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Resumen

Generalmente, en problemas de reconocimiento de patrones las 
observaciones son representadas por medio de medidas sobre un 
conjunto apropiado de variables, estas variables pueden clasificarse 
en estáticas y dinámicas. La representación estática no es siempre una 
aproximación precisa de las observaciones. En este sentido, algunos 
fenómenos son modelados de mejor manera por cambios dinámicos 
de sus medidas. La ventaja de emplear variables dinámicas radica 
en el hecho de incluir mayor cantidad de información que permita 
representar de mejor manera el conjunto de datos. Sin embargo, en 
etapas de clasificación es más difícil emplear variables dinámicas 
que estáticas, debido al costo computacional asociado. Con el fin de 
analizar este tipo de representaciones dinámicas es factible utilizar 
el Análisis de Componentes Principales (PCA), organizando los datos 
de manera que se puedan considerar las variaciones introducidas por 
la dinámica medida en las observaciones.

Por ende, el método que se propone permite evaluar la información 
dinámica de las observaciones en espacios de características de baja 
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dimensión sin deteriorar la precisión del sistema de clasificación. Los 
algoritmos fueron probados sobre datos reales en el reconocimiento de 
voces patológicas y normales; PCA se emplea también para seleccionar 
características dinámicas. 

Abstract

Usually, in pattern recognition problems we represent the 
observations by mean of measures on appropriate variables of data set, 
these measures can be categorized as Static and Dynamic Features. 
Static features are not always an accurate representation of data. 
In these sense, many phenomena are better modeled by dynamic 
changes on their measures. The advantage of using an extended form 
(dynamic features) is the inclusion of new information that allows us 
to get a better representation of the object. Nevertheless, sometimes 
it is difficult in a classification stage to deal with dynamic features, 
because the associated computational cost often can be higher than 
we deal with static features. For analyzing such representations, we 
use Principal Component Analysis (PCA), arranging dynamic data in 
such a way we can consider variations related to the intrinsic dynamic 
of observations.

Therefore, the method made possible to evaluate the dynamic in-
formation about of the observations on a lower dimensionality feature 
space without decreasing the accuracy performance. Algorithms were 
tested on real data to classify pathological speech from normal voices, 
and using PCA for dynamic feature selection, as well.
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1.	Introduction

Generally, pattern recognition tasks deal with representations 
of observed objects by sets of numeric values (i.e., measurements). 
Such values are commonly known as features. Once these features 
are obtained, one can implement functions that assign the observed 
object to a specific class (set of objects with similar properties). 
In most of cases, these sets of features are assumed constant 
with respect to some associated dimension or dimensions (static 
features). Nevertheless, we can represent the objects to be classified 
by means of measures that do change over some associated 
dimension (dynamic features). Thus, instead of representing 
observations as single vectors whose entries are constant features, 
we may turn these entries into arrays that properly introduce the 
dynamic relation. The advantage of using such an extended form 
is the inclusion of new information that allows us to get a better 
representation of the object (i.e. the time behavior of a given signal) 
(Daza, 2006). The main idea in this paper is to extend traditional 
PCA (normally applied on static settings) to classification using 
dynamic representations.

It is possible to tackle the pattern recognition problem from an 
information theory point of view (Pentland & Turk, 1991). If we 
wanted to extract relevant information from a pattern as efficient 
as possible, then, we should encode it and compare it with a set 
of previously encoded observations. One approach for extracting 
the information contained in dynamic features is to capture 
the variations present in the observations set; and so uses this 
information to encode and compare with new patterns. It becomes 
natural to think that the process developed for face recognition well 
know as Eigenfaces (Pentland & Turk, 1991), can be extended to 
other types of objects, for instance, observations represented by 
dynamic features over time.

There are several approaches for deal with dynamic represen-
tations. In (Hall, Poskitt & Presnell, 2001) is proposed a method 
for dimensionality reduction and classification of functional data 
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(observations with dynamic features); particularly, on radar 
signals. In the same way, (Ferraty & Vieu, 2003) present a non 
parametric method for functional data discrimination, which is 
a generalization for the method mentioned in (Hall et. al, 2001). 
Nevertheless, these techniques do not consider multivariate 
data, moreover they have an observation alignment constraint, 
that is, there should be some kind of synchronism among signals 
in training stage. This restriction is not desirable, especially on 
biosignals, because we assume that discriminant information is 
in the changing shape of variables (Silipo, Deco, Vergassola & 
Bartsch, 1998).

In this article is presented a process for reducing representations 
given by dynamic characterization, which can be outlined as:
1.	 Sorting the dynamic features in such a way the variances and 

covariances can be estimated among all points.
2.	 Computing PCA on the sorted array of elements representing 

the observations. The obtained eigenvectors span the basis of 
a subspace that embraces most of information given by a set 
of training observations.

3.	 Since eigenvectors span a subspace from an orthonormal basis, 
they can be used to project observation vectors. Therefore, 
making use of the weight vectors from this transformation as 
features that can be classified by typical algorithms.
All the steps previously mentioned are treated in detail throug-

hout this paper. Finally, we test algorithms on real data to classify 
pathological speech from normal voices, using PCA for dynamic 
feature selection after some preliminary experimental results about 
different parameters (i.e. amount of retained information).

2.	Feature Extraction

Feature extraction consists of a transformation of the original 
data space to a new data set with a reduced number of attributes. 
That is, feature extraction methods determine an appropriate 
subspace of dimension m (either in a linear or non linear way) 
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in the input space of dimension p (being m ≤ p). In this case, all 
available variables are used and the data are transformed to a 
space of reduced dimension. Thus, the aim is to replace the original 
variables by a smaller set of underlying characteristics. There are 
several reasons for feature extraction (Webb, 2002)(Jain, Duin & 
Mao, 2000)(Wang & Paliwal, 2003): 1) to provide a relevant set 
of features for a classifier, resulting in an improvement of the 
performance (especially for very simple classifiers); 2) to reduce 
the redundancy of the input data; 3) to recover the meaningful 
underlying variables or features that describe the observations, 
leading to better understanding of the data generation process; 
and 4) to produce a low-dimensional representation (ideally in 
two dimensions) with minimum loss of information (Daza et. al, 
2009).

2.1	Dynamic Feature Extraction/Selection Using PCA

As it was previously mentioned in the introduction, dynamic 
features refer to numeric values that represent measures changing 
over some associated dimension (usually time or space). ξij (t) Let 
be the j-th dynamic feature belonging to i-th observation; being 
n the number of observations and the number of features, which 
change over t =1,2..., T. We can represent each observation Xi by 
a matrix of size (T x p).
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Our aim is to perform somehow PCA on the observations set, 
such that dynamic information can be extracted in the principal 
components. In order to achieve this, we need to dispose the trai-
ning set in such a way we take account of all possible covariances 
among the t instants and dynamic variables. A natural way for it, 
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is to represent each observation by Γi, which is a supervector of 
size (T x l) (see equation (2)).
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The mean vector ‾Γ     of the whole observation set is given by the 
following equation:
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The covariance matrix S can be computed after centering each 
one of the observation supervectors by extracting ‾Γ      from each one 
of them. i = i – ‾Γ      are the centered observations that allow us to 
calculate s from equation (4).
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where
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In most of cases, we are way far from computing the eigenvec-
tors and eigenvalues of such a huge matrix. Nevertheless, we can 
make use of the rank properties of ; in special, the one that states 
GGT  have the same non-null eigenvalues than GT G. The relation 
between these two matrices is given by this simple yet useful trick 
(Pentland & Turk, 1991):
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vi are the eigenvectors of GT G. Pre-multiplying by G on both sides 
of (5), we have that,
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Thence the eigenvectors corresponding to non-zero eigenvalues 
of are . We must also consider that S is positive 
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semidefinite; and so the largest eigenvalues of (5) are the largest 
eigenvalues of S. The eigenvectors associated with the k largest 
eigenvalues of S are selected as Principal Directions, which span 
a subspace from an orthonormal basis that contains most of the 
information given by observations.

To construct that subspace containing most of the information 
from observations, we shall project centralized observations onto 
the chosen eigenvectors. In fact, by projecting these observations 
onto the eigenvectors’ basis, we try to reproduce the observation in 
the original space as a linear combination of the principal directions 
as it can be seen in (6).
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The reconstruction ωk = vki weights can be though as the new 
set of features and taking advantage of the orthonormality property 
of the basis we can classify observations using geometric criteria 
to partition the subspace off.

Using the magnitudes of the entries of the eigenvectors that 
span the representation basis, might tell us what variables are to 
be chosen (Jolliffe, 2002). Let be the vector given by:
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rearranging in the following manner:

 
1

ˆ
m

i k k

k

vω
=

Φ =

1

 v
k

a a

α =

=

11 12 1 21 2 1T T p pT
ρ ρ ρ ρ ρ ρ ρ

Τ
 =      

11 21 1

12 22 2

1 2

p

p

T T pT

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 
 
  =
 
 
  

P





  



 
1

ˆ
m

i k k

k

vω
=

Φ =

1

 v
k

a a

α =

=

11 12 1 21 2 1T T p pT
ρ ρ ρ ρ ρ ρ ρ

Τ
 =      

11 21 1

12 22 2

1 2

p

p

T T pT

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 
 
  =
 
 
  

P





  



To obtain the vector , which is the sum of the elements of each 
column of. Thus:
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and the assumption is that the largest entries of r point out the 
best features, since they present higher overall correlations with 
principal components.

3.	Experimental Setup

Algorithms were tested on pathological speech database. A total 
of 90 observations (40 pathological and 50 normal voices), each 
one represented by 39 vectors corresponding to dynamic features 
over 110 time intervals. These 39 features are: 12 Mel Frequency 
Cepstral Coefficients (MFCC) and an Energy Coefficient, besides 
its first and second order derivatives are calculated.

The training was carried out using balanced groups, that is, 
the same number of observations per class. The accuracy of the 
classification is given in terms of cross-validation. Several training 
sets along with different amounts of retained variance were tested; 
Figure 1 shows the validation mean error and its variance vs. the 
size of training sets for 30%, 50%, 70%, and 90% of cumulative 
variance. Another experiment consists on determining whether a 
dynamic feature is relevant or not. For this experiment we choose 
a fixed number for training and retained variance (30 training 
samples per class and 70% of cumulative variance). The main idea 
is to perform PCA over all dynamic variables and create a queue 
by sorting the values of in descending order (see Figure 2). Then, 
PCA and classification are carried out on an incremental set of 
dynamic features. Figure 3 depicts the validation error obtained 
from incremental sets.
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Figure 1: Cross-validation for several training sets along with different 
amounts of retained variance.
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4.	Discussion

Figure 1 shows the classifiers performance (linear, quadratic, 
and Mahalanobis). The mean error asymptotically decreases while 
the number of training samples per class is augmented. Moreover, 
standard deviation increases in the same way. The best classifier 
for a 30% cumulative variance was the linear classifier, according 
Figure 1(a). For a 50% cumulative variance the best classifier was 
the quadratic one. From Figure 1(e), for training sets greater than 15 
samples per class, we can see how the classifier performance using 
70% cumulative variance is better than 30% and 50% cumulative 
variance results. In this case, the quadratic classifier is the most 
accurate. For 90% cumulative variance (Figure 1(g)), linear classifier 
has a mean error similar to 70% cumulative variance results. The 
performance of quadratic and Mahalanobis classifiers get worse. 
When more than 30 training samples per class are used the standard 
deviation of the error grows strongly, which means that pattern 
recognition system is overtrained. In Table 1, the mean error results 
for 30 training samples per class are presented. The lowest average 
error for the three classifiers is obtained using 70% cumulative 
variance, and the best classifier is the quadratic.

Table 1: Cross Validation error and standard deviation  
(30 training samples per class)

Cumulative 
variance Classifier Mean error ± 

Standard deviation

30%
Linear   0.27 ± 0.095

Quadratic   0.28 ± 0.095
Mahalanobis 0.275 ± 0.095

50%
Linear 0.21 ± 0.08

Quadratic 0.196 ± 0.078
Mahalanobis 0.215 ± 0.085

70%
Linear  0.19 ± 0.076

Quadratic 0.172 ± 0.077
Mahalanobis   0.19 ± 0.078

90%
Linear   0.18 ± 0.078

Quadratic 0.365 ± 0.011
Mahalanobis 0.365 ± 0.011
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From Figures 2, and 3 it can be seen how PCA not only gives us 
a way for representing dynamic information, it can be applied for 
dynamic feature selection, as well. These performance curves show 
that using around 9 of the 39 features (the ones selected by PCA) 
are enough for classify with almost the same accuracy. Mostly of 
selected features correspond to MFCC; it has been shown in litera-
ture that these coefficients are suitable for good representations of 
speech (Goldwasser et al, 1998) (Westwood, 1999, besides features 
that correspond to first and second derivatives are not relevant in 
accordance with the weights calculated.

 

 

 

 

 

Figure 2: Incremental order given by .  
Weight of the jth dynamic feature.

 

 

 

 

 

Figure 3: Incremental Performance (Mean value and Standard Deviation).
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Table 2 presents the mean error results increasing the number 
of original features. These features are sorted in descend order 
according to weights calculated from equation (8). The linear 
classifier exhibits the best performance.

Table 2: Incremental Performance. Mean Error and Standard Deviation.

Number of dynamic 
features

Mean error ± standard deviation
Linear Quadratic Mahalanobis

1 0,5 ± 0,163 0,44 ± 0,14 0,48 ± 0,11
2 0,4 ± 0,16 0,43 ± 0,153 0,42 ± 0,131
3 0,26 ± 0,141 0,27 ± 0,138 0,26 ± 0,138
4 0,23 ± 0,13 0,25 ± 0,137 0,22 ± 0,122
5 0,22 ± 0,122 0,24 ± 0,12 0,22 ± 0,116
6 0,19 ± 0,119 0,21 ± 0,118 0,21 ± 0,116
7 0,21 ± 0,126 0,22 ± 0,135 0,22 ± 0,135
8 0,21 ± 0,128 0,24 ± 0,133 0,22 ± 0,122
9 0,19 ± 0,121 0,22 ± 0,127 0,24 ± 0,129

5.	Conclusion and Future Work

It was shown how PCA can be applied for analysis of dynamic 
features if observations are disposed, such that we can account 
for all covariances representing dynamic information in data. 
There is a compromise between classification accuracy, and the 
quantity of information that should be retained. On tests, best 
results were obtained for retaining 70% of cumulative variance 
and training sets around 30 samples per class. There are sundry 
techniques for dealing with dynamic features, but in the most of 
the cases these need to set a lot of free parameters, for example 
hidden Markov Models, Neural Networks, etc, without obtaining 
a significant improvement.

As future work, we would like to extend this approach by using 
other eigenrepresentations and perhaps the use of kernel methods 
for non-linear representation that would take into account higher 
order information instead of only using covariance.
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