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Abstract — Harmonic distortion is a growing problem in all 
power systems (PS) around the world due to the increasing use of 
electronic power devices and nonlinear loads (NLL). Several 
methods have been developed for the computational analysis of 
PS harmonic load-flow (HLF). These approaches allow harmonic 
distortion to be estimated at each PS bus when NLLs (the 
harmonic sources) are distributed throughout a whole network. 
Some widely accepted deterministic formulations are used in 
HLF analysis; however, harmonic distortion in PS is a time-
varying phenomenon because both linear loads (LL) and NLLs 
change non-predictably all the time. Moreover, network 
configuration also varies and such considerations make HLF 
calculation a mathematical problem which must be able to model 
the uncertainty associated with input data. Some approaches 
based on probability theory and others using fuzzy sets and 
possibility theories have been proposed for modeling such 
uncertainty. This paper was thus aimed at providing an overview 
regarding these approaches. The main HLF formulations within 
probabilistic and possibilistic frameworks have thus been 
introduced and some numerical comparisons have been made to 
clarify some concepts raised. 
 

Index terms—fuzzy set, harmonic distortion, power system 
harmonics, probability, statistical analysis, uncertainty. 
 
Resumen—Debido a la creciente utilización de 
dispositivos basados en electrónica de potencia y de otras cargas 
de características no lineales, es que la distorsión armónica en las 
señales de tensión y de corriente es un problema que va en 
aumento en todos los sistemas de suministro de energía 
eléctrica en el mundo. En este contexto, varios métodos han sido 
desarrollados para el cálculo y análisis computacional del flujo 
de cargas armónicas en las redes eléctricas. Tales métodos 
permiten estimar la distorsión armónica en cada barra del 
sistema eléctrico cuando las cargas no lineales, que son las 
fuentes de armónicos, se encuentran distribuidas en toda la red.  
Entre de los métodos para calcular el flujo de cargas armónicas 
existen algunas formulaciones deterministas que son bien 
conocidas y ampliamente aceptadas. Sin embargo, la distorsión 
armónica en el sistema es variable en el tiempo porque tanto las 
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cargas lineales como las no lineales cambian de una 
manera no predecible, y además, la configuración de la 
red eléctrica también varía. Esta última consideración hace que 
el cálculo del flujo de cargas armónicas sea un problema 
matemático que debe ser capaz de incluir en el modelado  
las incertidumbres asociadas a los datos de entrada. Para 
modelar tales incertidumbres se han propuesto en la literatura 
algunas metodologías de cálculo basadas en la teoría de la 
probabilidad, y otras basadas en las teorías de los conjuntos 
difusos y de la posibilidad. Por lo tanto, el objetivo de este 
artículo es el de ofrecer un panorama completo en lo referente a 
tales metodologías de cálculo. En particular, las principales 
formulaciones probabilistas y posibilistas serán presentadas. 
Finalmente, algunas comparaciones numéricas serán 
desarrolladas en un sistema eléctrico estándar  con el propósito 
de dar claridad a algunos de los conceptos acá desarrollados. 
 
Palabras claves— Conjuntos difusos, distorsión armónica, 
armónicos en sistemas de potencia, probabilidad, análisis 
estadísticos, incertidumbre. 

1. INTRODUCTION 

armonics exist due to nonlinear loads (NLLs), (IEEE, 
1992b). NLLs are increasing in all power systems (PS) 

due to the widespread use of electronic devices; harmonic 
distortion in both voltage and current is thus growing (IEEE, 
1993a).  

Mathematical models and computational programmes have 
been developed to study harmonics-related problems, for 
example, to evaluate the effect of connecting large NLLs or 
capacitor banks, to design harmonic filters, to investigate 
causes and solutions for existing harmonic overload, to 
investigate compliance with standards, etc. 

Figure 1 depicts the basic approaches to harmonic 
calculation; i.e. the second column refers to the approaches 
used for modelling system behaviour from an electric 
(physical) point of view, whereas the third column refers to 
whether and how randomness and uncertainty are modelled.  

Time domain analysis is usually carried out using 
programmes for electromagnetic transient calculations, such 
as EMTP, which resolve the system of differential and the 
algebraic equations describing the dynamics of the 
components (transformers, lines, reactors, capacitors, etc.) and 
the constraints imposed by Kirchoff’s laws. The outputs of 
these programmes are given in voltage or current waveforms; 
harmonic components are computed by Fourier analysis of a 
period for such waveforms after they have reached steady 
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state. 

 
Fig. 1. Different methodologies for harmonic power  systems analysis 
 

Due to the computational effort involved, time domain 
techniques are almost exclusively applied to studying small 
nonlinear circuits or specific electronic power devices. 

Harmonics in large PSs are almost exclusively calculated 
using frequency domain analysis-based methods, known as 
harmonic load-flow (HLF). An HLF generalises the methods 
developed for AC power-flow, representing the harmonic 
components through phasors associated with sinusoidal 
magnitude at harmonic frequencies (Herraiz et al, 2003). 

A DHLF calculation assumes that all the relevant 
parameters are known. It should be noted, however, that such 
studies only provide a static image of a complex and varying 
situation. In fact, both linear (LL) and NLLs are constantly 
changing in a non-predictable way which makes harmonic 
distortion become a stochastic phenomenon. Taking this 
situation into account, and recognising the high cost involved 
in completely avoiding any risk associated with excessive 
harmonic levels, IEC  and IEEE standards regarding harmonic 
distortion have been formulated on a probabilistic basis, 
stating, for example, that certain levels of harmonic distortion 
should not be exceeded more than 5% of the time.  

Different methodologies modelling the stochastic nature of 
harmonic distortion, using probability theory, have been 
developed, thus giving rise to probabilistic HLF (PHLF). 

Probability theory is, in principle, the natural tool for 
modelling random behaviour. However, there are some issues 
concerning its practical application to PS studies; i.e., 
probabilistic models assume that uncertain parameters can be 
described through probability distribution functions. 
Nevertheless, there is a lack of information for determining 
these distributions or their parameters in many practical cases. 

Information regarding LL and NLL level and 
characteristics in practice frequently comes from experts’ 
judgment. For example, an expert may describe a load by 
saying that it could be between 80 MVA and 100MVA, 90 
MVA being the most “possible” value. Regarding the power 
factor, the expert might estimate it as being within a range, say 
from 0.87 to 0.9. She could estimate that between 70% and 
80% of total load is linear and 30%-40% of such percentage 
might be due to induction motors, and so on. Such information 
is generally incomplete, imprecise, contradictory, or deficient 
in some other way. 

In order to apply probabilistic methods, such uncertain 
parameters have to be assigned probability distribution 
functions having a certain mean, variance, etc. Clearly, this 
can only be done quite arbitrarily. 

Such difficulties also exist in many other areas of electric 

engineering, meaning that novel possibility theory has been 
found to be a useful alternative to probability theory in dealing 
with this kind of uncertain information. 

Like models based on probability, those based on 
possibility rely on measurements quantifying uncertainty or 
likelihood, and allow calculating how these are propagated 
from the input parameters of a system into its output. 
Possibility theory can be suitably formulated in terms of fuzzy 
numbers (FN), hence taking advantage of many of the 
developments in this area. In addition, models based on 
possibility theory are usually simpler and computationally 
more efficient than their probabilistic counterparts. 

Possibility and fuzzy set theories are currently being used 
and investigated for HLF calculation, thus giving place to the 
so-called fuzzy harmonic load-flow (FHLF). 

This paper thus tries to provide an overview of both 
probabilistic and fuzzy methods and makes numerical 
comparisons to enhance clarity regarding the main differences 
in such formulations.  

2. DETERMINISTIC HARMONIC LOAD FLOW (DHLF)  

A complete review of the main approaches regarding 
DHLF is presented in reference (Herraiz et al, 2003); other 
key articles concerning the subject describe frequency domain 
models for electric PS components (IEEE Publication, 1998; 
Arrillaga et al, 1995). 

DHLF formulation can be classified according to the 
hypothesis on which its models have been based. The two 
main alternatives concern whether to consider the influence of 
the harmonics in the applied voltage on the current flowing 
through nonlinear devices and whether to consider harmonic 
components in power balance equations, i.e. whether equation 
(1) or (2) should be applied to express load power 
consumption. 

 (1) (1) *.( )=S v i  (1) 

 ( ) ( ) *

1,3,5,...

.( )h h

h=
= ∑S v i  (2) 

According to the hypotheses, the following three main 
deterministic formulations may be stated: harmonic 
penetration (HP), iterative harmonic penetration (IHP) and 
complete HLF (CHLF). HP designates those methodologies 
neglecting harmonic interaction and influence of the harmonic 
components on power balance.  

On the other hand, IHP and CHLF refer to different 
approaches for dealing with the nonlinear set of equations 
arising when a harmonic interaction is modelled. IHP and 
CHLF formulations are clearly more accurate than the simpler 
HP. However, comparisons reported in (Herraiz et al, 2003) 
and (Sainz,1995) have revealed that errors due to the influence 
of harmonics in (2) are usually negligible. Moreover, because 
they require precise knowledge about NLL characteristics and 
parameters, CHLF and IHP are mainly applied to detailed 
studies where few NLLs are the dominant harmonic sources.  
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Experience has thus shown that the non-interactive HP 
method is sufficient for ordinary harmonic studies and will 
therefore be set out below. 

A.  Harmonic penetration (HP) 

The HP method assumes that voltage distortion does not 
influence the harmonic content in the current flowing through 
nonlinear devices and that power balance is not influenced by 
harmonic components. Such assumptions led to a linear model 
thus rendering a methodology, particularly simple from the 
numerical point of view. 

Due to the first assumption, NLLs connected at node j, can 
be modelled by means of expressions like: 

    ( ) (1)( , , )h
h nl nlf P Q=i v       (3) 

where ( )hi  is the hth harmonic component of the current 
flowing through the NLL, fh is a function depending on load 
characteristic, v(1) the power frequency component of the 
applied voltage, and Pnl, and Qnl NLL  power consumption. 
While Pnl, and Qnl are known data, the bus voltage at power 
frequency is obtained through a conventional AC power-flow, 
which is the first step in the HP methodology. In this 
conventional AC power-flow, LL and NLLs are modelled as a 
whole PQ load4, neglecting power consumption due to the 
harmonic components (expression (1) is applied). 

After the conventional AC load-flow is computed, each 
NLL is replaced by a current source connected from earth to 
the bus, equal and opposite to that calculated using equation 
(3). This leads to a linear circuit where each harmonic bus 
voltage order could be calculated by solving the circuit 
equations  with the corresponding harmonic sources and 
impedance modelling the linear components, calculated at the 
corresponding harmonic frequency.  

The HP methodology is illustrated in Fig. 2, where ( )hV is 

the vector of harmonic node voltages of order h; ( )hY the 
system bus admittance matrix evaluated at the frequency of 
the hth harmonic order with the NLLs replaced by current 

sources; and ( )h
Ι the vector of injected harmonic currents of 

order h. Entries of ( )h
Ι are zeros for buses without NLLs.  

 
Fig. 2. Harmonic penetration method 

                                                           
4 In an AC power flow, the nodes are defined as: Vδ: Slack node, the 

voltage and phase are known; PQ: the active and reactive powers are known; 
and, PV: the active power and the voltage magnitude are known. 

3. PROBABILISTIC HARMONIC LOAD FLOW (PHLF) 

The first contribution to probabilistic modelling of AC 
power-flows was presented around the mid-1970s in(Allan et 
al, 1974). In this pioneering proposal, loads were considered 
as independent random variables and a DC model was used 
for the PS. This first proposal has since then been largely 
improved, but it was not until the mid-1980s that these ideas 
were applied to HLF. A complete review of stochastic 
modelling techniques for HLF is presented in (Baghzouz, 
2002; Ribeiro, 2009).  

Several probabilistic methodologies have been proposed 
based on different probabilistic hypothesis, models and 
techniques, (Esposito et añ, 2001a; Esposito et al, 2001b). In 
addition to these probabilistic features, they also differ in the 
underlying electric model implemented to describe the 
harmonic behaviour of the network. Both modelling areas are 
not independent, however, as the feasibility of some 
probabilistic approaches is conditional on the nature and 
complexity of the electrical model. 

Three main PHLF approaches can be recognised in the 
pertinent literature:  analytic methods based on the HP 
method, analytic methods based on a linearization of the HLF, 
and Monte Carlo simulations (MCS). 

A.  Analytic methods based on the HP formulation 

It has been shown above that neglecting harmonic 
interaction leads to a linear model where the hth harmonic 
component of the voltage at node j can be written as 

 ( ) ( )( )

1

n
h hh

j jk k
k =

=∑v z i  (4) 

where: ( )h
jkz  is the harmonic transfer impedance between 

nodes j and k (self-impedance when j = k), and ( )h
ki  is the hth 

harmonic component of the current source that models the 
NLL connected to node k.  

In PHLF, the injected currents ( )h
ki  are random phasors, 

( )( h
ki , which models the stochastic behavior of the NLLs. 

Since the modulus and phase of ( )( h
ki  (or its real and 

imaginary part) are usually random dependent variables, its 
stochastic behavior is described by joint probability density 

functions (JPDF) ( , )θΘ
( (

i i
i iRp r  or ( , )( ( i i

i iX Y
p x y  where 

(
Ri  and 

Θ
(

i  are the modulus and phase of  ( )( h
ki , and 

(
X i  and 

(
Yi  are its 

real and imaginary parts. 

Let ( ) ( ) ( )=h h h
jk jk kv z i  be the hth harmonic component of ( )h

jv  

due to the current ( )h
ki  injected by nonlinear load at node k. 

Since ( )h
jkz  is a constant (nonrandom) phasor, the JPDF of the 

modulus and phase of ( )( h
jkv  can be easily obtained by properly 

scaling and shifting that of ( )( h
ki  according to the modulus and 

phase of ( )h
jkz . 

Solve node voltage equation  
for each harmonic order: 

[ ] 1( ) ( )( )h hh − ⋅V = IY  

Output 

Input 

Conventional AC load-flow 

Calculation of injected harmonic current at 
each harmonic frequency  

( ) (1)
, ,( , , )h

j h j nl j nl jf P Q=i v  
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Once the JPDF of ( )( h
jkv have been obtained, the total 

harmonic bus voltage ( )( h
jv can be written as the sum of n 

random phasors: ( )( )

1=
=∑

( (n
hh

j jk
k

v v . 

At this point, and to keep numerical complexity reasonable, 
most of the proposals assume statistical independence 

amongst the random variables ( )( h
ki , clearly implying the 

independence of ( )
1

( h
jv , ( )

2
( h

jv ,..., ( )( h
jnv . The JPDF of the real and 

imaginary parts of ( )( h
jv  can thus be theoretically obtained by 

convoluting bi-variable functions; i.e.: 
    ( ) ( )1 1

( , ) , ... ,X Y X Y X Yn n
p x y p x y p x y= ∗ ∗

v v v v v v
( ( ( ( ( (   (5) 

where ( (
X Yp

v v
 and ( (

X Yk k
p

v v
are de JPDF of the real and 

imaginary part of ( )( h
jv  and ( )( h

jkv  respectively. 

Such convolutions are usually avoided because they are 
numerically very extensive. If a relatively large number of 
phasors have to be added and none of them is dominant, then 
the central limit theorem can be applied. 

The probability of the modulus of the harmonic voltage is 

obtained by integrating the JPDF of ( )( h
jv : 

 ( )
2

( )

0

( , )h
j

U

p
Rv v

P U r r r
π

θ θ
∞

Θ
> = ∂ ∂∫ ∫v ( (  (6) 

where ( , )θ
Θ

( (p
Rv v

r  is the ( )( h
jv  JPDF. 

B.  Analytic methods based on DHLP linearisation 

An alternative analytical approach known as first-order 
PHLF, (Esposito et al, 2001a) is essentially based on the 
linearisation of the system of real equations established in 
DHLF formulation (see section 2) around the expected (mean) 
values.  

Although linearisation clearly implies a loss of accuracy, 
this approach allows modelling probabilistic dependence 
between random variables, which is not possible in the 
previously described methodology.  

The mean and variance of the magnitude for each harmonic 
node voltage are calculated from the DHLF system of 
equations, and from the mean and covariance matrices of the 
input variables. Let the DHLF system of equations be 
expressed in a compact form as: 

 ( ) bf =N T
( (

 (7) 

where, N
(

 is the vector of random output variables, including 
the magnitude of the harmonic node voltages for all harmonic 

order, and bT
(

 is the input vector, which includes random and 

deterministic variables, i.e. generator voltage magnitude and 
power frequency generated active power, active and reactive 
power of linear loads at the fundamental frequency and the 
total active and apparent power of nonlinear loads, etc. 

Let µ( bT
(

) be the vector of expected values for components 

of bT
(

, and N0 the solution of  (7) with µ(Tb) at the right hand 

side: 

 0( ) ( )bf µ=N T
(

 (8) 

By linearizing (7) around N0 and considering (8), then: 

 0 0b b′≅ + ∆ = +N N A T N A T
( ( (

 (9) 

with 0 0 ( )bµ′ = −N N A T
(

, A is the inverse of the Jacobian 

matrix of ( )f N
(

 evaluated at N0, and ( )b b bµ∆ = −T T T
( ( (

. 

Equation (9) expresses each random element of the vector 

N
(

 as a linear combination of the random elements of the 

vector bT
(

; hence, the mean and covariance of N
(

 can be 

written as: 

     0( )µ =N N
(

          (10) 

    T cov( ) =  cov ( ) bN A T A
( (

      (11) 

A further improvement for this methodology, called PHLF 
for percentile evaluation, (Esposito et al, 2001b), goes a step 
further by also calculating the third and fourth moments (skew 
and kurtosis) of the probability distribution functions. This set 
of parameters is enough to completely characterise the 
Pearson distributions which, according to some measurement 
systems, seem to be the best fitting of the probability 
distribution functions for harmonic voltages in their higher 
percentiles.  

C.  Numerical analysis using the Monte Carlo simulation 

MCS is a well-known technique which is widely used in 
many different areas. It consists of running a large number of 
DHLF simulations with different input variables which are 
randomly selected according to their probabilistic distribution 
functions. The set of output variables so obtained is a sample 
from which the probabilistic distribution of the whole 
population can be estimated. Clearly, the confidence of the 
results increases with the number of simulations. Figure 3 
shows the main steps in MCS.  

 
Fig. 3. Main steps in the Monte Carlo simulation methods 

 

MCS methods are very flexible since any system parameter 
can be assumed to be a random variable with adequate 
formulations and because it is possible to consider 
probabilistic dependence among them.   
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It is clear that any DHLF can be implemented, and several 
hypotheses can be advanced regarding dependence between 
different sets of random variables. Both aspects strongly 
influence the computational effort which is, however, usually 
very high since a large number (thousands) of deterministic 
simulations are necessary for obtaining accurate results, 
(Anders, 1989). 

D.  Final remarks regarding the PHLF 

Analytical methods impose some constraints for providing 
accurate results: random variables have to be independent, and 
no highly dominant NLL should exist; these two conditions 
are not always met in practical situations.  

Linearization-based analytical methods do not impose 
particular constraints and allow modelling random LLs. Errors 
due to linearisation depend on the standard deviation of the 
input variables which must then be limited. 

MCS are very flexible; in principle, methods based on them 
could manage any kind of stochastic variables, and could be 
associated with any physical model of the harmonic behaviour 
of a network (HP, IHP or CHLF). It is, however, recognised 
that MCS are computationally very demanding.  

It should be noted that whatever probabilistic method is 
applied, the accuracy of the results strongly depends on the 
accuracy of the probability distribution functions assigned to 
the random input variables. This is typically one of the most 
critical issues in HLF studies, especially regarding the 
composition of LLs and the nature and operating mode of 
medium and low power electronic devices.  

4. FUZZY HARMONIC LOAD FLOW 

Fuzzy set theory has begun to be applied in different areas 
of electric engineering that involve complex input parameters 
known with uncertainty. Even though HLF has this 
characteristic, research regarding application of fuzzy sets to 
this area is rather new. The first bibliographic reference on the 
subject was (Hong et al, 2000); more in-depth approaches 
substantially improving the former were published in(Romero 
et al, 2008b; Romero et al, 2011). This section briefly presents 
the main features of the FHLF proposals analysed in the 
current state of the art overview; however, to enhance clarity, 
some basic aspects of fuzzy set and possibility theories will be 
briefly set out. 

A.  Possibility measures and fuzzy numbers 

A membership function maps x elements of a given 
universal set X, into real numbers in [0, 1]; thus, a 
membership function can be denoted as follows: 
 ˆ  : [0, 1]

X
Xµ →  (12) 

The support of a FN̂X within universal set X is the crisp 
set that contains all the elements x of X that have non-zero 

membership grades in̂X , i.e. ˆ ( ) 0
X

xµ > . The core of X̂  

within a universal set X is the crisp set characterised by 

complete and full membership of setX̂ , i.e. ˆ ( ) 1
X

xµ = . 

One of the most important concepts of FN is the concept of 

α-cut. Given a FN X̂  defined on X and any number α ∈  

[0,1], the α-cut of X̂ , denoted ( )X α , is the crisp set: 

 { }( )
ˆ ( )

X
X x xα µ α= ≥  (13) 

i.e., the α-cut of a FN X̂  is the crisp set ( )X α  containing all 
the elements of universal set X whose membership degrees 

in X̂ are greater than or equal to the specified value of α. This 
concept is illustrated in Figure 4. 

 
Fig. 4. Fuzzy number representation 

 

FNs and probability distributions play analogous roles in 
possibility and probability theories, respectively, (Klir et al, 
1995). The generic FN shown in Figure 4 introduces the 
notation used in the following sections. 

B.  Hong et al. FHLF approach (Hong et al, 2000) (FHLF). 

In the DHLF case, the hth harmonic bus voltages can be 
obtained by solving the system of equations (see Figure 2): 

 ( ) ( ) ( )h h h=Y V I  (14) 

Alternatively, and dropping superscript (h) for the sake of 
simplicity, (14) can be written as: 

 
re re

im im

−     
⋅ =    

     

V IG B

B G V I  (15) 

where, Re( )re =I I , Im( )im =I I  and similarly for reV  and  

imV , ( )Re=G Y  and ( )Im=B Y .  

FHLF assumes that both the LLs and the impedances 
modelling the PS are certain (crisp, non-fuzzy) parameters 
(i.e. matrices Y, G and B are deterministic) while the injected 
currents modelling the NLLs are uncertain and modelled 
through FNs, quantifying the uncertainty of its real and 

imaginary part, thus makingreV  and imV  uncertain. 

This situation is modelled by simply replacing the vectors 
of crisp parameters reI  and imI  by FN vectors, which will be 

denoted as ̂reI  and ˆimI , and also reV  and imV  by ˆ
reV  and 

ˆ
imV . Thus, (15) becomes the fuzzy system of equations: 

 

ˆ ˆ

ˆ ˆ
re re

im im

   − 
⋅ =    

        

V IG B

B G V I
 (16) 

A simple way to solve fuzzy equation systems is by solving 
each system of interval equations corresponding to its 
(theoretically infinite) α-cuts. 

   µ 
   1 
 
 
 

  αk 
 
  αj 
 

   0     
                                                                                                                              x 

           
(0)x   

( )jx α
       

( )kx α
            

( )jx
α

         

(0)
x              

ˆ ( )
X

xµ  
 

  αk -cut 
 

     αj -cut 
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Designating ( ) ( ) ( ),α α α =  X X X  the vector of the α-cuts 

of components of ̂X , where ( )αX  and ( )αX  are the vectors of 

the lower and upper limits of the intervals. Thus, using this 
notation, the interval equation associated with the α-cut of 
equation (16), becomes: 
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V V I IG B

B G V V I I
 (17) 

In spite of its simplicity, different solutions can be 
conceived for the interval and fuzzy equations depending on 
the exact meaning given to the equal sign in this context. 
Some relevant kinds of solution sets were described in 
(Romero et al, 2008b), however here only the simplest 
solution known as the ‘interval algebraic solution, (IAS)’ 
(CSS in the fuzzy case, (Bukcley et al, 1991) is the one 
applied in (Hong et al, 2000). 

The IAS for a system of n interval equations can be found 
by solving a linear system of 2n crisp equations providing the 
limits of the interval solution (Friedman et al, 1998). 
Specifically, if: 
 [ , ] [ , ]=Y V V I I  (18) 

is the set of interval equations, the IAS satisfies the following 
equation: 

 
p n

n p

−     =    − − −    

Λ Λ IV
Λ Λ V I  (19) 

where, pΛ  is the matrix of the positive entries of Y (all its 

negative entries replaced by zeros), and nΛ  is the matrix of 

the negative entries of Y (all its positive entries replaced by 
zero), i.e., ( p n= +Y Λ Λ ). 

This system of crisp equations can always be formulated, 
regardless of whether the solution exists; if it does not exist, 
some of the intervals turn out to be impossible (i.e. j jv v> ). 

Reference (Friedman et al, 1998) suggests reversing these 
improper intervals to get a meaningful result, called ‘weak 
solution’; however, such a result is not a solution in any 
mathematical sense, and it can either over- or under-estimate 
real uncertainty in harmonic voltage. 

Reference (Romero et al, 2008b) demonstrated that the IAS 
set is not exactly the desired result in the context being 
analysed because, when the right-hand side intervals model 
inputs known to have uncertainties (e.g. harmonic currents 
injected in different buses), all vectors on the right-hand side 
are possible, and all the associated voltages are of interest. 
Moreover, even though LLs could have a major influence on 
the HLF, (Chang, 2003), uncertainties in their power and 
composition are not modelled and cannot be handled in the 
proposed formulation. Fuzzy real and imaginary parts of 
harmonic voltages are obtained instead of the more useful 
fuzzy magnitudes.  

C.  The possibilistic harmonic load flow (NFHLF) 

The analysis of Hong et al.,’s FHLF approach presented in 
(Romero et al, 2008b)  reveals the aforementioned drawbacks, 
which were then addressed through research published in, 
(Romero et al, 2008a; Romero et al, 2008b; Romero et al, 
2011).  

In those papers, a new FHLF (hereafter noted as NFHLF to 
differ from that of Hong et al.) has been founded on the 
proposed possibility theory. NFHLF relies on nonlinear 
programming techniques and allows for efficiently modelling 
uncertainties regarding input parameters (LL and NLL) by 
means of possibility distributions. Expression (14) can be 
expressed as: 

 
( ) ( ) ( )1

( ) ( )h h h
−

 =
 

V Y P I P  (20) 

where, the diagonal elements of Y(h) as well as the 
components of I (h) depend on the characteristics of the LLs 
and NLLs, described by a set of parameters organised in array 
P. 

From (20), the magnitude of each node voltage can be 
defined as a function of parameters P, i.e.: 

 ( ) ( ) ( )h h
i iv f= P  (21) 

with 
( ) ( ) ( ) 1

,( ) ( ) ( ) ;h h h
i i j j

j
f Z I −= =∑P P P Z Y  

When parameters in P are uncertain and described through 
their joint possibility distribution functions ˆ ( )µP P , the 

possibility distribution function of ( )h
iv , ( )

( )
ˆ( ( ))h
i

h
iV

vµ  can be 

obtained. In particular the limits of each α-cut of ( )ˆ h
iV  can be 

calculated by solving two optimisation problems: 
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where, ( , )h
iV α  and ( , )h

iV α  are the lower and upper limits of the 

α-cut of ( )ˆ h
iV   and ( )αP is the corresponding α-cut of the joint 

possibility distribution associated to the fuzzy vector P̂ . 
When parameters p1, p2, …, pnp are independent, the joint 

possibility distribution function ˆ ( )µP P  is: 

 { }1 2ˆ ˆ ˆ ˆ1 2( ) min ( ), ( ), , ( )
np pp p p np p pµ µ µ µ=P P K  (23) 

and its α-cuts ( )αP are the rectangular domains: 
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where ( )
kp α  and ( )

kp α  are the lower and upper limits of the α-

cut of k̂P . 

As parameters, pk, k=1…np,, have to completely define 
admittance to ground and injected currents modelling the LL 
and NLLs, then a proper circuit for modelling the harmonic 
behaviour of the loads was presented in reference (Romero et 
al, 2011). Moreover a set of fuzzy parameters for describing 
the available information regarding load magnitude and 
composition was selected and described in detail and the 
relationship between the model and circuit parameters were 
formulated. 

5. COMPARATIVE ANALYSIS IN A 14- BUS TEST 
SYSTEM  

This section presents the results of numerical simulations 
aimed at showing some comparisons between main proposals 
exposed in this paper. The following issues are pointed out: 
Specific load models, compatible with FHLF modelling 
capability, have been implemented for this test to achieve 
proper comparison. In effect, the frequency dependence of 
impedances used to model LLs has been represented 
according to the aggregate harmonic load model presented in 
(Romero et al, 2011). However, it was assumed that input 
parameters defining the electric model of the bus linear load 
were crisp values (non-fuzzy) in all the simulations shown. 
Such input parameters are reported in Table 1. 

While NFHLF results were harmonic voltage magnitudes’ 
possibility distributions, FHLF output was the possibility of 
these voltages’ real and imaginary components. To compare 
the results, possibilities of the voltage magnitude have been 
calculated from real and imaginary FHLF output, assuming 
possibilistic independency. 

MCS were computed to obtain a benchmark for suitable 
comparison of the results obtained from each fuzzy 
methodology, i.e. the FHLF and the NFHLF. 

The tests were carried out on the IEEE 14-bus harmonic 
test system. The one-line diagram of this PS and the main 
parameters of the network are summarised in reference 
(Chang, 1999). Generators, lines and transformers have been 
modelled according to the recommendation in (Ranade, 1996). 
Harmonic filters (all single-tuned) have been modelled as 
shunt impedances.  

Regarding the uncertain parameters for modelling NLLs, 
the 14-bus test system contained two harmonic sources, 
namely two six-pulse converters, one at bus 3 and the other at 
bus 8. Moreover, considering that all power consumption at 

buses 3 and 8 was due to these NLLs, then, it was assumed 
that power consumed by these NLLs varied by 5% concerning 
their crisp values reported in Table 1. From these uncertain 
parameters and from the mathematical expressions for 
modelling the nonlinear devices, (Arrillaga et al, 1995), then, 
the harmonic currents injected at buses 3 and 8 were 
computed.  

Moreover, triangular FNs have been used to model 
possibility distributions of real and imaginary components of 
harmonic currents, whereas Gaussian distributions truncated at 
two standard deviations have been chosen to model the 
probabilistic ones in the MCS. Table 2 shows possibilistic and 
probabilistic distribution parameters. 

Table I. Crisp Input parameters to model linear and non-linear loads 

bus 

i 

Input parameters for aggregate load modelling  

,t iP  ,t iQ  ,p iK  ,p ipf  ,m iK  ,m ipf  
,nl iK  ,nl ipf  ,LR ix  

,pfc iQ  

3 1.19 0.067 0 -- 0 -- 1 0.8 0.2 0.825 

4 0.478 0 0.7 0.975 0.3 0.85 0 -- 0.2 0.204 

5 0.076 0.016 0.75 0.975 0.25 0.825 0 -- 0.2 0.010 

8 0.13 0 0 -- 0 -- 1 0.8 0.2 0.097 

9 0.295 0.166 0.7 0.975 0.3 0.8 0 -- 0.2 0.028 

10 0.09 0.057 0.7 0.95 0.3 0.85 0 -- 0.2 0.0002 

11 0.035 0.018 0.7 0.975 0.3 0.85 0 -- 0.2 0.003 

12 0.061 0.015 0.7 0.975 0.3 0.8 0 -- 0.2 0.025 

13 0.135 0.058 0.7 0.975 0.3 0.85 0 -- 0.2 0.025 

14 0.149 0.05 0.4 0.94 0.6 0.85 0 -- 0.2 0.027 

 

Table II. Per unit 5th order harmonic currents injected into the PS 

Bus 
j 

Component 

Parameters of 
Gaussian distribution 

Parameters of triangular 
FNs 

Mean  
(µ) 

Standard 
deviation (σ) 

(5, 0)
   ji  

(5, 1)
  ji  

(5, 0)
  ji  

3 
real 0.1750 0.026 0.1225 0.1750 0.2275 

imaginary - 0.2254 0.034 -0.293 - 0.2254 -0.157      

8 
real 0.0199 0.0005 0.0189 0.0199 0.0209 

imaginary - 0.025 0.001 - 0.027 - 0.025 - 0.023 

A.  Results 

Figure 5 shows the discrete probability density functions 
and membership functions of 5th order harmonic voltages, in 
pu, at buses 1, 3, 9 and 12, calculated through MCS, the 
NFHLF, and FHLF. In particular, histograms for 5th order 
harmonic voltage were attained after L=10000 random shots 
for MCS. 

B.  Discussion 

Before making comparisons between the three HLF 
solutions, considering uncertainties, it should be stated that 
evidence theory provides a link between possibility theory and 
probability theory. In fact, when information regarding some 
phenomenon is given in both probabilistic and possibilistic 
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terms, both descriptions should be consistent (Klir et al, 
1995). Two main consistency conditions are that the weakest 
one can be expressed as follows: an event that is probable to 
some degree must be possible at least to the same degree. 
Thus, 
 pro( ) pos( )A A≤  (25) 

The strongest consistency condition requires that any event 
with nonzero probability must be fully possible. 
 pro( ) 0 pos( ) 1A A> ⇒ =  (26) 

Considering the aforementioned, and from the results, the 
following comparisons and conclusions were made.  

From a qualitative comparison between possibilistic and 
probabilistic distributions plotted in Figure 5, it can be noted 
that plots 5(a) and plots 5(b) showed good agreement between 
results obtained with NFHLF and MCS in all PS buses. 
Moreover, as expected, the possibilistic model and the 
probabilistic MCS kept the coherence imposed on their input 
variables regarding their output, i.e., i) all probable values of 
the harmonic voltages were also possible and ii) non-possible 
values had zero probability. 

However, by comparing plots 5(a) with those in 5(c), such 
coherence was not achieved. In fact, several probable values 
of the 5th order harmonic voltage magnitude at buses 1, 9 and 
12 were not possible in agreement with 5(c) plotted results. 
Moreover, several possible values of 5th order harmonic 
voltage magnitudes at bus 3 were not probable as shown in 
plot 5(a) for that bus. Briefly, results achieved by means of 
FHLF did not fulfil the two main consistency conditions stated 
above between probability and possibility functions. 

Clearly, over- and under-estimating harmonic voltage 
uncertainty shown by the FHLF approach did not occur with 
NFHLF. This conclusion was also proven in (Romero et al, 
2008b). 
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Fig. 5. Per unit 5th order harmonic voltage magnitude at buses 1, 3, 9 and 12. 
(a) Histograms  from MCS; (b) Fuzzy voltages from the NFHLF; (c) Fuzzy 
voltages from the FHLF 

6. CONCLUSIONS 

An overview of the state of the art regarding HLF 
calculation has been presented. Two main formulations for 

considering uncertainty in the analysis have been described, 
i.e., methods based on probability and on possibility. 

To exploit the capability of methodologies based on 
probability theory, the random behaviour of each stochastic 
input parameter has to be known and properly described in 
probabilistic terms. However, this is seldom the case in 
practical situations, because available evidence about the 
behaviour of some input parameters (such as linear, motive, 
nonlinear and capacitive load composition) is rarely based on 
outcomes from a sufficiently long series of independent 
random experiments correctly allowing probability density 
functions to be characterised.  

Possibility theory, on the other hand, is ideal for 
formalising incomplete information expressed in terms of 
fuzzy propositions. In fact, the available information for 
modelling uncertainty involved in input parameters for HLF is 
commonly vague or fuzzy; for instance, judgments such as, 
“the LL in bus 5 can be estimated at 10 MW, hardly less than 
9 MW or higher than 12 MW; about 35% of it is…, etc”. 
Similar statements are often the best that one can make about 
NLLs as well. 

A methodology for solving an FHLF where triangular FNs 
model harmonic injected currents has been proposed in (Hong 
et al, 2000). However, such fuzzy methodology has some 
drawbacks, i.e., harmonic voltage over- and under-estimation 
and inability for modelling uncertainties related to LLs. The 
latter represents a grave weakness because LLs are usually not 
well known, and affect the HLF.  

A novel NFHLF, proposed in (Romero et al, 2008b) – 
(Romero et al, 2011), overcomes the drawbacks detected in 
the previous formulation. Its main characteristics are that it is 
based on nonlinear programming techniques, thus avoiding 
the harmonic voltage over- and under- estimation to which 
FHLF leads. It is capable of modelling uncertainty in both LL 
and NLLs which are imprecisely known in real PS. It permits 
the translation of FNs describing uncertain data, like NLL 
percentage, induction motors, or capacitive compensation 
connected to a given bus, within the electric fuzzy parameters 
used in NFHLF. 

A comparison between the approaches presented here has 
been performed in the IEEE 14-bus PS. The tests showed that 
results obtained with MCS and the NFHLF had good 
agreement. 

The approaches presented here are useful for decision-
making regarding uncertainty, harmonic filters and capacitors 
location, impact of new harmonic load connection, and so on. 
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