (10) metros con el primer ingreso y seis (6) metros con el segundo; en el estrato dos el consumo pasa de veinticuatro (24) metros a catorce (14) y ocho y medio (8.5), respectivamente. En los otros estratos las reducciones son menores, pero en el escenario de ingresos de Fedesarrollo y en la alternativa número cuatro llegan a ser muy importantes (38% en el estrato seis).

Referencias

Agthe, DE. and Billings, RB. (1980) "Dynamic Models of Residential water demand". Water resources research. Vol. 16, No.3, junio, pp. 476-480.

---- (1986). "Dobra and K. Raffiee. A simultaneous equation model for block rates". Water resources research. Vol. 22, No. 1, january, pp 1-4

Charney, Alberta H. and Woodard, Gary (1984). "A test of consumer demand response to water prices: comment". Land economics. Vol. 60, No. 4. November.

DANE, Encuesta Nacional de Hogares para Medellín 1985-1991.

DANE, Boletín de Estadística. No. 433, abril de 1989.

Departamento Administrativo de Planeación Metopolitana, Anuario Estadístico Metropolitano, 1988.

Foster S. Henry, and Beattie, Bruce (1979). "Urban residental demand for water in the United States". Land economics. Vol. 55, No. 1, February.

Gibbs, K.C. (1978) "Price variable in residential water demand models". Water resources research, Vol. 14, No. 1, February, pp. 15-18.

Griffin, Adrian, Martin, William E. S., Wade, James C. (1981). "Urban residental demand for water in the United States: comment". Land economics. Vol. 57, No. 2, May.

Houthakker, H. S., y L. D. Taylor (1970). "Consumer demand in the United States. 1929-1970". Harvard University Press, Cambridge Mass, Segunda edición.

Nieswiadomy, Michel, and Molina, David (1989), "Comparing residential water demand estimates under decreasing and increasing block rates using household data". Land economics. Vol. 65, No. 3, august.

Opaluch, James J. (1982) "Urban residental demand for water in the United States: further discussion". Land economics. Vol. 58, No. 2, May.

---- (1984) "A test of consumer demand response to water prices: a reply". Land economics. Vol. 60, No. 4, November.

Phlips, Louis (1987). Applied Consumption Analysis. North-Holland, Amsterdam.

Segura, Julio (1986). Análisis Microeconómico. Alianza Editorial. Madrid.

Varian, Hal A. (1986). Análisis Microeconómico. Antoni Bosch, Barcelona.

Consumo residencial de acueducto por estrato y Anexo cuadro 1 agregado en M³ por usuarlo 1985-1991

Fed	ha	E1	E2	E3	E4	E5	E6	Agregado
85	Abr	22.3	28.4	29.1	29.4	35.8	51.8	30.0
	May	22.9	28.5	30.6	31.5	39.1	51.8	31.4
	Jun	24.3	30.2	32.0	32.3	39.3	53.4	32.6
	Jul	23.5	28.3	30.0	30.8	37.8	58.1	30.9
	Ago	24.9	29.4	30.8	30.5	36.6	49.8	31.3
	Sep	29.1	28.4	30.0	30.7	37.8	51.4	30.9
	Oct	22.7	26.7	28.8	30.2	37.8	50.4	29.8
	Nov	22.9	27.8	29.6	30.5	37.6	53.8	30.5
	Dic	22.3	27.1	29.1	30.3	36.6	49.4	29.8
86	Ene	22.7	29.2	29.6	28.9	34.7	48.7	30.2
	Feb	23.5	29.1	30.8	30.2	34.1	45.3	30.7
	Mar	23.9	28.3	29.9	30.7	37.6	52.0	30.7
	Abr	24.9	29.7	29.6	29.0	34.9	48.0	30.4
	May	25.1	29.5	30.4	31.6	37.4	49.6	31.4
	Jun	24.7	30.0	31.4	32.3	39.0	53.7	32.2
	Jul	24.1	28.3	30.1	31.4	37.8	50.9	30.9
	Ago	25.1	29.4	30.9	31.4	37.0	48.8	31.4
	Sep	24.6	29.2	31.0	32.6	39.1	55.6	
	Oct	24.6	28.6	30.2	31.3	38.1	53.0	
	Nov	23.8	27.8	29.1	29.9	36.1	51.4	
	Dic	24.7	28.1	30.0	30.9	37.3	48.1	30.6
87	Ene	24.8	28.6	30.0	29.7	36.3	46.4	
	Feb	25.1	28.7	30.5	29.3	33.5	41.5	
	Mar	26.3	28.3	30.1	30.4	37.5	48.0	
	Abr	24.4	29.1	30.3	30.2	37.0	50.4	
	May	23.5	28.3	31.1	31.8	38.8	49.4	

Cuadro 1. Continuación

Fe	echa	E1	E2	E3	E4	E5	E6	Agregado
	Jun	24.3	28.6	30.3	30.5	36.9	48.0	30.8
	Jul	24.5	29.1	30.5	31.2	38.6	51.0	31.4
	Ago	23.7	28.4	30.1	30.2	35.8	49.5	30.5
	Sep	23.7	28.3	29.8	30.9	37.7	50.5	30.6
	Oct	24.8	27.9	30.0	31.2	38.4	54.5	30.9
	Nov	23.9	28.0	29.9	30.8	38.2	50.2	30.6
	Dic	23.7	28.5	30.2	31.0	38.4	48.8	30.9
88	Ene	28.4	28.9	29.9	29.4	35.5	48.7	30.4
	Feb	25.6	28.6	30.1	29.2	33.6	41.6	30.0
	Mar	25.5	28.4	29.9	30.4	37.3	48.5	30.6
	Abr	24.0	27.6	28.7	28.9	35.1	47.4	29.4
	May	23.5	27.4	29.0	29.6	36.3	49.6	29.7
	Jun	24.5	27.9	30.0	30.5	37.2	48.3	30.5
	Jul	24.4	27.7	28.7	29.0	34.8	48.1	29.4
	Ago	24.1	27.9	29.3	29.6	34.9	42.6	29.7
	Sep	24.1	27.1	28.6	29.1	34.8	47.7	29.2
	Oct	23.8	26.8	28.2	28.8	34.8	46.8	28.9
	Nov	24.3	27.1	28.8	29.5	35.9	44.2	29.4
	Dic	23.1	26.9	28.0	28.3	34.1	43.1	28.6
89	Ene	23.8	27.5	28.3	28.1	33.3	43.3	28.8
	Feb	22.7	26.8	27.6	26.8	30.2	35.7	27.6
	Mar	22.8	26.8	28.0	28.6	34.8	44.5	28.7
	Abr	23.0	27.1	27.4	27.5	32.5	48.0	
	May	23.6	27.4	28.4	28.6	33.3	45.3	29.0
	Jun	23.4	27.3	28.3	28.7	33.4	44.2	28.8
	Jul	23.5	27.3	28.6	29.3	34.7	45.2	
	Ago	23.0	27.1	28.2	28.1	32.8	40.1	28.5
	Sep	23.5	27.4	28.4	28.8	34.0	44.2	

Cuadro 1. Continuación

Fee	cha	E1	E2	E3	E4	E5	E6	Agregado
	Oct	22.6	26.6	27.9	29.1	35.2	44.9	28.8
	Nov	21.9	25.9	27.3	27.9	33.5	41.5	27.8
	Dic	22.0	26.3	27.5	27.9	33.1	42.0	28.1
90	Ene	22.3	26.9	28.0	27.5	32.1	40.9	28.3
	Feb	21.3	26.2	27.5	26.6	29.2	31.7	27.2
	Mar	21.6	26.1	28.0	28.3	33.3	41.9	28.3
	Abr	21.6	26.2	27.3	28.1	33.5	42.0	28.1
	May	23.4	26.8	27.9	27.8	32.4	39.2	28.3
	Jun	23.2	27.5	27.8	27.9	33.0	39.2	28.4
	Jul	22.0	26.5	27.5	27.9	32.6	43.1	28.1
	Ago	21.8	28.9	27.7	27.7	31.5	38.1	28.6
	Sep	21.9	26.0	27.6	28.4	32.6	39.9	28.0
	Oct	20.2	24.9	26.5	27.2	31.6	37.7	26.8
	Nov	19.3	23.7	25.6	26.2	31.0	37.9	25.9
	Dic	19.4	24.3	26.2	26.7	30.9	36.3	26.3
91	Ene	19.5	24.4	26.1	25.6	30.5	35.0	26.1
	Feb	19.2	24.2	25.7	25.1	27.4	28.1	25.2
	Mar	19.8	24.6	26.2	27.3	31.6	37.2	26.5
	Abr	20.9	25.0	26.4	27.1	31.2	36.9	26.7
	May	19.2	23.4	25.5	26.2	29.7	33.9	25.4
	Jun	18.6	23.2	25.5	26.3	30.7	35.3	25.5
	Jul	19.6	24.0	25.7	26.7	30.5	34.9	25.9

Fuente: Empresas Públicas de Medellín, 1992

Anexo cuadro 2 Período de lectura mensual por estrato. Sector residencial

Fecha	E1	E2	E3	E4	E5	E6	Agregado
4-85	29.239	29.909	29.378	28.834	28.842	28.121	29.355
5-85	30.858	30.731	30.898	31.223	31.194	31.215	30.943
6-85	31.786	31.894	31.624	31.243	31.000	30.865	31.556
7-85	29.860	29.721	29.886	30.269	30.714	30.462	30.005
8-85	30.360	30.611	30.532	30.155	29.759	29.797	30.390
9-85	30.620	30.306	30.381	30.369	30.354	30.707	30.363
10-85	29.466	29.325	29.612	30.130	30.456	29.985	29.716
11-85	30.504	30.598	30.724	30.678	30.505	30.492	30.649
12-85	30.212	29.954	30.086	30.318	30.538	30.696	30.150
1-86	29.489	29.523	28.966	28.439	28.113	28.767	28.959
2-86	30.337	30.356	30.769	31.178	31.371	31.193	30.778
3-86	30.355	30.196	30.266	30.288	30.264	30.709	30.259
4-86	30.136	30.325	29.584	28.858	28.217	28.173	29.524
5-86	30.519	30.626	30.756	31.084	31.417	30.979	30.840
6-86	31.327	31.341	31.306	31.350	31.366	31.869	31.341
7-86	29.815	29.671	29.973	30.167	30.417	30.053	29.960
8-86	30.404	30.370	30.395	30.369	30.328	30.241	30.374
9-86	30.541	30.498	30.769	30.908	30.957	30.795	30.729
10-86	30.310	30.348	30.323	30.367	30.494	30.049	30.349
11-86	29.711	29.708	29.576	29.475	29.427	29.050	29.575
12-86	30.585	30.561	30.875	31.006	30.994	31.000	30.815
1-87	30.397	30.468	30.183	30.034	29.932	30.006	30.218
2-87	30.864	30.731	31.034	31.235	31.277	30.975	30.997
3-87	30.002	29.907	30.010	30.183	30.448	30.954	30.073
4-87	29.935	30.069	29.835	29.700	29.477	30.007	29.853
5-87	31.479	31.564	31.761	31.679	31.724	29.197	31.620
6-87	30.284	30.361	30.460	30.424	30.298	30.958	30.416
7-87	31.027	30.777	30.884	31.129	31.533	31.910	

Cuadro 2. Continuación

Fecha	E1 -	E2	E3	E4	E5	E6	Agregado
8-87	30.507	30.665	30.697	30.493	30.215	30.975	30.608
9-87	30.284	30.385	30.291	30.546	30.839	30.026	30.410
10-87	30.894	30.359	30.495	30.614	30.632	31.882	30.528
11-87	30.970	31.165	31.306	31.276	31.289	31.036	31.245
12-87	31.039	31.247	31.249	31.308	31.293	30.049	31.231
1-88	30.839	30.680	30.402	29.995	29.629	31.003	30.367
2-88	30.301	30.354	30.722	30.966	31.270	30.958	30.701
3-88	30.477	30.200	30.239	30.313	30.358	30.940	30.274
4-88	29.675	29.555	29.309	29.029	28.602	28.128	29.247
5-88	29.968	30.286	30.666	30.831	30.945	30.959	30.597
6-88	30.991	30.860	31.149	31.213	31.255	30.040	31.053
7-88	30.621	30.582	30.485	30.449	30.580	31.927	30.555
8-88	30.751	31.005	30.887	31.005	31.174	30.063	30.948
9-88	30.711	30.391	30.568	30.651	30.556	31.890	30.562
10-88	31.132	31.014	30.823	30.593	30.421	30.078	30.792
11-88	31.103	31.184	31.320	31.334	31.269	30.043	31.241
12-88	31.103	31.184	31.320	31.334	31.269	30.043	31.241
1-89	31.068	30.951	30.441	30.165	29.830	30.054	30.499
2-89	30.176	30.167	30.283	30.253	30.220	30.010	30.226
3-89	30.030	30.133	30.434	30.671	30.974	30.982	30.436
4-89	30.452	30.572	30.271	30.154	30.153	29.075	30.304
5-89	30.990	30.897	30.942	30.807	30.395	30.997	30.857
6-89	30.593	30.363	30.307	30.166	29.916	30.977	30.289
7-89	30.475	30.527	30.848	31.092	31.278	30.989	30.825
8-89	29.240	29.462	29.554	29.712	29.946	29.003	29.566
9-89	30.385	30.379	30.220	30.149	30.032	30.969	30.264
10-89	30.104	30.017	30.335	30.676	30.972	30.958	30.366
11-89	29.852	29.973	30.097	30.134	30.115	29.032	30.031
12-89	30.207	30.376	30.323	30.311	30.461	30.977	30.365
1-90	31.001	30.790	30.393	30.026	29.492	30.024	30.374

Cuadro 2. Continuación

Fecha	E1	E2	E3	E4	E5	E6	Agregado
2-90	30.470	30.265	30.359	30.319	30.394	30.032	30.319
3-90	29.677	29.978	30.348	30.499	30.970	30.920	30.321
4-90	30.085	30.168	30.225	30.396	30.408	30.027	30.243
5-90	31.434	31.080	31.038	30.830	30.544	31.953	31.007
6-90	30.318	30.483	30.510	30.430	30.531	30.030	30.473
7-90	31.358	31.164	30.710	30.608	30.333	29.107	30.761
8-90	30.720	30.983	31.263	31.050	30.960	31.951	31.128
9-90	30.531	30.564	30.721	31.006	31.259	30.982	30.772
10-90	30.227	30.335	30.340	30.361	30.175	29.107	30.288
11-90	29.527	29.814	30.188	29.916	30.035	30.914	30.028
12-90	30.953	30.728	30.619	30.625	30.437	30.979	30.653
1-91	30.638	30.163	30.003	29.856	29.538	29.050	29.977
2-91	29.541	29.760	29.858	30.036	30.161	30.940	29.905
3-91	29.792	29.946	29.862	30.120	30.238	30.015	29.962
4-91	31.335	31.111	30.642	30.266	29.712	29.081	30.624
5-91	29.318	29.393	29.769	29.905	30.041	30.523	29.710
6-91	29.037	29.338	29.677	29.711	30.192	30.398	29.625
7-91	30.533	30.408	30.247	30.024	29.640	29.052	30.186
8-91	30.533	30.408	30.247	30.024	29.640	29.052	30.186
9-91	31.176	31.165	31.160	31.240	31.774	32.391	31.253
10-91	30.908	30.875	30.892	31.181	31.557	30.989	30.986
11-91	31.284	31.142	31.069	30.679	30.398	31.009	30.979
12-91	30.908	30.875	30.892	31.181	31.557	30.989	30.986
1-92	30.644	30.605	30.315	29.924	29.302	29.054	30.245
2-92	30.290	30.403	30.339	30.277	30.194	30.972	30.353
3-92	30.402	30.209	30.600	30.916	31.650	31.831	30.629
4-92	30.479	30.616	30.493	30.101	29.661	29.071	30.374
5-92	32.044	32.022	31.906	31.986	32.074	31.894	31.969
6-92	30.625	30.563	30.469	30.552	30.483	30.551	30.518

Anexo cuadro 3 Ingreso real por usuario, por estrato y agregado para Medellín

Fed	ha	E1	E2	E3	E4	E5	E6	Agregado
85	Ene	88259.29	117007.1	155341.0	234258.6	418560.1	670885.0	194045.5
	Feb	87230.31	115642.8	153530.3	232214.8	414898.0	665001.2	192355.2
	Mar	85607.86	113492.8	150673.2	227230.8	406016.1	650796.5	188432.8
	Abr	8353.83	110824.6	147125.7	22157.1	395200.5	633510.3	18350.60
	May	8193.69	108678.0	144272.3	214147.1	382721.6	613571.7	178416.5
	Jun	81814.3	108465.9	143993.0	212370.6	379547.0	608482.6	177258.9
	Jul	81826.72	108481.4	144016.3	214274.6	382916.1	613838.2	178386.0
	Ago	82044.55	108769.0	144401.4	215597.3	385253.2	617548.3	179284.1
	Sep	82056.23	108783.7	144423.1	217151.9	388003.4	621918.9	180222.0
	Oct	81042.78	107441.1	142638.0	214795.8	383806.0	615208.3	178186.8
	Nov	81342.34	107837.2	143166.8	215719.1	385437.3	617797.6	178914.3
	Dic	81279.76	107753.9	143057.2	217294.3	388227.5	622237.0	179808.2
86	Ene	80099.51	106190.7	140977.7	214231.2	382778.5	613535.9	177225.2
	Feb	79709.03	105673.3	140290.0	212414.9	379545.6	608370.8	175906.7
	Mar	78813.53	104487.2	138712.2	209585.4	374513.2	600336.2	173692.9
	Abr	78262.27	103757	137741.0	206931.7	369793.5	592800.8	171785.1
	May	80301.66	106457.3	141335.5	214327.7	382932.8	613758.6	177421.8
	Jun	81768.44	108399.3	143920.9	220044.0	393084.4	629945.8	181696.6
	Jul	83106.98	110171.5	146280.3	224676.3	401309.1	643057.8	185255.5
	Ago	82936.55	109945.8	145980.0	224334.5	400701.6	642088.5	184935.5
	Sep	83455.59	110633	146894.8	225528.8	402822.4	645470.0	185986.3
	Oct	82299.82	109102.8	144857.6	222324.7	397134.0	636402.1	183362.8
	Nov	82153.39	108909.1	144599.3	221029.3	394835.2	632738.7	182513.3
	Dic	81030.19	107422.0	142619.4	217210.9	388055.4	621929.8	179558.8
87	Ene	79973.15	106022.5	140756.2	214443.8	383142.4	614097.3	177265.3
	Feb	79747.79	105724.3	140358.8	214270.1	382836.8	613613.9	177013.8
	Mar	79141.43	104921.6	139289.9	212574.3	379827.2	608817.8	175632.0
	Abr	78650.87	104272.2	138425.0	209966.7	375197.3	601436.7	173801.8
	May	79167.54	104956.6	139335.2	210248.6	375702.4	602247.9	174303.9
	Jun	80283.14	106434.1	141300.9	213847.5	382101.9	612463.4	177129.8
	Jul	80865.45	107205.4	142326.7	214971.2	384103.2	615662.6	178164.2
	Ago	82186.2	108954.6	144654.1	219341.1	391871.8	628061.0	181565.9
	Sep	82797.24	109764	145730.5	221079.5	394965.5	633002.7	182979.7
	Oct	82689.05	109621.1	145539.3	220193.0	393396.5	630508.3	182334.5

Cuadro 3. Continuación

Fecha	E1	E2	E3	E4	E5	E6	Agregado
Nov	82180.28	108947.8	144642.1	217239.1	388154.7	622155.4	180346.6
Dic	82076.48	108810.7	144458.6	216066.8	386077.8	618850.4	179595.5
88 Ene	81663.28	108263.9	143729.8	215375.1	384854.3	616906.9	178930.8
Feb	80299.9	106458.9	141326.5	212239.5	379288.3	608034.6	176207.9
Mar	79901.61	105931.9	140624.0	211998.1	378865.3	607368.0	175809.9
Abr	80339.83	106512.6	141395.7	211348.9	377717.6	605544.9	175718.2
May	80870.92	107216.2	142331.1	213218.0	381046.1	610865.1	177153.4
Jun	80928.07	107292.3	142431.2	214024.6	382486.1	613171.7	177662.9
Jul	81318.72	108002.4	143195.2	216267.9	386810.0	620447.8	179317.2
Ago	81898.26	108772.5	144217.0	218217.6	390529.3	626756.9	180871.3
Sep	82302.1	109309.0	144928.8	218592.5	391466.6	628648.9	181399.8
Oct	82687.43	109820.9	145608.0	219711.5	393757.7	632740.3	182351.9
Nov	82493.01	109562.4	145264.3	218794.5	392433.5	631064.2	181741.0
Dic	81899.65	108773.7	144216.9	217694.8	390801.8	628916.3	180765.
89 Ene	82008.5	108918.2	144408.3	218098.2	391891.0	631173.4	181112.
Feb	80792.93	107305.4	142267.2	215331.9	386920.0	623168.8	178564.
Mar	80277.71	106617.0	141354.2	214461.0	385354.5	620646.4	177574.
Abr	80226.9	106545.7	141260.5	213223.9	383131.1	617064.3	177154.
May	80662.89	107121.2	142025.4	214059.0	384631.1	619479.3	178011.2
Jun	81392.63	108087.0	143308.3	216238.0	388545.8	625783.4	179694.
Jul	82145.25	108940.3	144421.8	219449.0	394307.5	635123.0	181523.0
Ago	82474.1	109549.2	145214.6	222316.9	399465.9	643381.8	182992.6
Sep	83186.1	110640.6	146651	223815.9	402191.2	647715.7	184599.
Oct	83917.68	111476.0	147774.7	225423.8	405118.7	652366.6	185952.0
Nov	84301.54	111798.8	148218.2	224908.9	404222.1	650869.2	186170.
Dic	84634.47	112413.4	149176.3	226241.5	406520.8	654696.7	187259.
90 Ene	83964.36	111522.8	147877.2	223130.9	400936.7	645743.1	185351.
Feb	82155.08	109115.8	144689.3	219027.2	393557.7	633857.7	181567.
Mar	81757.44	108587.7	143987.2	217483.9	390788.8	629398.4	180545.
Abr	81482.22	108222.4	143503.3	215295.3	386856.2	623064.5	179508.
May	81849.65	108711.1	144153.5	215460.1	387152.2	623541.4	180093.
Jun	81923.35	108809.5	144285.4	217352.9	390550.0	629017.5	180736.
Jul	82577.3	109684.3	145445.5	219316.6	394079.4	634704.0	182241.
Ago	82711.89	109863.3	145692.8	220402.1	396031.6	637846.3	182734.
Sep	82400.76	109446.2	145138.4	220334.6	395910.2	637649.7	182260.
Oct	82996.62	110242.7	146201.0	219705.8	394779.5	635829.2	182939.

Cuadro 3. Continuación

lov	83101.84 82922.57	110387.2	146397.8	0.100000			
ic	82022 57		140391.0	219653.6	394684.7	635677.1	183063.7
	02322.01	110146.9	146071.6	218868.9	393274.7	633408.8	182571.8
ne	81898.52	108745.4	144106.8	214679.5	385746.1	621246.5	179745.8
eb	80597.72	107014.0	141814.3	212808.2	382383.0	615886.9	177352.1
lar	80059.88	106303.7	140869.8	211496.6	380027.3	612092.1	176204.3
br	79938.57	106105.5	140504.0	210456.9	378158.0	609046.7	175605.7
May	79755.42	105860.9	140181.0	210428.5	378106.9	608964.9	175326.6
un	80172.62	106415.2	140915.2	211893.7	380739.2	613204.1	176345.1
ul	80721.77	107144.1	141880.4	213345.1	383347.1	617404.3	177553
A La	ar or ay n	80059.88 79938.57 79755.42 n 80172.62	ar 80059.88 106303.7 or 79938.57 106105.5 ay 79755.42 105860.9 n 80172.62 106415.2	ary 80059.88 106303.7 140869.8 79938.57 106105.5 140504.0 ay 79755.42 105860.9 140181.0 80172.62 106415.2 140915.2	ar 80059.88 106303.7 140869.8 211496.6 79938.57 106105.5 140504.0 210456.9 ay 79755.42 105860.9 140181.0 210428.5 n 80172.62 106415.2 140915.2 211893.7	ar 80059.88 106303.7 140869.8 211496.6 380027.3 79938.57 106105.5 140504.0 210456.9 378158.0 ay 79755.42 105860.9 140181.0 210428.5 378106.9 80172.62 106415.2 140915.2 211893.7 380739.2	ary 80059.88 106303.7 140869.8 211496.6 380027.3 612092.1 79938.57 106105.5 140504.0 210456.9 378158.0 609046.7 79755.42 105860.9 140181.0 210428.5 378106.9 608964.9 80172.62 106415.2 140915.2 211893.7 380739.2 613204.1

Precio marginal por M³ en pesos de junio de 1991 Anexo cuadro 4

Fecha		E1 (E2	E3	E4	E5	E6	Agregado
85	Ene	60.4	73.7	91.2	105.7	113.7	122.2	92.0
	Feb	60.5	73.8	91.4	106.2	114.2	122.7	92.4
	Mar	60.1	73.3	90.7	105.1	113.1	121.5	91.6
	Abr	59.3	72.3	89.5	103.4	111.2	119.5	90.1
	May	58.7	71.5	88.6	101.0	108.7	116.8	88.4
	Jun	59.0	72.0	89.1	101.0	108.7	116.8	88.6
	Jul	59.5	72.5	89.8	102.6	110.4	118.7	89.8
	Ago	60.0	73.2	90.6	103.9	111.8	120.1	90.8
	Sep	60.4	73.6	91.1	105.3	113.3	121.7	91.8
	Oct	59.9	73.1	90.5	104.7	112.6	121.0	91.2
	Nov	60.4	73.7	91.2	105.6	113.6	122.0	92.0
	Dic	60.6	73.9	91.5	106.8	114.8	123.4	92.8
86	Ene	59.9	73.1	90.4	105.6	113.6	122.0	91.8
	Feb	59.8	72.9	90.2	105.0	112.9	121.3	91.3
	Mar	59.2	72.2	89.4	103.8	111.7	120.0	90.4

100 Gustavo López - Elkin Castaño - Carlos Eduardo Vélez

Cuadro 4. Continuación

Fed	ha	E1	E2	E3	E4	E5	E6	Agregado
in a	Abr	58.9	71.9	89.0	102.7	110.5	118.7	89.5
	May	60.5	73.8	91.4	106.5	114.5	123.1	92.6
	Jun	61.7	75.2	93.2	109.4	117.7	126.4	94.9
	Jul	62.7	76.5	94.7	111.8	120.2	129.1	96.8
	Ago	62.6	76.4	94.6	111.6	120.1	129.0	96.7
	Sep	63.0	76.8	95.1	112.2	120.7	129.6	97.2
	Oct	62.1	75.7	93.8	110.6	118.9	127.7	95.8
	Nov	62.0	75.6	93.6	109.9	118.2	126.9	95.3
	Dic	61.1	74.5	92.2	107.9	116.0	124.6	93.7
87	Ene	60.2	73.4	90.9	106.4	114.4	122.9	92.4
	Feb	59.9	73.1	90.5	106.1	114.2	122.7	92.1
	Mar	59.4	72.4	89.7	105.1	113.1	121.5	91.3
	Abr	58.9	71.9	89.0	103.7	111.5	119.8	
	May	59.2	72.2	89.4	103.6	111.4	119.8	
	Jun	59.9	73.0	90.4	105.2	113.1	121.5	
	Jul	60.2	73.4	90.9	105.5	113.4	121.9	91.8
	Ago	61.0	74.4	92.2	107.4	115.5	124.1	93.4
	Sep	61.3	74.8	92.6	107.9	116.1	124.7	93.9
	Oct	61.1	74.5	92.2	107.2	115.3	123.9	93.3
	Nov	60.6	73.9	91.4	105.5	113.5	121.9	92.0
	Dic	60.3	73.6	91.1	104.6	112.6	120.9	91.4
88	Ene	59.8	73.0	90.3	104.0	111.9	120.2	90.8
	Feb	58.7	71.6	88.6	102.2	109.9	118.2	89.1
	Mar	58.2	71.0	87.9	101.8	109.5	117.7	88.7
	Abr	58.3	71.2	88.1	101.2	108.8	117.0	88.4
	May	58.6	71.4	88.4	101.7	109.5	117.6	88.8
	Jun	58.4	71.2	88.2	101.8	109.5	117.7	88.8
	Jul	68.8	91.0	117.6	130.0	135.8	152.5	115.0
	Ago	69.2	91.4	118.2	132.7	140.7	157.4	116.7
	Sep	69.3	91.6	118.5	134.4	144.9	161.5	117.7
	Oct	69.5	91.9	118.7	136.7	149.9	166.5	119.0
	Nov	69.2	91.4	118.2	137.8	153.7	170.3	119.4
	Dic	68.5	90.6	117.0	138.9	157.7	174.2	119.5

Cuadro 4. Continuación

Fech	a	E1	E2	E3	E4	E5	E6	Agregado
89	Ene	68.4	90.5	116.9	141.0	163.1	179.7	120.6
	Feb	67.3	89.0	115.1	139.0	160.9	177.2	118.8
	Mar	66.9	88.4	114.2	138.3	160.0	176.3	118.0
	Abr	66.8	88.2	114.0	137.4	159.0	175.1	117.6
	May	67.1	88.6	114.5	137.8	159.4	175.6	118.1
	Jun	67.6	89.3	115.5	139.1	160.9	177.2	119.1
	Jul	69.6	90.7	116.8	141.7	163.6	181.4	120.9
	Ago	70.0	92.6	118.8	146.1	169.0	186.3	123.7
	Sep	70.9	94.9	121.4	149.3	173.5	190.1	126.6
	Oct	73.4	97.1	124.7	152.6	178.2	194.2	129.7
	Nov	75.8	98.9	127.4	154.5	181.2	196.4	132.1
	Dic	76.2	100.7	133.9	157.8	182.6	200.3	135.9
90	Ene	75.6	99.9	129.2	155.6	180.0	198.4	133.2
	Feb	74.4	98.4	127.2	153.7	177.8	195.9	131.3
	Mar	74.5	98.5	127.3	153.5	177.6	195.7	131.4
	Abr	74.7	98.8	127.7	152.9	176.9	194.9	131.4
	May	75.5	99.8	129.1	154.0	178.2	196.3	132.7
	Jun	76.1	100.5	130.0	156.3	180.8	199.2	134.0
	Jul	77.9	103.0	133.2	160.3	185.4	204.3	137.3
	Ago	79.0	104.5	135.1	163.1	188.7	207.9	139.4
	Sep	79.8	105.4	136.3	165.1	191.1	210.5	140.8
	Oct	81.4	107.5	139.0	166.8	193.0	212.6	143.1
	Nov	82.5	109.1	141.0	168.9	195.4	215.3	145.1
	Dic	82.6	109.1	141.1	168.8	195.3	215.1	145.1
91	Ene	81.8	108.1	139.6	166.0	192.1	211.6	143.3
	Feb	80.7	106.6	137.7	164.9	190.8	210.2	141.7
	Mar	80.3	106.1	137.1	164.3	190.0	209.4	141.0
	Abr	80.4	106.1	137.0	163.8	189.5	208.8	140.9
	May	80.4	106.1	137.0	164.1	189.9	209.2	141.0
	Jun	81.0	106.9	138.0	165.7	191.7	211.2	
	Jul	86.2	113.8	146.9	175.9	203.5	224.2	151.0

Fuente: EPM, cálculos CIE.

Anexo cuadro 5. Transferencia, base junio de 1991

Fec	ha	E1	E2	E3	E4	E5	E6	Agregado
85	Ene	850.6	1177.1	1256.5	1221.9	1467.0	1723.1	1250.4
	Feb	851.8	1178.8	1258.3	1227.3	1473.4	1730.6	1255.9
	Mar	845.7	1170.4	1249.3	1214.9	1458.7	1713.4	1244.7
	Abr	834.4	1154.7	1232.5	1194.7	1434.6	1685.2	1225.0
	May	825.8	1142.8	1219.7	1167.5	1402.1	1647.2	1201.7
	Jun	830.9	1149.9	1227.4	1167.4	1401.9	1647.0	1203.7
	Jul	837.1	1158.5	1236.6	1186.4	1424.7	1673.6	1220.3
	Ago	844.8	1169.1	1247.9	1201.5	1442.7	1694.7	1234.4
	Sep	849.8	1176.0	1255.3	1217.1	1461.3	1716.4	1247.9
	Oct	843.5	1167.3	1246.0	1210.0	1452.8	1706.5	1240.0
	Nov	850.3	1176.7	1256.1	1220.5	1465.3	1721.1	1250.6
	Dic	852.9	1180.3	1259.8	1234.0	1481.5	1740.1	1261.6
86	Ene	843.2	1166.9	1245.5	1220.6	1465.4	1721.2	1247.4
	Feb	841.4	1164.3	1242.8	1213.5	1456.9	1711.3	1241.5
	Mar	833.7	1153.8	1231.5	1200.0	1440.8	1692.5	1228.6
	Abr	829.4	1147.7	1225.0	1186.8	1425.1	1674.2	1217.2
	May	852.1	1179.2	1258.7	1230.9	1477.7	1735.6	1258.8
	Jun	868.5	1201.8	1282.9	1264.9	1518.3	1783.1	1290.3
	Jul	883.2	1222.2	1304.7	1292.2	1551.0	1821.2	1316.4
	Ago	881.6	1219.9	1302.3	1290.6	1549.0	1818.9	1314.4
	Sep	887.0	1227.4	1310.3	1297.3	1557.0	1828.3	1321.7
	Oct	874.4	1210.0	1291.6	1278.4	1534.4	1801.9	1302.6
	Nov	872.2	1207.0	1288.5	1270.1	1524.5	1790.3	1295.6
	Dic	859.5	1189.4	1269.6	1247.0	1496.9	1758.1	1273.5
87	Ene	847.3	1172.6	1251.6	1229.7	1476.3	1733.9	1255.8
	Feb	843.8	1167.7	1246.3	1227.0	1473.1	1730.2	
	Mar	836.0	1157.0	1234.9	1215.3	1459.2	1713.9	
	Abr	829.4	1147.8	1225.1	1198.3	1438.8	1690.2	
	May	833.2	1153.1	1230.7	1197.6	1438.0	1689.2	
	Jun	843.2	1166.8	1245.5	1215.5	1459.4	1714.2	

Cuadro 5. Continuación

Fech	Fecha		E2	E3	E4	E5	E6	Agregado
	Jul	847.4	1172.7	1251.7	1219.2	1463.7	1719.3	1248.3
	Ago	859.2	1189.0	1269.1	1241.0	1489.8	1749.8	1269.1
	Sep	863.4	1194.8	1275.4	1247.7	1497.8	1759.1	1275.8
	Oct	860.0	1190.2	1270.4	1239.5	1488.0	1747.7	1268.0
	Nov	852.5	1179.7	1259.2	1219.6	1464.2	1719.9	1250.8
	Dic	849.0	1174.9	1254.1	1209.6	1452.4	1706.0	1242.2
88	Ene	842.3	1165.7	1244.2	1202.3	1443.6	1695.8	1234.0
	Feb	825.9	1142.9	1219.9	1181.4	1418.6	1666.5	1211.7
	Mar	819.3	1133.9	1210.2	1176.5	1412.8	1659.8	
	Abr	821.3	1136.7	1213.2	1169.4	1404.3	1649.8	1201.1
	May	824.2	1140.7	1217.5	1176.1	1412.4	1659.2	1207.2
	Jun	822.3	1138.0	1214.6	1176.9	1413.3	1660.3	1207.0
	Jul	1000.4	1419.8	1399.7	869.8	1814.4	2396.6	1375.1
	Ago	1005.2	1426.5	1406.4	900.7	1789.6	2348.9	1382.7
	Sep	1007.8	1430.2	1410.0	926.3	1747.3	2276.5	
	Oct	1010.1	1433.5	1413.2	956.2	1706.0	2203.0	1383.9
	Nov	1005.3	1426.7	1406.6	978.3	1643.8	2100.3	1373.4
	Dic	995.8	1413.1	1393.1	1000.5	1575.1	1986.7	1359.7
89	Ene	994.7	1411.7	1391.7	1030.5	1511.5	1876.2	1355.3
	Feb	979.1	1389.3	1369.5	1016.4	1490.0	1850.5	1334.7
	Mar	971.7	1379.1	1359.4	1011.2	1482.6	1841.3	1326.0
	Abr	969.9	1377.0	1357.2	1004.2	1472.7	1829.0	1321.6
	May	974.0	1383.2	1363.3	1007.1	1477.1	1834.6	1326.8
	Jun	981.7	1394.6	1374.4	1016.3	1490.8	1851.8	1338.1
	Jul	986.9	1415.0	1390.0	1032.8	1511.2	1895.1	1356.9
	Ago	1017.4	1443.5	1413.2	1068.6	1565.1	1945.2	1388.3
	Sep	1050.9	1479.0	1443.1	1092.2	1611.0	1984.2	1420.3
	Oct	1066.2	1511.7	1481.9	1116.7	1659.0	2024.9	1455.2
	Nov	1074.4	1537.9	1514.7	1131.0	1692.4	2046.9	1481.8
	Dic	1107.5	1571.6	1596.7	1152.4	1689.4	2086.0	1529.1
90	Ene	1098.9	1559.7	1537.7	1137.7	1668.1	2071.4	1496.6
	Feb	1081.8	1535.4	1513.8	1123.4	1647.5	2045.6	1475.0

104 Gustavo López - Elkin Castaño - Carlos Eduardo Vélez

Cuadro 5. Continuación

Fech	a	E1	E2	E3	E4	E5	E6	Agregado
D. RADE	Mar	1083.2	1537.4	1515.7	1122.4	1645.9	2043.7	1475.7
	Abr	1086.2	1541.6	1519.9	1117.9	1639.4	2035.6	1476.2
	May	1097.8	1558.1	1536.2	1125.7	1650.8	2049.7	1490.2
	Jun	1105.6	1569.2	1547.1	1142.6	1675.5	2080.5	1504.7
	Jul	1132.7	1607.4	1585.0	1171.7	1718.0	2133.2	1541.9
	Ago	1148.8	1630.6	1607.6	1192.5	1748.3	2171.1	1565.7
	Sep	1159.0	1645.0	1622.1	1207.3	1770.2	2198.1	1581.5
	Oct	1182.2	1678.3	1654.9	1219.4	1787.8	2220.6	1607.9
	Nov	1198.7	1702.2	1678.5	1234.9	1810.3	2249.3	1629.7
	Dic	1200.1	1703.4	1679.7	1233.9	1809.2	2246.6	1630.0
91	Ene	1149.7	1631.2	1607.3	1173.9	1721.2	2137.2	1556.6
	Feb	1133.7	1608.7	1585.0	1166.1	1709.8	2123.3	1539.1
	Mar	1128.6	1601.2	1577.6	1161.2	1702.6	2114.5	1532.2
	Abr	1091.0	1547.3	1523.4	1118.7	1640.3	2037.0	1478.4
	May	1090.9	1547.2	1523.4	1121.1	1643.8	2041.0	1479.3
	Jun	1099.1	1558.9	1534.8	1131.4	1659.0	2060.0	1491.3
	Jul	1129.6	1601.5	1575.5	1159.1	1699.6	2110.5	1529.4

Fuente: Empresas Públicas de Medellín, cálculos CIE.