
A psychopedagogical approach to
the teaching of a programming
language in secondary schools

BRUNO VITALE
Université de Genéve et de Fribourg

Abstract
Some of the aspects that characterize the novelty and the difficulties observed in the pu-

pil/computer interaction in the school context are discussed from a psycho-cognitive and a
psycho-pedagogical point of view. Special emphasis is put on the need to be particularly sensi-
tive to the problems posed to pupils by the introductton of a formal language and by its use
for programming and problem-solving.

Key words: Formal languages, Programming, Pupil/computer interaction, Secondary Schools.

Una aproximación psicopedagógica a la enseñanza
de un lenguaje de programación en la Escuela

Secundaria

Resumen
Se plantean en este artículo, desde un punto de vista psico-cognitivo y psico-pedagógico, al-

gunos cíe los aspectos que caracterizan la novedosidad y las dificultades que se observan en la
interacción ordenador/alumno en contexto escolar. Se hace hincapié en la necesidad de adoptar
una actitud receptiva a los problemas que les plantea a los alumnos la introducción de un len-
guaje formal y su uso para programar y resolver problemas.

Palabras clave: Lenguajes formales, Programación, Interacción alumno-ordenador, Escuela Se-
cundaria.

Dirección del autor: Université de Genéve. Faculté de Psychologie et des Sciences de l'Edu-
cation. 24, rue du Général Dufour. 1205 Genéve. Suisse.

Original recibido: Marzo, 1990. Revisión recibida: Abril, 1990. Aceptado: Junio, 1990

C) 1990 by Aprendizaje, ISSN 0210-3702 	 Infancia y Aprendizaje, 1990, 50, 63-71



64
«j'écrirai ici mes pensées sans ordre, et non pas peut-étre dans une confu-

sion sans dessein: c'est le véritable ordre, et qui marguera toujours mon objet
par la désordre méme...»

Pascal, Pensées, nr. 373

INTRODUCTION

The teaching of informatics in secondary schools has been motivated,
in recent years, by a number of reasons which go from «the need to be pre-
pared to an impending information revolution in society» to «the need to
be sensitive to a shift of learning habits from notional (passive) to proce-
dural (active) knowledge». The very number of supposedly good (and dif-
ferent) reasons for introducing some teaching of informatics in secondary
school curricula is, in itself, suspicious. As a matter of fact, an assessment
of the present practice shows that wishful thinking generally dominates on
good experimentation, thoughtful analysis and careful evaluation (Pea &
Kurland, 1984; Johanson, 1988; Krendl & Lieberman, 1988; Vitale, 1989).

Most of the research published so far (Vitale, 1988 provides and exten-
ded and critical bibliography) has been centered on the technical —e.g.,
lexical and syntactic— aspects of learning a programming language at
school, and on the possible transfer of acquired problem-solving compe-
tences to other fields than programming. In the course of a formative eva-
luation of the teaching of the LOGO programming language to secondary
school pupils in Geneva (Hofmann eta!., 1987, 1989), we have become awa-
re of the need to investigate more fully a new, essential dimension: the pu-
pilkomputer relation, in its psycho-cognitive and psycho-pedagogical as-
pects.

I will briefly discuss, in the present paper, one of these aspects: the cog-
nitive novelties and obstructions encountered, by adolescent pupils, in the
acquisition of a formal language. For a more detailed analysis and for the
discussion of a number of psycho-pedagogical suggestions, I shall refer the
reader to Vitale (1990).

PROGRAMMING LANGUAGES SEEN AS OBJECTS OF
KNOWLEDGE

In a series of interviews with a Swiss editor, Weizenbaum described his
human and intellectual career since the forced emigration of his Jewish fa-
mily, in 1935, from Berlin to the United States. When asked why he chose
mathematics when entering college in 1941, he replied that there were se-
veral reasons for it, one of them being that «when I went to school first
in the United States, I knew no English; so I was able to understand only
a little, but one thing I did understand and that was mathematics, which
is based on an international language» (Weizebaum, 1984, p. 10).

This requires however that mathematics —or the language of mathe-
matics— be recognized as a language, and as a language different enough
from the pupil's natural language to become a new cognitive and represen-
tative tool. In the same way, an introduction to programming —or to the



65
language of programming, Le. to at least one of the programming langua-
ges— demands that that language be recognized as qualitatively different
from the pupil's natural language and from the language of mathematics,
so as to become a new, legitimate object of knowledge.

How can we compare the psychological realities of the mastering of a
natural language (NL) as opposed to a formal language (FL)? It is only in
a process of interaction and interference between them, in the concrete con-
text of making use of both of them, that their functional similitudes and
differences will become apparent. The FL itself and the computer response
to programming should become an object of knowledge for both pupils
and teachers, who are then made attentive to their expectations and to their
representations of the computer as an interlocutor. At the same time, they
will become aware of the way they make use of a FL to model —on a com-
puter— their experience of reality. This implies that the acquisition of a
LF should be personally constructed by both pupils and teachers in a slow
process of deepening mastery and of possible clashes with the traditional
use of their NL (Vitale, 1988, 1990).

There are only a few studies on this subject at present. I shall try and
summarize in what follows a few points on which both experimentation
and analysis could usefully dwell in the future.

PSYCHOPEDAGOGY OF THE INTRODUCTION
OF A FORMAL LANGUAGE

Here are some of the main points in which the novelty of a FL is more
apparent, with respect to a NL, and the probability of finding well defined
cognitive obstructions is particularly significant:

Natural languages and formal languages in context

When dealing with the acquisition of a FL, considerations based on an
amalgam of processes of production (program writing), comprehension (pro-
gram reading) and interaction (running a program on a computer, debug-
ging it, transforming it and interpreting its results) are as unsuitable as when
applied to an amalgam of writing, reading and speaking/understanding in
a NL.

In particular, writing a program is very different from reading one, es-
pecially one written by someone else (Wirth, 1976, p. XV; Wertz, 1981;
Arsac, 1984). The local understanding of its lexical, syntactic and semantic
structures does not necessarily imply a global understanding of the underl-
ying project. It is clear than a similar difficulty is present in the practice of
a NL too; children can read a story word by word and then be unable to
tell what the story is about. However, new aspects arise with the introduc-
tion of a FL. In particular, the long-range effects of some of its lexical ele-
ments on the unfolding of a program (for instance, the assignation of the
type and range of the variables and the role of conditional and recursive
clauses) make often the program, seen as a whole, particularly opaque. This
is only one of the several aspects taken by the difficulty to integrate from
local to global in a FL, on which more will be said below (for examples of
these difficulties during LOGO acquisition, see Dionet et al., 1985, 1987).



66
The act of naming

We accept and socially reconstruct the meanings of the words we use
in a NL. Proust —in Du cóté de chez Swann— tells us of his childhood,
when he was still near «Page oil on croit qu'on crée ce qu'on nomme». But
the creative act of naming is, in our adult world, reserved to a privileged few.

In a FL, on the contrary, naming —e.g., enlarging the spectrum of the
given initial lexicon of primitives by defining procedures as new primiti-
ves— is considered at present one of the most useful features of a langua-
ge. (My examples will be taken from programming languages, but the ar-
gument would be considerably the same for FLs in general). The names of
the new procedures can be arbitrarily assigned (they are defined by what
they do, once embedded into a program, not by what they say; a proce-
dure calle SQUARE can very well, without the computer ever protesting,
execute a circle). The feeling of power that this facility creates in children
is often manifested by the choice they make for the names of their new pro-
cedures: nonsense words, ironical dabs at comrades, four-letter words...

What is more, in a FL the primitives themselves are not as sacred as
such, as they too can sometimes be stripped of their initial meaning and
given a new, arbitrary one. Syntactic rules can be equally redefined inside
the language, even if with some more work and by paying attention to the
danger of possible contradictions. It is strange: the very rigid nature of the
LF, its capability to lead with no ambiguity to the construction of new mea-
nings starting from its building blocks, lead to this large freedom in the as-
signation of names and rules. The point here is that it is only the result of
the procedure that matters, once the procedure is read by the computer,
not its name, which can be chosen according to personal —and not neces-
sarily social— preference and can be changed at any moment at will. In
this sense, and surprisingly, a NL is more rigid than a FL, as it demands
social consensus before change is accepted.

We should however not forget the opposite aspect that can take the act
of naming in the inter-relation NL-FL: the over-generalisation to a FL of
a NL lexical term and semantics. A procedure called SQUARE will be of-
ten interpreted automatically as producing a square, even if it does not.
The primitive STOP in LOGO (which only passively returns control back
to the most recent active procedure) will be almost always be interpreted
as an indication that the program will halt (Kurland et al., 1985).

In this newly found power of naming there is something probably dee-
per than what we have discussed aboye: the fact that here naming does in-
deed imply creating and solving. To state it in the words of Wertz, 1981:
«A computer program is the formalization of a problem and its solution.
This formalization is operational, i.e. it is testable, executable and verifia-
ble. In addition, it is dynamic, i.e. subject to continuous modification, pa-
rallel to the development of the implied knowledge».

Procedural vs declarative formal languages

When we define the notion of a circle in a NL we have at least two alter-
natives:

— (declarative) circle: the locus of ah l points equidistant from a given



67
— (procedural) circle: the locus of all points through which we pass if

we cake a string, fix it to a peg and turn around, without winding it on
the peg.

The first alternative provides no suggestion on how to concretely draw
a circle, while the second does. The first alternative tells us of a fundamen-
tal property of the circle (i.e., the existence of a privileged point, equidis-
tant from ahl points of the curve), while the second does not. A procedural
EL, such as LOGO, can accomodate both definitions, but the procedural
one will be more elegantly and efficiently programmed than the declarative
one. A declarative FL, such as PROLOG, will more easily accomodate the
declarative definition. An interesting debate on the relative merits of pro-
cedural vs declarative languages in education is currently going on (see Jo-
hanson, 1988; Scherz et al, 1990). On the possible tranfer of competence
from one to the other type of FLs, see Shneiderman, 1980, ch.8; Mendel-
sohn, 1988.

It seems to me, however, that this distinction into two families of FLS
is too rigid and perhaps not as compelling at it seems. Let us take an exam-
ple from a procedural language. In the same way as, in a NL, we can play
at will with words and put them together in a well-formed string and see
what happens (the production of nonsense being in this case more than pro-
bable, but who knows?), so we can play at will with primitives and put
them together in a well-formed procedure, named NONSENSE. What will
the result of the game be? Hardly nonsense, as the computer will respect-
fully calculate or graphically represent the end result of NONSENSE. But
our procedure will not be the procedural representation of a given notion
or project or problem, just because we do not know —due to the opacity
of the global program structure— what the procedure will actually do. The
object named by our procedure is thefore, in this case, defined in a decla-
rative way: NONSENSE is nothing else than the listing of its correspon-
ding procedure; or, if you prefere, nothing else than the outcome of the
procedure, as it will be provided by the computer at each run. Notice that
—as it always happens with a procedure— the name of the procedure re-
fers both to the procedure itself and to its effect once embedded into a pro-
gram.

The temporal effect. The unfolding of a program

There seems to be a qualitative difference in the way an expression in
a NL is embedded into, and defines at the same time, an unfolding time,
with respect to the analogous situation in a FL. Most of the aspects of our
experience that we represent into language are processes, so that some sort
of temporal dimension is intrinsic to them. But, in a FL, the temporal se-
quence of actions —as defined by the sequence of primitives and procedu-
res in the program— is of very little help in comprehending the unfolding
of the program.

Procedures and, more in general, programs, are formally written as se-
quences of primitives and therefore of orders given to the computer. But,
if we read them as such, we are far from following the way the program
unfolds in time (Arsac, 1984). The significant sequence is not that of ac-
tions but that of configurations: each new action makes the computer go



68
from one configuration to another, and perhaps turn back, and possibly en-
ter a recursive loop, and so on. To the linear sequence of primitives and
procedures corresponds, in general, a highly non-linear development of the
computing activity.

It is true that in a NL too (in particular, during a reading activity) the
sequence of words in a text does not correspond to a sequential apprehen-
sion of the text meaning: the mind runs back and forth and reconstructs,
reinterprets, reintegrates the accumulated information at each step. But the-
re are no examples of loop structures in NLs (but for vicious circles in ar-
gumentation), and those examples, as are given, of recursive structures are
at best doubtful (Vitale, 1990a). We would be tempted to say that the way
time is implicitly present in both NLs and FLs is qualitatively different and
that this difference can justify much of the difficulties encountered in the
mastering of a FL, in particular its recursive potentialities. Our everyday
time is complex and confusing enough, but at least it does not seem to pre-
sent the manifold, branching structure that characterizes the time of infor-
matics.

When we speak, to whom do we speak?

When we speak in a NL, in a situation of discourse, we are continuously
—if often unconsciously— adjusting our arguments to the reactions we
face. Even more, we are generally able to repair an unwilling slight to our
interlocutor by adding a few words that will help resiructuring the whole
argument as to avoid any possible misunderstanding. When we write a pro-
gram in a FL, to whom do we speak? There is communication to the com-
puter, of course; but, is there discourse?

It is a well known fact to teachers that pupils and students do not, in
general, even try to read and interpret the error messages sent by the com-
puter (in a clumsy language that is however much richer than the corres-
ponding programming language. In LOGO, for instance, the asking for
HAT —if this term does not correspond to either a primitive or a defined
procedure— provokes the message on the screen: I DO NOT KNOW
WHAT TO DO WITH HAT, where most of the terms used are not
LOGO primitives).

This indifference to error messages can be partly due to the clumsiness
of the language; but I think that it has mostly to do with the difficulty to
know, or to represent clearly to ourselves, which is our interlocutor when
programming in a FL: who is listening to us and to whom should we be
listening to.

In LOGO, an additional difficulty presents itself (see, in particular,
Hofmann et al, 1987): that of discriminating between the computer and the
turtle. When we give the order FORWARD 50, it is easy to represent the
order as given to the turtle, that is so asked to step forward 50 turtlesteps.
But if we ask EQUAL? 35, it will not be the turtle that will perform the
necessary arithmetics to give us an answer. The situation becomes more
complex, and correspondingly the mastery of our FL less secure, if we want
to take into account the possibility that the computer (or the turtle?) could
also ask us questions during the run (for instance, by READCHAR); and
that it could print messages that are not in its programming language but



69
in our NL! A program can therefore become a hybrid of a FL and some
more or less NL (outputs of error messages and information that we re-
quire the computer to give us during the run).

As we have seen, it is hard to convince ourselves that, while program-
ming in a FL, we are in some sort of discourse situation. The difficulty is
to identify the interlocutor and to learn how to listen to it, instead of gi-
ving only orders to it. A good understanding and a transparent represen-
tation of the functional architecture of the computer could help here
(Pylyshyn, 1984). Again, we are led to the proposal that the computer —in
its functional structure, if not in its physical realisation— be seriously ta-
ken by both pupils and teachers as an interesting and sometimes surprising
object of knowledge.

Modelling in a FL

There is a double modelling activity going on hile applying a FL to the
representation and solution of a problem.

The first one leads from our experience of a given causal or formal si-
tuation to the identification of its underlying logico-mathematical compo-
nents and to the choice of a suitable representation; this can be done in se-
veral modalities —verbal, gestual, graphical...— and can possibly (but not
necessarily) be formalized in the language of mathematics. Some of the rich-
ness of the physical situation has been lost here, but what has been gained
is a better definition of the limits and scopes of the model.

The second one leads from the chosen representation to its description
in a FL, which implies —to use again the words of Wertz— «The forma-
lisation of a problem and its solution». A formalisation that has now to
take into account the specificity and the possible idiosyncracies of the gi-
ven FL; a solution that has to take into account the specificity and the pos-
sible limitations of the given computer system.

Neither FL nor computer are neutral with respect to our choices.
Here again we would insist that this transcription be itself considered

by pupils and teachers as an object of knowledge. There are generally se-
veral paths available, equivalent in the final numerical result (apart from
small discrepancies due to different approximations) but often very diffe-
rent in the cognitive regions they pass through and explore. The same FL
can permit very different transcriptions of the same model; different FLs
will permit an even larger spectrum of transcriptions. To follow in detail
at least some of these paths, by comparing them and by understanding their
rationale, can help deepening our mastery of the space of programming.

Should formal languages imitate natural languages?

In the Sixties, there was a tendency to ask that FLs become as much as
possible similar to a NL (that, of course, would be English); but, as Shnei-
derman notes (p. 199), «Reading and comprehending an English-like pro-
gramming language is relatively easy, but writing syntactically correct code
is a challenge. The closeness of ENGLISH to English makes it difficult to
remember the grammar of ENGLISH: an elegant demonstration of proac-
tive interference, the confusion between what you know and what you are
trying to learn».



70
It seems now that this trend has lost its drive and that both common

users and professional programmers agree that it is better to have a speci-
fic, limited scope FL —with its advantages of rigour and disadvantages of
rigidity— for each domain of programming, instead of dreaming either an
English-like FL or a universal (esperanto) FL. I think too that it is better
to leave the two realms apart: NLs, with their helpless richness and their
capability of subtle adapting to every new situation or context; FLs, with
their rigid structures and specific adaptation to specific situations. A «poor»
FL (by NL standard) can be very rich and suitable for exploration in its
well defined domain (for instance, in the construction of LOGO-micro-
worlds). It can therefore help more in concentrating on the cognitive and
representative aspects of a given task than a «richer» but less well defined
FL.

CONCLUSIONS

What I am advocating, in this short presentation of the psycho-cogni-
tive and psycho-pedagogical aspects that dominate the first encounter of
pupils with computers in the school context, is the need to be sensitive to
the way the pupil/computer relation evolves as a consequence of the inte-
rest and of the difficulties, inherent to the introduction of a formal langua-
ge as a necessary interface between the actor (the pupil) and the machine
(the computer). Lexical, syntactical and more technical aspects are equally
important, but it seems to me that a satisfactory integration of elementary
programming into school curriculum will not be obtained, unless the lan-
guage and communication problems briefly outlined in the present paper
are properly taken into account in the educational context.

References
ARSAC, J. (1984). La conception des programmes. Pour la Science, 85, 1984, 105-113.
DIONNET, S.; MARTI, E.; VITALE, B., and WELLS, A. (1985). Représentation et contróle glo-

bal-local du mouvement chez l'enfant dans la programmation LOGO. Revue Franlaise
de Pédagogie, 72, 13-23.

DIONNET, S.; GUYON, J.; and VITALE, B. (1987). Aspects psycho-cognitifs de l'activité infor-
matique, in M. Descolonges and F. Enel (Eds.): Eviduation des clubs d'informatique en
France; analyse psycho-sociale et psychocognitive. Rapport au Ministére de la jeunesse et
des sports et au Ministére de la culture. Paris.

HOFMANN, B.; MARCELLUS, O.; REY, F.; and VITALE, B. (1987). TATUE ou la relation élé-
ve-ordinateur; Une évaluation formative du cours d'informatique au Cycle d'orientation.
Genéve: DIP-CRPP.

HOFMANN, B.; DE MARCELLUS, O.; REY, F.; and VITALE, B. (1989). Observation de cours
d'initiation á l'informatique; Complément á la recherche «TATUE,. Genéve: DIP-CRPP.

JOHANSON, R. P. (1988). Computers, cognition and curriculum; Retrospect and prospect.
Journal of Educational Computing Research, 4, 1-30.

KRENDL, K. A. and LIEBERMAN, D. A. (1988). Computers and learning; A review of recent
research. Journal of Educational Computing Research, 4, 367-389.

KURLAND, D. M. and PEA, R. D. (1985). Child-ren's mental models of recursive LOGO pro-
grams. Journal of Educational Computing Research, 1, 235-243.

MENDELSOHN, P. (1988). Les activités des programmation chez l'enfant; Le point de vue de
la psychologie cognitive. Technique et Science Informatique, 7, 47-58.

PEA, R. D.; and KURLAND, D. M. (1984). On the cognitive effects of learning computer pro-
gramming. New Ideas in Psycholoy, 2, 137-168 (also in R. D. Pea and Sheingold (Eds.):
Mirrors, of mind; Patterns of expenence in educational computing. Norwood: Ablex, 1987,
147-177).



71
PYLYSHYN, Z. W. (1984) Computation and cognition; Toward a foundation for cognitive scien-

ce. Cambridge (Ma): MIT Press.
SCHERZ, Z.; GOLDBERG, D. and FUND, Z. (1990): Cognitive implications of learning PRO-

LOG; Mistakes and misconceptions. J. Educat. Comp. Res., 6, 89-110.
SHNEIDERMAN, B. (1980). Software psychology; Human factors in computer and information

systems. Cambndge (Ma): Winthrop.
VITALE, B. (1988). Epistemología y pedagogía de la introducción de los niños a la informáti-

ca. En M. Aguirregabiria (ed.): Tecnología y educación, Madrid: Narcea 1988, 138-148.
(Epistemology and pedagogy of children's approach to informatics, International Confe-
rence on Education, Bilbao 1987).

VrrALE, B. (1989). Relation entre théorie et pratique; Le cas de l'informatique. Education et
Recherche, 11, (3), 23-34.

VITALE, B. (1990). L'intégration de l'informatique á la pratique pédagogique; I: Considéra-
tions générales pour une approche transdisciplinaire. Genéve: DIP-CRPP.

VITALE, B. (1990a). Elusive recursion; A trip in recursive land. New Ideas in Psychology, 7,
no. 3.

WEIZENBAUM, J. (1984). Kurs auf den Eisberg; oder «Nur das Wunder wird uns retten», sagt
der Computerexperte. Zürich, Pendo.

WERTz, H. (1981). Some ideas on the educational use of computers. Proceedings of the An-
nual Conference of the A.C.M., Los Angeles, 101-107.

WIRTH, N. (1976). Algorithms + data structure = programs. Englewood Cliffs: Prentice-Hall.


