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Abstract

Aim of study: Human settlements and activities have completely modified landscape structure in the Mediterranean
region. Vegetation patterns show the interactions between human activities and natural processes on the territory, and
allow understanding historical ecological processes and socioeconomic factors. The arrangement of land uses in the
rural landscape can be perceived as a proxy for human activities that often lead to the use, and escape, of fire, the most
important disturbance in our forest landscapes. In this context, we tried to predict human-caused fire occurrence in a
S-year period by quantifying landscape patterns.

Area of study: This study analyses the Spanish territory included in the Iberian Peninsula and Balearic Islands
(497,166 km?).

Material and methods: We evaluated spatial pattern applying a set of commonly used landscape ecology metrics to
landscape windows of 10 x 10 sq km (4,751 units in the UTM grid) overlaid on the Forest Map of Spain, MFE200.

Main results: The best logistic regression model obtained included Shannon’s Diversity Index, Mean Patch Edge
and Mean Shape Index as explicative variables and the global percentage of correct predictions was 66.3%.

Research highlights: Our results suggested that the highest probability of fire occurrence at that time was associated

with areas with a greater diversity of land uses and with more compact patches with fewer edges.
Key words: human-caused wildfires; landscape ecology; logistic regression.

Introduction

Landscape structure is the result of past and present
interactions between human activities and natural pro-
cesses (De Aranzabal et al., 2008; Echeverria et al.,
2007; Lofman and Kouki, 2003; Naveh and Lieberman,
1994; Serra et al., 2008). Variations in frequency, mag-
nitude and extension of disturbances produce complex
patterns in vegetation composition, age structure and
patch size distribution over the landscape (Farina,
2006; Regato et al., 1999; Saura, 2010). Thus, the spatial
pattern of vegetation, usually assessed by different me-
trics, allows understanding historical ecological pro-
cesses and socio-economic factors. Landscape compo-
sition and configuration metrics have been proved to
be influenced by climate (Pickett and White, 1985),
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forest pests and diseases (Hatala ez al., 2010; Romero
et al., 2007), land use changes (Ferraz et al., 2009;
Gallant et al., 2003; Serra et al., 2008), human settle-
ments (Fuller, 2001), deforestation (Léfman and
Kouki, 2003; Zhang and Guindon, 2005), the aban-
donment of traditional agrarian tasks (plowing, grazing
and cutting) (De Aranzabal ef al., 2008) and fires:
burned area and frequency (Chang et al., 2007; Mo-
reno, 2007; Naveh and Lieberman, 1994; Pickett and
White, 1985).

In the Mediterranean environment, the landscape
has long been modified by human influence (Pausas,
2006), becoming what we call a cultural landscape
(Farina, 2006). Landscape patterns are created by
direct human action through the design of boundaries
between crops and natural vegetation, wildland-urban

Abbreviations used: Landscape Metrics (Table 2), ANND (Average Nearest Neighbor Distance Index).
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interfaces, presence of infrastructures, or indirectly by
allowing the spread of disturbances, for instance.
Hence, landscape metrics may be proposed as surro-
gate variables for human activities in our Mediterra-
nean environment.

In the past, fire was the main tool used in cleaning
and removal of forest residues, along with grazing and
firewood extraction (Pausas, 1999; Torre Antdn, 2010).
In current times, fires are still linked to the persistence
of traditional agrarian activities (Martinez et al., 2009).
Approximately 18,600 fires occur per year in Spain,
and 96.2% are caused by people (MAGRAMA, 2010).
About 75% of human-caused forest fires in Spain are
related to the rural use of fire for vegetation manage-
ment (MAGRAMA, 2010; Torre Anton, 2010). Fires
are a human artefact emanating from the rural activities
that shape the Mediterranean landscapes.

Consequently, the quantitative analysis of landscape
structure becomes a relevant tool to make inferences
on future fire occurrence. Among the studies that have
dealt with fire occurrence in the literature, many have
included geographic or spatial variables (i.e. Padilla
and Vega-Garcia, 2011) but only Henry and Yool
(2004), Martinez et al. (2009) and Ortega et al. (2012)
have included independent variables measuring
landscape pattern. Henry and Yool (2004) calculated
landscape metrics (area, shape and diversity indices)
in remote sensing images (Landsat TM and SIR-C
data) to relate landscape pattern with historical fire
occurrence in National Saguaro Park (Arizona). Marti-
nez et al. (2009) considered area, density and fragmen-
tation indices (landscape and cropland fragmentation)
with socio-economical and geographical variables to
predict human-caused fire occurrence at the municipal
scale in Spain. A recent study by Ortega ef al. (2012)
did analyze landscape structural factors (11 metrics)
related to increased wildfire incidence in forest-agri-
culture interfaces within the SISPARES monitoring
network (observation size 16 km?), finding that certain
landscape configurations were more vulnerable (fire-
prone) than others.

Building on these findings, we propose that some
metrics may be more appropriate than others to charac-
terize and identify fire-prone landscape traits at the
national level. Thus, the aim of this paper is to evaluate
specifically the relationship between landscape patterns
and human-caused forest fire occurrence with a com-
prehensive array of landscape metrics, encompassing
the wide range of compositions and configurations that
can be found in Spain.

Material and methods
Study area

This study analyzes the Spanish territory included
in the Iberian Peninsula and Balearic Islands (497,166
km?). Most of the study area is dominated by a Medi-
terranean climate, and only the Northern third has an
Atlantic climate. These climatic zones and the complex
topography combined with human socio-economical
development over millennia have given way to a very
uneven spatial distribution of the vegetation, combi-
ning the presence of medium-scale farming areas,
areas with scarce natural vegetation cover (grasses,
rangelands), extensive shrublands, park-like open fo-
rest structures (dehesas) with undergrowth and high
forests of variable densities (EEA, 2007).

The main reference for the study of vegetation cover
in Spain is the Forest Map of Spain by Ruiz de la Torre
(1990) at 1:200,000 scale (digitized 1:50,000). It loca-
tes more than 5,500 species of trees, shrubs and grasses,
collecting information about other land uses.

In order to fulfill the goals of this study and work
at the considered scale (Peninsular Spain and Balearic
Islands) it was necessary to reclassify the different
plant species and land uses in manageable categories
meaningful for risk analysis. The classification was
designed according to the fuel models of Rothermel
(1972) and species response to fire (Riafio et al.,
2001; Rothermel, 1972; Sturtevant and Cleland, 2007).
Fig. 1 displays the vegetation classes used, defined in
Table 1.

Independent variables: landscape metrics

To characterize the vegetal landscape pattern we
selected 13 metrics related to the area, shape, fragmen-
tation and diversity of the vegetation patches. All of
them were indices commonly used in the scientific
literature of fire landscape ecology (Forman, 1995;
Frohn, 1998; Henry and Yool, 2004; Hernandez-Ste-
fanoni, 2005; Lloret et al., 2002; Martinez et al., 2009;
McGarigal et al., 2002; Ortega et al., 2012; Romero-
Calcerrada and Perry, 2004). Table 2 shows the selected
indices, the group they belong to and a brief descrip-
tion about the information they convey (McGarigal et
al., 2002).

These 13 metrics were computed for the landscape
units in Spain using Patch Analyst 4 (Elkie ef al., 1999)
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Figure 1. Forest Map of Spain with the classes used in the study grouped in six land uses. Zoom
windows of 900 sq km, as examples of two forest landscapes in Atlantic (S1) and Mediterranean

Spain (S2).

and ArcGis 9.3 (ESRI Inc., 2009). The landscape units
corresponded to 10 x 10 sq km UTM grid cells used by
the Ministry of Environment in Spain to record loca-
tions of fires in the reports (Fig. 2). Because these
landscape units were not constant in area, it was not
possible in principle to compare the values for each
grid, since some metrics are sensitive to the size of the
landscape unit (Saura, 2002). The original grid consis-
ted of 5,278 cells, but some irregular cells on the coast-
line and in the boundaries between UTM zones 29, 30
and 31 were excluded to obtain comparable landscape
units (100 £25 km?). The resulting grid of 4,751 cells
was set as the spatial base for calculation of the expla-
natory variables and for the analyses of the present
study.

Mediterranean
Sea

N

.~ Observed no-fire
M Cbsorved fie

S
ATLANTIC
OCEAN
0 2550 100 150 200
—— — T

Figure 2. Human-caused forest fire occurrence in Spain, 1989-
1993.
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Table 1. Land use classes and fuel description. Classes for landscape metrics calculation

Forest soil layer-driven fuels

Formations with woody plants taller than 7 m and corresponding to fuel models 7, §, 9
and 10.

Shrub-driven fuels

This group is composed by formations with woody plants shorter than 7 m, alone or under
tree cover less than 30% fraction cover that correspond to Rothermel fuel models 4, 5 and 6
Grass-driven fuels

This group includes vegetal formations with natural herbaceous habitats (fuel models 1, 2
and 3) and ferns for their shade-tolerance preference and low height

Little/No-vegetation

Composed by open spaces with little or no vegetation such as beaches, dunes, sandy areas,
nude land, bare rocks and sparsely vegetated and burned areas

Anthrophic surface

High human influence areas. We separate urban fabric, industrial units, mines dumps and
construction sites from herbaceous and woody agricultural plants

Continental water

Contains any surface covered by water bodies or stream courses. It also includes those her-

Conifers-FC (pinaceous, cu-
pressaceous, mix of conifers
and other conifers)
Broadleaves-FB (oak woo-
dland, perennial oak, beech
forest, riparian forest, eu-
calypt forest, poplar stand,
mix of broadleaves, other
broadleaves)

Mixed forest-FM

Xerophylous shrubland-XS
Mesophylous shrubland-MS

Xerophylous grassland-XG
Mesophylous grassland-MG

Little/No-vegetation-NV

Artificial surface-AS
Agricultural areas-AA

Continental Water-W

baceous or woody plants that grow in water

Dependent variable: fire occurrence

The fire history registry from 1983 to 2008 was
provided by the Ministry of the Environment and Rural
and Marine Affairs (MAGRAMA) in Spain. The fire
reports routinely included information about the causes
of'the fires, dividing these into natural (lightning) and
human-caused fires. This information could be easily
summarized in number of fires per year for each
10x 10 sq km UTM grid used by the Ministry to locate
fires. According to our stated goal, only anthropogenic
fires were selected for this study.

The dependent variable was the probability that at
least one fire happened in the 5-year period between
1989 and 1993. Fire occurrence data in the historical
reports (Fig. 2) was summed up for each 10 x 10 sq km
UTM cell or landscape unit and coded as Y =1 if at
least one fire took place in the period and cell, orY =0
if otherwise.

This study period of 5 years was carefully chosen
so that it chronologically followed the time span bet-
ween the acquisitions of the ortophotos (1982-1986),
the field work (up to 1989) and the date of creation of
the Forest Map of Spain (MFE200, 1990). According
to Chuvieco (1996), Viegas et al. (1999) and Vega-
Garcia and Chuvieco (2006), the reasonable period for
updating dynamics in vegetation maps is around 4 or
5 years. More importantly, the years 1989 and 1994
were severe fire-years; a number of large fires occurred
in those years (burning 426,468 and 437,635 ha respec-
tively), and in between, fires burned slightly more
(90,000-260,000) hectares than are burned nowadays
(50,000-190,000 ha, MAGRAMA, 2010), reflecting
worse conditions than at present, but conditions that
could develop again in the future (Vega-Garcia and
Chuvieco, 2006). The number of occurrences, though,
was very similar (12,913-20,811 in 1989-1993) to pre-
sent numbers (10,932-25,492 in 2004-2008).
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Table 2. Table of all landscape metrics considered in the study

References where the variable or a similar

Group Abrev. Description Mean Std. dev. factor were used
Density PD Patch Density 0.327 0.199 (Henry and Yool, 2004*; Lloret ef al., 2002; Mar-
tinez et al., 2009%*; Ortega et al., 2008, 2012%*)
Area MPS Mean Patch Size 5.188 7.721 (Henry and Yool, 2004*; Hernandez-Stefanoni,
2005; Lloret ef al., 2002; Ortega et al., 2012%;
Romero-Calcerrada and Perry, 2004)
MedPS Median Patch Size 1.341 6.804 (Martinez et al., 2009%)
Shape ED Edge density 0.036 0.040  (Ortega et al., 2012%*)
MPE Mean Patch Edge 10.682 3.839 (Ortega et al., 2012%)
MSI Mean Shape Index 1.967 0.276 (Henry and Yool, 2004*; Ortega et al., 2012%*)
AWMSI  Area-Weighted Mean 2.846 0.993 (Henry and Yool, 2004%*)
Shape Index
MPAR Mean Perimeter-Area 0.162 1.314 (Henry and Yool, 2004*; Hernandez-Stefanoni,
Ratio 2005; Ortega et al., 2008)
Diversity PR Patch Richness 7.102 2.335 (Ortega et al., 2012%)
SHDI Shannon’s Diversity 1.114 0.502 (Henry and Yool, 2004*; Lloret et al., 2002; Or-
Index tega et al.,2012%*; Romero-Calcerrada and Perry,
2004)
SHEI Shannon’s Evenness 0.565 0.217 (Henry and Yool, 2004%*)
Index
SIDI Simpson’s Diversity 0.534 0.231
Index
SIEI Simpson’s Evenness 0.624 0.258
Index

* References which have used landscape metrics to predict forest fire occurrence.

During this study period (1989 to 1993), at least one
human-caused forest fire occurred in 60.5% (2,876
cells) of the 4,751 observations in Spain, and no fire
took place in 39.5% (1,875) of the landscape units. The
landscapes for analysis were sufficiently large (100 sq
km) and diverse to include all Table 1 classes under diffe-
rent spatial arrangements. Composition seemed in-
fluential but not determinant: for instance, out of 772
cells with >90% forest cover, 544 had fires (71%), 228
had not (29%). Out of 667 cells with >90% no-forest
classes, there were 213 with fires (31%) vs 454 without
fires (69%). 140 cells > 90% agriculture had fires. The
only landscape with 40% water had experienced fire.
The only two landscapes >90% urban (Madrid) had
fires in the study period.

Statistical analysis: logistic regression

Logistic regression has been frequently used to pre-
dict fire occurrence (Chuvieco et al., 2009; Henry and
Yool, 2004; Martell et al., 1987; Martinez et al., 2009;

Padilla and Vega-Garcia, 2011; Stolle and Lambin,
2003; Vega-Garcia et al., 1995; Vilar del Hoyo et al.,
2008), and it was also chosen for this work.

Logistic regression models can estimate or predict
the probability P that a dichotomous or binomial varia-
ble occurs or not, based on a more or less extensive list
of independent variables related to the event studied
(Equation [1]). Logistic regression requires fewer
statistical assumptions than linear, being the main that
independent variables are uncorrelated with each other.

3 3 exp(Z’B;Xg)
P@—ID()—W) [1]

where P is the probability of an event happening (wild-
fire), and X; and B; are the independent variables (the
metrics computed in the landscape units) and the
estimated coefficients of the model, respectively.
The cut-off point of the logistic function is usually
set by default to 0.5 (the midpoint of the distribution).
However, this value is arbitrary and depends on the
model goals or the user interests (Jamnick and Beckett,



76 S. Costafreda-Aumedes et al. / Forest Systems (2013) 22(1), 71-81

1987). The decision on the level of maximum likeli-
hood involves usually predicting correctly both (Stolle
and Lambin, 2003; Vega-Garcia et al., 1995).

The number of variables is important when dealing
with logistic regression. A small number of variables
introduced in any model make it simpler, and the
appearance of high errors in the formulation or non-
significant values is more likely. On the contrary, an
excessive amount of variables reduces the residual
errors but makes fitting the equation more difficult
(Martinez et al., 2009). A variable selection process
was carried out before modeling the relationship bet-
ween fires and landscape metrics, based on a Spear-
man’s correlation analysis between all independent
variables, most not-normally distributed. We grouped
the variables according to their landscape feature typo-
logy (size, density, shape, diversity) and their Spear-
man correlation, calculated using SPSS 15 (SPSS Inc,
2006). Also, their individual capability to predict
human-caused fires occurrence was tested by buil-
ding one-variable models. Only uncorrelated variables
from every metric group and with significant rela-
tionship to fire occurrence entered the model building
process.

Model fit and validation

The database for analysis was divided randomly in
two groups: 60% of cases were used to adjust the
logistic regression function and the remaining 40%
were reserved for validation. The overall fit of the
model was evaluated by the -2LL value, the Nagelkerke
R?, the Hosmer-Lemeshow test and the percentage
correctly predicted in the classification table. In addi-
tion, the significance of the dependent variables was
assessed using the Wald statistic and its statistical
significance (p-value less than 0.05) (Hair, 1999; Silva
and Barroso, 2004). The validation results were evalua-
ted using the classification table and the Kappa statistic
(Congalton and Green, 1999).

The adjustment method for the logistic regression
model was the forward stepwise approach, more de-
manding than the backward stepwise approach, which
proceeds by adding variables with statistical signifi-
cance (p-value less than 0.05) one by one (Hair, 1999;
Silva and Barroso, 2004).

In order to evaluate the spatial distribution of errors,
we tested clustered or dispersed conditions of the over
and underestimated errors (false alarms and missed

fires) with the Average Nearest Neighbor Distance
Index (ANND) (Martinez et al., 2009). This index exa-
mines the distances between the centroid points of the
closest misclassified quadrants, and compares their
distance mean with the expected mean distance that
would occur for a random distribution. Expected R va-
lues for randomness should be close to one, within an
interval ranging from 0 to 2.14.

Results
Results of the variable selection

The Spearman correlation values between variables
are presented in the Appendix.

As should be expected, Mean Patch Size (MPS),
Patch Density (PD) and Edge Density (ED) were strongly
correlated. MPS was inversely correlated to ED and
PD. Median Patch Size (MedPS) had a moderate corre-
lation to MPE, but not to MPS and PD.

Regarding shape, the correlation between the Mean
Shape Index (MSI) and the Area-Weighted Mean Shape
Index (AWMSI) was moderate. Both have a similar be-
haviour, although MSI is more influenced by the area
of the observation unit.

The low correlations of MedPS and Mean Perimeter-
Area Ratio (MPAR) with the other metrics discouraged
their grouping with any other landscape metrics.

All diversity metrics were highly correlated (r-va-
lues over 0.427 with Patch Richness and over 0.939
between Shannon and Simpson’s Indices). Correlation
between PR and SHEI and SIEI was low, but these
indices showed good correlation with other diversity
metrics. We included the five variables (PR, SHDI, SHEI,
SIDI and SIEI) in the same group, and selected only
one at a time for model building trials.

Thus, all metrics considered were classified into six
groups (Table 3) depicting landscape patch size, patch
density (fragmentation) and vegetation diversity, plus
shape characteristics split into three groups.

Table 3. Uncorrelated groups of correlated metrics

Size Density Shape Diversity

Group 1 Group 2 Group3 Group4 Group5 Group 6

MPS PD AWMSI ED MPAR  SIDI
MedPS MSI SIEI
MPE SHEI
SHDI

PR
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Within each group, we selected the most significant
variable in terms of individual prediction of the human-
caused forest fires occurrence, if any. We also regarded
previous use in the literature. The Shannon’s Diversity
Index had been the most widely used metric in studies
of landscape diversity (Henry and Yool, 2004; Lloret
et al., 2002; Ortega et al., 2012; Romero-Calcerrada
and Perry, 2004) and we wanted the results of this study
to be comparable. Also, Shannon’s Diversity Index pre-
dictive capability in the one-variable models was the
highest among all variables (Nagelkerke Ry =0.141).
The selected metrics were four: Mean Patch Edge
(MPE), Patch Density (PD), Mean Shape Index (MSI)
and Shannon’s Diversity Index (SHDI).

These uncorrelated metrics best explained fire
occurrence within their groups in the one-variable mo-
dels built (Nagelkerke R%yp=0.023, R%p=0.121,
R =0.052, R%p=0.111, R%p;=0.154). MPS, MedPS,
MPAR and AWMSI showed low human-caused fire
occurrence predictability in the univariate logistic re-
gression analysis (Nagelkerke R? less than 0.007).

Results of the logistic regression

The best model included three variables: Shannon’s
Diversity Index (SHDI), Mean Patch Edge (MPE) and
Mean Shape Index (MSI]), all significant with p-value
less than 0.016. The p-value of the Hosmer-Lemeshow
test was significant (p-value <0.001), and the Nagel-
kerke R? was 0.224. Table 4 lists the estimated coeffi-
cients and variables of this model.

Table 4. Estimated coefficients and significance values of
the best logistic regression model (p-values for the three va-
riables <0.001)

Variables B ET Wald Exp(B)
SHDI 1.431 0.085 280.966 4.181
MPE —-0.065 0.013 24.665 0.937
MSI -0.221 0.092 5.796 0.801

Interpretation of the Wald statistic indicated that
SHDI was the variable with greater weight in the ad-
justed model (Wald=280.97), followed by MPE
(Wald=24.67) and MSI (Wald =5.80). The analysis of
exp(P) confirmed this since a unit increase of the
Shannon Diversity Index increased by 418.1% the
probability of forest fire occurrence, while the unit
chance of the MPE meant a decrease of 93.7% and only
80.1% for the MSI. The analysis of signs of the 8
coefficients indicated that the highest probability of
human-caused forest fire occurrence occurs with high
values of the SHDI and with low values of MPE or
MSI.

A classification table (Table 5) was used for evalua-
ting the predictability of the model, comparing predic-
ted and observed fire occurrence. The cut-off point
applied was 0.61, which balanced the percentages of
correct matches of the landscape units with fire (Y =1)
and no fire (Y =0) occurrences. The overall percentage
of correct predictions was 66.3%, 65.1% for no-fire
and 67% for fire observations.

Results in the classification table (Table 5) for the
validation data (40% of the initial data) were similar
to those obtained with the model building dataset. The
percentage of correctly predicted no-fire observations
was 62.7% and the percentage of correctly predicted
and observed fires was 68.6% (with an overall percen-
tage of correct predictions of 66.3%).

Lastly, the fitted equation was used to map the
correct human-caused forest fire occurrence predic-
tions for the 10 x 10 sq km landscape units in the period
1989 to 1993 (Fig. 3a).

In general, the model identified landscape units with
higher fire occurrence probability in Northwest areas
and in the Mediterranean coast. Agricultural inland
valleys with scarcer presence of natural vegetation
presented a lesser likelihood of fire (Ebro, Guadal-
quivir). Both general spatial trends agreed with histo-
rical forest fire records from the Ministry of Environ-
ment in Spain (MAGRAMA). The spatial representation

Table 5. Classification table of logistic regression (cut-off point=0.61)

Model building data

Validation data

Observed Predicted Observed Predicted
No-fire Fire Total No-fire Fire Total
No-fire 742 397 1,139 No-fire 462 275 737
Fire 565 1,147 1,712 Fire 365 798 1,163
Total 1,307 1,544 2,851 Total 827 1,073 1,900
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Correctly classified

Observed no-fire - Predicted no-fire
B Observed fire - Predicted fire

Incorrectly classified

Observed no-fire - Predicted fire
B Observed fire - Predicted no-fire

Figure 3. Correctly (a) and incorrectly (b) classified landscape units of human-caused forest fire occurrence.

(Fig. 3b) of misclassified predictions did not show
a clear pattern indicative of a specific geographic
trend (North/South, Atlantic/Mediterranean), but the
ANNDomission z-score value was —9.647 and the
ANND commission z-score value was —14.570, both
significant (p-value <0.001). Overestimation errors
(false alarms) were aggregated in locations with high
diversity (mean SHDI 1.47), but lower than in the fire-
prone areas correctly classified (1.50) and underesti-
mation errors (missing fires) were aggregated in areas
with greater diversity (0.76) than in the identified as
no-fire-prone (0.58).

Discussion

The probabilistic relationship between landscape
metrics and human-caused fire occurrence could be
modelled and was found to be significant in Spain.
These results agreed with previous studies that made
use of landscape metrics as proxies for the impact of
human activities on the territory (Echeverria et al.,
2007; Fuller, 2001; Léfman and Kouki, 2003; Ruiz-
Mirazo ef al., 2012; Serra et al., 2008).

The results of the classification table suggested a
moderate predictive capability of the best model, with
overall percentage correctly predicted of 66.3%. This
value was almost identical to that obtained with the
validation sample (66.3%), which indicated the model
robustness. However, the low value of Nagelkerke R?
(0.224) pointed at the fact that a large portion of the
dependent variable variance was not explained by the

fitted model. This should be expected. We knew other
environmental or socioeconomic factors affected human-
caused fire occurrence (Diaz-Delgado et al., 2004;
Romero-Calcerrada et al., 2008; Padilla and Vega-
Garcia, 2011; Sturtevant and Cleland, 2007), but it was
not our purpose to evaluate those factors in this study.

The reduction in the number of variables to include
in the fitting of the logistic regression allowed to res-
pect the non-collinearity assumption and made the
model more parsimonious. There were three significant
variables in the model: Shannon’s Diversity Index (SHDI),
Mean Patch Edge (MPE) and Mean Shape Index (MSI),
in line with the statement by Forman (1995) that two
or three well-selected landscape metrics should be
sufficient to answer specific questions on landscape
processes.

These selected variables were also found significant
in other studies. Henry and Yool (2004) determined
that SHDI and MSI explained some of the variability
of fire occurrence in Arizona from remote sensing
images in a fusion of SIR-C and Landsat TM images.
Other variables, such as MPAR and AWMSI, were
significant in the analysis with Landsat TM images.
SHDI and MPS were found to have significant effects
on wildfire occurrence in the period 1985-1998 by Or-
tega et al. (2012). Fine-grained forest-agriculture mix-
tures and road density had significant effects in all
periods (1974-2008) in their forest-agriculture inter-
face landscapes. The study by Martinez et al. (2009)
tested only three landscape metrics (Fragmentation
using a 7x 7 kernel on the Corine Land Cover 1990
grid reclassified into four classes, Patch Density and
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MedPS) but only agricultural land fragmentation was
selected for their model.

Landscape diversity was the main factor in predic-
ting human-caused forest fires in this study. Our analy-
sis concluded that in the 10 x 10 sq km units with greater
landscape diversity the probability of human-caused
forest fire occurrence was generally higher. Also, this
likelihood of occurrence was greater in landscape units
with fewer edges and with more compact patches.
These characteristics are common in humanized envi-
ronments (Badia-Perpinya and Pallares-Barbera, 2006)
because, for example, the sharing of edges between
roads and agricultural areas (Martinez ef al., 2009).

The map obtained by applying the fitted equation
(Fig. 3a) agreed with that of Martinez et al. (2009) at
the municipal level. The areas with greater agreement
between observed and predicted values in the model
are given in the Atlantic North of Spain. Is in these
areas where most of the human-caused fires occur in
Spain, and consequently, there it is greater the con-
sistency in the relationship of the fitted model between
landscape structure and fire occurrence. The landscape
configuration of the Atlantic zone is characterized by
small and highly fragmented patches with high diver-
sity of species, due mainly to a fractured topography,
high rainfall and humidity (Fig. 1, S1). In the North-
west these landscape characteristics are associated with
risk factors such as a traditional use of fire to obtain
open areas for increasing pasture land and the low
profit from forests by local people (Torre Anton, 2010).
There is also agreement in the Mediterranean coast
(Coastal Catalonia and the Baetic Ranges), a scenario
of significant urban development linked to tourism and
the influx of population in the summer overlaps with
dry weather to increase fire risk levels (Vilar del Hoyo
et al., 2008). Most of the landscape units without fire
occurrence in the period are plains with fertile deep
soils where intensive agriculture is the most profitable
economic activity: the Ebro and Guadalquivir river
basins and the Meseta Central, where large extensions
of croplands exist and natural vegetation is scarce.

Misclassified units (errors) were found scattered
throughout the Spanish territory (Fig. 3b), but their
distribution was locally aggregated. These clusters res-
pond to the presence of local conditions that influence
the occurrence or absence of fire, according to Marti-
nez et al. (2009) and Padilla and Vega-Garcia (2011).
Martinez et al. (2009) found that landscape metrics
showed comparatively lower significance compared to
socio-economic changes in rural and urban areas and

traditional activities associated with fire, and the
authors obtained better results in predicting overall fire
occurrence in Spain (model building data: 85.4%, and
validation: 76.2%) by including socio-economic fac-
tors in their model.

Results in previous studies indicate that it is not
possible to have good wildfire predictions taking into
account only landscape structure, but landscape pattern
variables, and specifically diversity and shape, must
be considered in fire occurrence models in Spain. It would
be highly convenient to test these results at different
scales, and with more recent fire data, once the Forest
Map of Spain MFE50 (Andalucia not available yet)
and MFE25 (expected 2017) are published.
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Appendix. Spearman’s correlation matrix of all landscape metrics

PD MPS MedPS ED MPE MSI AWMSI MPAR SHDI SHEI SIDI  SIEI PR
PD 1
MPS —0.454 1
MedPS -0.175 0.849 1
ED 0.415 -0.204 —0.077 1
MPE -0.569 0.728 0.583 -0.162 1
MSI 0.114 -0.205 —-0.189 0.176 0.253 1
AWMSI 0.499 -0.353 —0.179 0.276 -0.112 0.493 1
MPAR  0.005 -0.017 -0.014 0.003 -0.017 0.014 0.010 1
SHDI 0.553 —-0.481 -0.173 0.269 -0.333 -0.051 0.102 0.002 1
SHEI 0.463 —-0.479 -0.190 0.246 -0.245 -0.037 0.134 0.002 0.931 1
SIDI 0.527 —-0.490 -0.180 0.271 -0.293 -0.036 0.149 0.003 0.976 0.966 1
SIEI 0.495 —0.485 -0.184 0.262 —-0.258 —-0.030 0.162 0.003 0.947 0.985 0.991 1
PR 0.540 -0.476 -0.220 0.227 -0.456 0.007 0.122 0.006 0.735 0.473 0.633 0.541 1




