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Abstract 
 

This paper presents a preliminary study of the different techniques that can be used for fault diagnostics in industial processes 

specially on the startup and shutdown procedures. A review of these thecniques from the perspective of how its can be used 

for Alarm management is presented, followed by an analisys of fault diagnostic in complex systems passing techniques like 

the causal graph. Another technique exposed is the use of chronicles as a robust method for fault diagnosis; in a first part we 

examine aspects as diagnostic, Timed Diagnosability, then propose an automated translation of chronicles, and how it can be 

used on the alarm management in a starting or shutdown plant. Concluding with a preliminar methodolgy propoused that 

includes the use of tha causal graph with the chronicles in an Alarm management. 

 

Keywords: Alarm management, Causal Graph, Chronicle, Fault diagnostic, Timed diagnosis. 

 

Resumen 
En este trabajo se presenta un estudio preliminar de las diferentes tecnicas que se pueden utilizar para el diagnostico de fallas 

en los procesos industriales epecialemnte en los procedimientos de inicio y parado. Una revisión de estas tecnicas desde la 

perspectiva de como se pueden utilizar para la gestion de alaarmas es presentada, seguido de un análisis del diagnóstico de 

fallas en sistema complejos pasando a tecnicas como la grafica casual. Otra tecnica expuesta es el uso de cronicas como un 

metodo robusto para el diagnostico de fallas; en una primera parte se examinan aspectos como el diagnostico, 

diagnosticabilidad temporizada, luego se propone un traslado automatizado de cronicas y la forma en que se puede utilizar en 

la gestion de alarmas en una planta, en el arranque o el apagado. Concluyendo con una propuesta metodologia prelimianr que 

incluye el uso de grafico casual con las cornicas para la gestion de alarmas. 

 

Palabras clave: Gestión de alarmas, grafica casual, crónica, diagnostico de fallas.  

 

1. Introduction 
 

The increasing automation of industrial production 

processes has resulted in an increasing complexity of control 

systems. These  systems are based on digital technologies 

that requires them toincrease their capacity in terms of the 

number of variables that can be treated, its processing speed 

and communication capacity [1]. In addition, on highly 

automated systems is an usual requirement  automatic 

reconfiguration on embedded control system [2] [3] [4], and 

the ultimate goal is to optimize the availability, reliability 

and safety of production processes [3].  

http://dx.doi.org/10.18180/tecciencia.2014.16.1
http://dx.doi.org/10.18180/tecciencia.2014.16.1
mailto:w.vasquez10@uniandes.edu.co
mailto:mmayorgab@ecci.edu.co
mailto:alexandercort@gmail.com
mailto:vbernalt@ecci.edu.co
mailto:alvarobustos@misena.edu.co


 

 

 

 

 
 

 

10 

 

As result, Diagnosis and fault detection is an important 

problem in engineering process currently, and it is the central 

component of an abnormal events management (AEM), 

which has attracted much attention recently. AEM is 

responsible for the detection, diagnosis and correction of 

abnormal conditions and faults in a process [5]. Early fault 

detection and diagnosis in a process while the plant 

continues to operate in the controllable region and can help 

avoid  abnormal events increase. Since petrochemical 

industries looses an estimated $ 20 billion in the U.S. alone 

each year, AEM has been classified as the number one 

problem that needs to be solved [6] [7]  

 

Hence the alarm management is one of the aspects of great 

interest in the safety planning in the different plants [8].  

Integrated management of the critical factors in the process 

ensure optimum reliability level in production [9]. Factors 

such as control of the process variables which are monitored 

from the computer systems that run the control algorithms 

and strategies especially in the strategies, procedures and 

steps followed in both startup and shutdowns and try to keep 

the plants within the operating established "limits" [10].  

 

On a startup or shutdown process the quantity of signals 

provide how alarms increase, then the safety of a plant 

involves integrated management of many factors that matter 

most when analyzing the causes of the accidents [3] [11] 

[12] [13] [14] [15] [16] [17] [18]. In other words, these 

factors must be managed as joint, and not separately, 

because if any of them outside unattended or decreased, the 

security would be threatened [19]. The critical factors of the 

process work that must be managed together are: 

 

 Facility safety. 

 Control of process variables. 

 Safe behaviors. 

 Valid procedures. 

 

This raises the need for a diagnostic system and operator 

prompting, so as to achieve a system that helps to maintain, 

thereby reducing diagnosis time, resulting in increased 

availability characteristic of installation. Then a chronicle, 

record or history of the sequence of the alarms could be 

fundamental for an efficient fault diagnostic [20]. After 

identifying the faults it is necessary that the process will 

recover automatically to ensure the efficiency of the system 

[21] and it is an important aspect specially for the industrial 

sector in his startup and shutdown procedures. We aim at 

presenting an exposition of some fault diagnostic techniques 

with the description of the Graph models and the Chronicles 

related with diagnosability. Followed by a preliminar 

methdology proposed where some of the techniques 

described are integrated. 

  

 

2. Fault  diagnosis  methods 
 

The need of developing safety in the industrial process has 

permited the fault diagnostic researches evolution. The fault 

diagnosis in general consists in the following three important 

aspects: Fault detection: discovery of the existence of faults 

in the useful units of the process, Fault isolation: localization 

(classification) of diferent faults, and Fault analysis or 

identification: determination of the type, degree and origin 

of the fault. To carry out a basic analisys of the fault 

diagnostic evolution it is necessary to review one of the first 

studies in fault diagnostic for electronic system; since the 50 

years, followed by the 60´s, 80´s, 90´s and the current 

tendences.  

 

In the first stage,  the most reliable components were 

implemented on the first generation of electronic computers 

(1940 end in the mid-50s), therefore, practical techniques 

were used to improve reliability, and control codes of errors, 

duplex with comparison the tripling of the feedback, 

diagnostic locate defective components among others 

techniques. John Von Neumann [22], E. F. Moore and C. E. 

[23], and their successors established theories of using 

redundancy to build stable logic structures from less 

dependable components, whose faults were veiled by the 

presence of multiple redundant components [7].  

 

The theories of masking redundancy were integrated by W. 

H. Pierce as the concept of failure tolerance in 1965 [24]. In 

1967, A. Avizienis integrated masking with the practical 

techniques of error detection, fault diagnosis, and recovery 

into the concept of fault tolerant systems [25]. On the events 

the work on software fault tolerance was initiated by 

Elmendorf [26], later it was complemented by recovery 

blocks [27], and by N-version programming [28]. Then, the 

urge of a consistent set of concepts and terminology was 

accelerated by the formation of the IEEE-CS TC on Fault-

Tolerant Computing in 1970 and of IFIP WG 10.4 

Dependable Computing and Fault Tolerance in 1980.   

 

In 1982 at FTCS-12 seven position papers were presented; 

in a particular session on elementary concepts of fault 

tolerance, and J.C. Laprie exposed a synthesis in 1985. 

additional work by members of IFIP WG 10.4, guide by  

Laprie, the book Dependability: Basic Concepts and 

Terminology [29] was concluded in 1992, in which the 

English text was also translated into French, German, 

Italian, and Japanese. In this book, intentional faults (hateful 

logic, intrusions) were listed along with accidental faults 

(physical, design, or interaction faults). Tentative research 

on the integration of fault tolerance and the defenses against 

deliberately malicious faults, i.e., security threats, was 

started in the mid-80’s [30] [31] [32]. The first IFIP Working 

Conference on Dependable Computing for Critical 
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Applications (DCCA) was held in 1989. This and the six 

Working Conferences that followed fostered the interaction 

of the dependability and security communities, and 

advanced the integration of security (confidentiality, 

integrity and availability) into the framework of dependable 

computing.  

 

Since 2000, the DCCA Working Conference together with 

the FTCS became part of the International Conference on 

Dependable Systems and Networks (DSN) [25] [26] [28] 

[33] [32] [34] [35]. Venkatasubramanian proposes a 

diagnostic framework where it indicates the diferent sources 

of failures in it, but now we go to analyze the alarms, the 

time and the operators action to determinate a new 

framework for diagnostic. From an Alarm management 

perspective, some methods exists or techniques that require 

accurate process models, semi-quantitative models, or 

qualitative model. On the other hand, there are other 

methods that do not assume any form of model information 

and rely only on process history information. In addition, 

given the process knowledge, there are different search 

techniques that can be applied to perform diagnosis. Such as 

a collection of bewildering array of methodologies and 

alternatives which often pose a difficult challenge to any 

aspirant who is not a specialist in these techniques. Some of 

these ideas seem so far apart from one another that a non-

expert researcher or practitioner is often left wondering 

about the suitability of a method for his or her diagnostic 

situation. While there have been some excellent reviews in 

this field in the past, they often focused on a particular 

branch, such as analytical models, of this broad discipline. 

There exists quantitative model based methods, qualitative 

model based methods, and process history based methods 

[7]. 

  

A wide diversity of techniques such as the early attempts 

using fault trees and digraphs, knowledge-based systems, 

neural networks, Process history information, causal graphs, 

analytical approaches, chronicles, time petri nets,   in more 

recent studies are computer aided methods for the process 

fault diagnostic problematic that have been developed over 

the years. The Fault trees is a tool used to locate and to 

correct incidents. They can be used to prevent or to identify 

incidents before they happen, but they are used with more 

frequency to analyze accidents or such research tools that 

indicate faults. When happening oneself an accident or a 

fault, it can be identified the root cause of the negative event. 

In this diagrams the time is not involved. An expert system 

or knowledge based system can be defined as: “… system 

that solves problems using a symbolic representation of the 

human knowledge” [36].  

 

Knowledge-based systems performance based on the 

quantity and quality of knowledge of a specific domain 

rather than in technical troubleshooting. Differences 

between knowledge-based systems and other techniques: In 

mathematics, control theory and computer, trying to solve 

the problem through its modeling (model problem). In an 

expert systems the problem is attacked by building a model 

of  “expert” or problem solver (expert model); in the Alarm 

Management with fault diagnostic the human knowledge 

will be so important for defining the Failure mode of the 

equipment to analyze. Neural networks are a very important 

field within the Artificial Intelligence. An artificial neural 

network (ANN) can be defined  as a directed graph with the 

following restrictions: The nodes are called processing 

elements (PE) [37].  

 

The bonds are called instant connections and function as 

one-way paths. Each PE can contain any number of 

connections. All connections departing from an PE must 

include the same sign. The PE can contain local memory. 

Each PE preserves a transfer function which, depending on 

the local memory and the inputs produces an output signal 

and in some cases it transforms the local memory. The inputs 

to the ANN  come from the outside world, while its outputs 

are connections leaving the ANN. For the Alarm 

management with fault diagnostic the theory of the ANN 

could be applied for training system on the reconigtion the 

units of time necessary in each chronicle. Process history 

information allows to the systems to detect deviations 

according to an a historical data base, but in a startup 

procedure this type of data is not found [4] , [38], [39]. 

 

3. Model based fault detection 
 

The model-based fault diagnosis technique is a method 

relatively new  in the traditional engineering domain 

technical fault diagnosis, it had been developmented fast and 

now receiving significant consideration. The following 

approaches must be considered. First, the hardware 

redundancy based fault diagnosis: A fault in the process 

component is then detected if the output of the process 

component is diferent from the one of its redundancy. 

Second, the Signal processing based fault diagnosis: On the 

hypothesis that some process signals (alarms in some cases) 

carry information about the faults of interest and this 

information is presented in form of symptoms, a fault 

diagnosis can be achieved by a suitable signal processing, 

then, the alarm system provided the information needed for 

carrying it out [40]. The study on model-based fault 

diagnosis initiated in the early 1970s. Intensely motivated by 

the newly conventional observer theory at that time, the first 

model-based fault detection method (failure detection filter) 

was proposed by Beard and Jones. Since then, the model-

based FDI (Fault detection and insolation)  theory and 

technique went from side to side a dynamic and rapid 

development and it is currently becoming an important field 
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of automatic control theory and engineering. As shown in 

Figure 1, in the 70´s and 80´s, it was the control community 

that made the decisive contribution to the model-based FDI 

theory, while in the last decade, the trends in the FDI theory 

are marked by enhanced contributions from this three areas: 

One, is the computer science community with knowledge 

and qualitative based methods as well as the computational 

intelligent techniques.  

 

Another area is the applications, mainly driven by the urgent 

demands for highly reliable and safe control systems in the 

automotive industry, and the other areas are in the aerospace 

area, in robotics as well as in large scale, networked and 

distributed plants and processes. In the first decade of the 

short history of the model-based FDI technique, various 

methods were developed. During that time the framework of 

the model-based FDI technique had been established step by 

step. In his celebrated survey paper in Automatica 1990, 

Frank [41] summarized the major results achieved in the first 

fifteen years of the model-based FDI technique, clearly 

sketched its  framework and classified the studies on model-

based fault diagnosis into three methods too: ones are the 

observer-based methods, another are the parity space 

methods and the other parameter identification based 

methods.  

 

In the early 90’s, great efforts have been made to establish 

relationships between the observer and parity relation based 

methods. Several authors from different research groups, in 

parallel and from different aspects, have proven that the 

parity space methods lead to certain types of observer 

structures and are therefore structurally equivalent to the 

obserer-based ones, even though the design procedures 

differ. From this viewpoint, it is reasonable to include the 

parity space methodology in the framework of the observer-

based FDI technique. The interconnections between the 

observer and parity space based FDI residual generators and 

their useful application to the FDI system design and 

implementation. It is worth to point out that both observer-

based and parity space  methods only deal with residual 

generation problems. In the framework of the parameter 

identification based methods, fault decision is performed by 

an on-line parameter estimation, as sketched in the Figure 1. 
 

Figure 1. Historical development and some relevant issues. 

 

3.1 Qualitative Graphic Model 

 

As we saw in the previous sections, currently modern 

industries are growing which means its scale and complexity 

is increased. This type of systems has many areas of process, 

tools, equipment and elements that interact constantly 

making it even more complex these systems. The failure 

diagnosis in such complex systems compared to the classical 

method of fault detection is that for complex systems 

analysis of fault propagation throughout the system which 

could lead to a catastrophic failure condition is required 

involving plant safety [42].  

 

Models directed graphs (SDG) is the group of qualitative 

graphical models to describe process variables and their 

cause-effect relationships in continuous systems, where the 

process variables are represented as nodes and their 

relationships through directed arcs. The SDG obtained from 

flow diagrams, mathematical models and empirical 

knowledge is an expression of high knowledge. The search 

for patterns in the propagation of faults in a directed graph 

helps greatly and find the root causes [42] [43]. The 

hierarchical description of large scale complex systems is 

based on the decomposition and approximate aggregation , 

where a simple SDG level model can be transformed into a 

hierarchical model which makes it easier in the 

understanding of a complex system. [44] [45] [46] 

 

The SDG model could be classified into three levels in a 

pyramid structure, even if the system is very large more 

levels can be considered. The upper level is also called 

system where the first level is divided into several sub-

systems, sub-systems that can behave as separate 

components or interconnecting components that can not be 

separated. In the middle level, each control system is related 

to a super node. The principal steps to construct a SDG are: 

1) Know the squeme process, P&ID and equations. 2) 

Identify the material flow diagram from relationships 

between the components. 3) Acording to the process 

knowledge determine the key variables. 4) Construct the 

SDG skeleton. 5) From the entire SDG include another 

variables and arcs. 6) Simplify and verify the SDG. 7) 

Validate the SDG with process data, simulations or 

experiments [42] [47]. 

 

3.2. Causal Graph Generation 

 

The causal graph represents a group of influences between 

variables Vi, ... Vn  with a set of relations among  themselves  

r(Vi, ... Vn). Causality appears naturally in the differential 

equations representing the evolution on the time of the 

variables analyzed. Formally: 
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𝑑𝑋𝑛+1

𝑑𝑡
= 𝑓(𝑋1, … . , 𝑋𝑛) 

Where, it is accepted that the variable on the left side is 

causally dependent variables on the right side. Each 

influence is generally associated with a physical component, 

so if a variable influences another, the relationship of 

influence is associated with a component. The group of 

equations establishes the Structural Relation Model (SRM) 

which generated in five steps the Causal Model Structure 

(CMS) [46] [48] 

 

4. Concepts of diagnosis 
 

A system is said to be diagnosable if whatever the behavior 

of the system, we will be able to determine without 

ambiguity an unique diagnosis. The diagnosability of a 

system is generally computed from the model of the system. 

In applications using model-based diagnosis, such a model 

is already present and doesn't need to be built from scratch. 

 

4.1 Observability 
 

A system is fully observable if each state variables affecting 

any of the outputs. It is often necessary to obtain information 

on the state variables according to measurements of the 

inputs and outputs. If any state can not be seen from the 

measurements of the outputs it is said that the system is not 

completely observable or unobservable simply [49]. 

 

The fault diagnosis method based on discrete events can be 

classified into two groups depending on how the system is 

to diagnose: on-line diagnosis and off-line diagnostics [50]. 

The procedures for each of the cases are treated separately. 

In the off-line diagnostic system are available to perform 

tests on him, you can send scripts and get the evolutions of 

the system (equivalent to a verification of proper system 

operation). In the case of on-line systems, the fundamental 

methods for fault detection are based on Petri nets [51] [52].  

 

4.2. Chronicle 

 

A chronicle represent a group of signals associated to events 

of a system,  and it defines a basic situation of a normal or 

abnormal change to be monitored. In addition, it is 

represented as a set of events and a set of temporal 

constraints between these events, associated to diagnosis 

messages depending on topological constraints [53]. The 

time then is one of the principal aspects of the analysis, 

because each time ocurrence event will be part to study and 

compared with a process model [54]. Chronicle models are 

sets of binary sequential relations with timed constraints 

between discrete event classes. A chronicle model 

represents an abstraction of the behavior of a dynamic 

system. The operationalisation of this behavioral knowledge 

with the DEVS formalism provides a formal semantic and 

allows the design of an adhoc algorithm dedicated to 

recognizing subsequences of a given discrete event sequence 

that satisfies the sequential and the timed constraints of a 

given chronicle model [55]. 

 

The implementation is usually done through a control-

monitor system capable of assessing the stage which is the 

process and takes appropriate decisions if you are in a fault 

situation. In many cases the method is based on Petri Nets 

or GRAFCET models and the control system is 

implemented in an industrial controller and the decision may 

be needed for example fuzzy an interpreter. The problems 

with these online systems are essentially two, which are 

presented below. 

 

4.2.1. They must solve the problems of combinatorial 

explosion, for which you are defining different 

strategies, among which are the modular 

decomposition based methods, [51] [52] [56], 

however the main problem is found to establish a 

systematic method of decomposition that allows to 

application of complex systems. 

 

4.2.2. The developed online systems currently work on 

systems whose evolution can be monitored 

completely, being able to implement the supervisor 

module externally-diagnostician [56], this scheme, 

which is the one that is working on some complex 

processes with slow changes, may behave 

inefficiently in systems with rapid change. To solve 

this problem have been chosen to perform the 

following modifications: 

 

4.2.2.1. The diagnostic system is implemented in the 

control system (PLC). In this configuration, the 

control system is extended to be able to perform 

self-diagnosis. It would be an evolution of the 

traditional method is added diagnostic capabilities. 

In some cases, this identification is validated by an 

operator and sent to the centralized registration 

system breakdowns [1]. 

 

4.2.2.2. The monitoring and diagnostic system is 

implemented in a mixed solution (external 

equipment Assist. Controls). Diagnostic tool and 

guidance will be implemented on an external 

device, e.g. a computer program, which runs on a 

PC connected to the control system. This team will 

have direct access to the system, so that the 

diagnostic system and guided all the information 

requested is necessary for the diagnosis, monitoring 

and guiding. 

 



 

 

 

 

 
 

 

14 

 

 

4.3. Timed Diagnosability  

 

The standard definition of diagnosability of DES according 

to the problem is to detect the occurrence of unobservable 

fault events using "inference" based on models from 

observed event sequences (chronicles) [57]. One of the 

major drawbacks to achieve fault-tolerant supervision of 

discrete event systems is considered from the point of view 

of safe and timely diagnosis of unobservable faults. Thus the 

moon diagnosability is presented as new security feature. If 

the system is diagnosable reconfiguration actions could be 

forced failure detection prior to execution of unsafe 

behavior, thus achieving the goal of fault tolerant 

supervision. Detecting "before" the unsafe behavior, 

involves time as a key variable in the process, hence the term 

"Timed diagnosability". The occurrence of a fault is 

diagnosed by analyzing the flow of observations and 

matching this flow with a set of available chronicles [20]. 

 

5. Application of chronicles 
 

In complex dynamic systems the data comes out from 

sensors and this information must increase continuously. 

Diagnosis of the system involves identify the elements 

failure using observations derived from the streaming data.  

The supervision of these dynamic requires a monitoring 

system to identify abnormal situations in less amount of 

time. Typical monitoring systems consist of the follow three 

modules: 1) Detection module, 2) Diagnostic module and 3) 

Decision module [58], as can be see in the Figure 2. 

 

Figure 2. Typical architecture of monitoring system. 

 

The detection module continuously monitors signals provide 

by the sensors and decides if the systems behavior is normal 

or the signal values activate some alarm. The diagnosis 

module is responsible for analyzing alarms in order to 

identify abnormal situations and the diagnosis of a 

corresponding failure and that is where we propose to apply 

an effective methodology. The diagnosis can be performed 

by recognition of chronicles because each failure must be 

associated with a chronicle which corresponds to some 

abnormal situation. The expert systems based their 

reasoning on rules, reducing in importance time information 

but, when the safety in a process could be affected the time 

is an important aspect to analyze particularly when alarms 

are activated and the operator need recognize it. The 

recognition of chronicles is based on diagrams of evolution 

in which time is fundamental. Chronicles provide a 

framework for modeling dynamic system and this tool has 

been proposed by Dousson et. al. since 1993 [59].  

 

A chronicle is a partial order of events with time constraints 

and it associates with the occurrence of a fault. The situation 

recognition system performs recognition of instances of 

occurring situations, as they are developing and it generates 

events and actions that must be detected. The alarms in 

systems are events that require actions by the operator and 

when the number of alarm increase it need be processed for 

reducing the quantity and allowing an effective response of 

the operator [8] [59] [60] [61] [58]. 

 

A chronicle is composed of the following three parts: 

 

 A set of predicates 

 A set of temporal constraints which relate these 

predicates 

 A set of actions to be taken when the chronicle is 

recognized 

 

Then, a chronicle representation relies on a propositional 

reified logic formalism in which the environment is 

described through domain attributes and messages where 

their temporal qualifications are formed using different 

types of predicates. Then, the chronicles are a temporal 

pattern that represents the possible evolution of the system 

where a set of events are related by time constraints.  

 

5.1. Time Representation  

 
Relies on the time points algebra where time is considered 

as a linearly ordered discrete set of instants. A time interval 

I is expressed as pair I=(t1, t2) corresponding to the lower and 

upper bound on the temporal distance between two time 

points t1  and t2. Time is considered as a linearly ordered 

discrete set of signals where we can handle the usual 

symbolic constraints of the time point algebra as well as 

numerical constraints. Then, I(e1e2) = [I-,I+] it express  the 

time distance between the events. 
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5.2. Reifying Predicates 

 

Reifying Predicates are used to temporally qualify the set of 

domain attributes.  In the literature we can find the next 

predicates used in a chronicle. 

 

5.3. Basic Chronicle Patterns 

 

evt(P:v,(t1,t2)): 

The domain attribute P must 

keep the value v over the 

interval [t1,t2]; 

 

evt(P,t): 
Message P occurs at t; 

 

noevt(P(t1,t2)): 

If any change in P occurs 

between t1 and t2 the chronicle 

can not be recognized; 
 

hold(a, (t1, t2)): 
The event a must keep the 
value over the interval t1, t2; 

 

evt(a, t) ^ t ∈ [𝛼,  + ∞] : 
an event a occurs after 𝛼 time 
units; 

 

evt(a, t) ^ t ∈ [𝛼,  𝛽] : 
an event a occurs between 

𝛼 and 𝛽 time units; 

evt(a, t) ^ noevent(b, [0, t]): 
an event a occurs without any 

prior event b; 

noevt(a, [𝛼,  𝛽]): 

no event a occurs between 𝛼 

and 𝛽  time units; 

 

evt(a, t) ^occurs((m,+∞ ), b, [0, t]): 

an event a occurs after at least 

m events b; 
 

evt(a, t) ^ occurs((m, n), b, [0, t]): 
an event a occurs after at least 

m and at most n events b. 

 

An event has no duration. Events denote a change of the 

value of a domain attribute. 

 

5.4. Domain Attribute 

 

In the reified logic formalism, the environment is described 

through domain attributes. Domain attributes are the 

atemporal propositions of the modeled environment. The 

domain attribute is a couple  𝑃(𝑎1, … 𝑎𝑛): 𝑣  where P is the 

attribute name, 𝑎1, … 𝑎𝑛 its arguments and v its value. For 

example: 

 

hold(P: v, (t1, t2)) The domain attribute P must keep the 

value v over the interval t1, t2 

 

 

6. Automated translation of chronicles 
 

The basic system should behave as a timed model M = (E, 

T) with a set of events E as of trajectories of the system (i.e. 

the system language) and a set of constraints of time T 

between the occurrence date events. Among the events 

produced by the system, some of which are observable as 

well as the date of occurrence of observable timed model 

(EOB, TOBS) so that  M can be characterized by projection 

[20]. 

 

A chronicle is a set of observable events with some time 

constraints. A good account is used to describe a situation 

based on their observable effects [62]. In a diagnostic 

approach based on chronicle, each abnormal situation (ie, a 

failure) is usually associated with a number of chronic, 

chronic recognizes each sub-part of the corresponding error 

associated with this sequence. That is when a process is 

being presented unusual actions according to the model 

obtained are projected to set corresponds to failure. A 

positive aspect of these approaches is their high efficiency 

due to the fault indication based on expert systems. The 

downside is usually the difficulty of acquiring and chronic 

database update these systems.  

 

Chronicle recognition can be performed as follows, given a 

flow of observable events, a system for recognition of 

chronic is responsible for checking on the progress if the 

flow coincides with some of the chronic basis. It is said that 

the model is recognized if the flow event case contains an 

instance of each event in the chronic model meet these 

instances time constraints defined in the chronic model. A 

chronicle is a partial order of events with time constraints 

and is associated with the occurrence of a fault. It is a model 

c is a pair (S, T) where S is a set of observable events and T 

a set of constraints between their occurrence dates. 

 

More formally: A chronic model c = (S, T) is recognized in 

a sequence σ observable event instances if and only if: 

 

– there exists, for all event (ei, ti) ∈ S = {(e1, t1), . . . , (en, 

tn)}, an event instance (ei, ti
|) in σ and  

– the constraint system {t1 = t1
|
 , . . . , tn = tn } ∪ T is 

satisfiable.  

 

The set of trajectories of the system leading to the 

recognition of the chronicle c is called the recognition 

language L(c). Each abnormal situation or fault f that is the 

observable behavior of the system when the fault occurs. A 

chronicle model c(f) is associated to a fault f when its 

observable recognition language  Cf  is a  subset of the fault 

signature Cf  C Sig(f). 

 

6.1. General Principle of the Analysis 

 

Two chronicles are exclusive if they cannot be recognized 

with the same flow of event instances. It has been shown that 

the proposed exclusiveness analysis can be performed 

relying on two kinds of inputs. 
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6.1.1. Translation 

 

The objective of this step is to translate each chronicle model 

into Labeled Time Petri Net with Priorities (LTPNPr). Time 

Petri Net with Priorities (TPNPr) is an extension of TPN in 

which a priority relation on   transitions is defined [63]. 

 

6.1.2. Product 
 

The exclusiveness test aims to check that the chronicles 

cannot be recognized by a common trajectory of events. 

 

6.1.3. Exclusiveness test  

 

The exclusiveness analysis must deal with an important 

number of trajectories that may induce the  chronicle 

recognition what is called chronicle instances. 

 

The objective of the product of the Petri Nets is to represent 

in a single model the common behaviors of two chronicles 

but also the independent behaviors of each chronicle, a 

specific product for LTPNPrs obtained by adding transitions 

labeled with synchronized events (common events) and by 

adding priorities relations involving these new transitions if 

necessary.The transition from which the arc comes out has a 

higher priority than the transition in which the arc comes in. 

Thus, in case of simultaneous activation, the transition with 

a higher priority is triggered. 

 

7. Proposed model analisis. 
 

Lets go to construct a special fault detection model using the 

causal graph and the chronicles as combined methods for an 

Alarm management preliminar methodology. First, in a 

singular process structure we will construct his causal graph 

and after  we will determinate the chronicles for normal 

behavior of the startup procedure in this process. The 

process is composed by a tank (TK),  two valves (V1 and 

V2), a pump (Pu),  a level sensor (LT), a pressure sensor (PT) 

and a flow sensor (FT) see Figure 3. 

 

 
Figure 3. Hidraulic System Study. 

 

This process is a pressuring system which is composed by 

the follow ecuations: 

 

The level into the tank is determinated by the method HTG 

(Hidrostatic Tank Gauging) using the hidrostatic pressure 

and the liquid temperature into the tank. Then, the level 

sensor is determine by a differential pressure sensor that 

indicate the difference between the pressure on the tank base 

(Pinf) and the superior pressure of the tank (Psup) divided by 

the density of the liquid. The density is calculated by the 

differencial pressure between the pressure on the button and 

the pressure in the middle  with a fixed distance between 

both (h). Then, the level is determine in the equation e1:  
 

𝐿 =  
𝑃𝑖𝑛𝑓 − 𝑃𝑠𝑢𝑝

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
≡  

𝑘𝑔
𝑚2⁄

𝑘𝑔
𝑚3⁄

= 𝑚 (1) 

The density is determine in the equation e2: 

 
 

𝜌 =  
𝑃𝑖𝑛𝑓 − 𝑃𝑚𝑒𝑑

ℎ
≡  

𝑘𝑔
𝑚2⁄

𝑚
=

𝑘𝑔
𝑚3⁄  

(2) 

 

The mass of the liquid is determine in the ecuation e3, in this 

equation A is the area of the tank.  
 

 𝑀 = ( 𝑃𝑖𝑛𝑓 − 𝑃𝑠𝑢𝑝). 𝐴 ≡
𝑘𝑔

𝑚2⁄ ∗ 𝑚2 = 𝑘𝑔 (3) 

 

The relationship between the input (qi) and output (qo) mass 

flow in the tank is related with the change of the mass or 

weight into the tank. This reltationship is determine in the 

differential ecuation e4:  

 
 𝑑𝑞𝑜(𝑡)

𝑑𝑡
= 𝑞𝑖 +  

𝑑𝑚(𝑡)

𝑑𝑡
 (4) 

 

The differential pressure in the pump Pu is determine in the 

ecuation e5: 

 

 ∆𝑃𝑃𝑢 =  𝑃𝑖𝑛𝑓 − 𝑃𝑇 (5) 

 

The differential pressure in the valve V2 is determine in the 

ecuation e6: 

 ∆𝑃𝑉2 = 𝑃𝑇 − 𝑃𝑉2𝑜 (6) 

 

7.1. Steps for Generating the Causal Graph 

 

Below are shown the five key steps in the generation of the 

Causal Model Structure (CMS) 

 

7.1.1. First step 

 

In the Graph Theory, a bipartite Graph is a Graph 𝐺 =
(𝑁, 𝐸) whose vertices can be separated into two disjoint sets 
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U and V so that the edges only can connect vertices of a set 

with other vertices, Bipartite graphs are often represented 

graphically by two columns (or rows) of vertices and edges 

joining vertices of different columns (or rows). Then, the 

first sept is to generate a preview bipartite Graph   𝐺 = (𝑉 ∪
𝐸, 𝐴) where V is the set of variables, E is the set of equations 

and A is the arcs or relationships between equations with 

variables, these relationships have no direction. For our case, 

the list of variables with the ecuations is exposed in the 

Table 1. 

 

Table 1. List of variables and equations. 

Equation Varible Description 

e1 V1 Tank level (LT) 

e3, e4 V2 Mass of the liquid into the tank (M) 

e3 V3 Tank area (A) 

e1, e2 V4 Liquid density 

e4 V5 Output plow (qo)(FT) 

e4 V6 Input flow (qi) 

e1, e2, e3, e4 V7 Suction pressure pump 

e5 V8 Diferential pressure pump 

e5, e6 V9 Discharge pressure pump (PT) 

 

Creating the Graph bipartite as can see in the Figure 4: 

 
Figure 4. Undirected bipartite graph. 

 

7.1.2. Second step 

 

In this step we identify the exogenous variables, therefore an 

influence equation (Id) will be associated to each exogenous 

variable. In this case, the exogenous variables are the tank 

inflow (IdV6) and the liquid density (IdV4). Then, this is the 

Bipartite graph with the influence equations in the 

exogenous variables. 

 

 
Figure 5. Bipartite graph related to exogenous variables 

with their influence equations. 

7.1.3. Third step 

 

In this step we need to identify which equations involve just 

one variable, in this case, the exogenous variables; look at 

Figure 6. 

 
Figure 6. Bipartite graph with exogenous variables perfect 

matches. 

 

7.1.4. Fourth step 

 

We need to dentify the perfect matching. It is, only when the 

equation relates one variable, for example, the variable V1 

with e1, e3 with V2 and the others variables V4, V5, V7 and 

V8, according with the Figute 7. 

 
Figure 7. Bipartite graph with all the prefect matches. 

 

7.1.5. Fifth step 
 

The directional graph is derived from the perfect links. E to 

V are routed in this direction and in other cases is routed 

from V to E. See Figure 8. 

 
Figure 8. Directional graph. 

 

7.2. Generating Causal Graph 

 

From the directional graph the causal graph is built   𝐺𝑐 =
(𝑉, 𝐼) in the equation V is the Variables and I as the 

directional relationships. In this graph don’t appear the 

equations nodes. Look at the Figure 9. 
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Figure 9. Causal graph. 

 

7.3. Suppression of Variables 

 

We can remove unmeasured variables or variables that do 

not influence significantly on other variables. In this case we 

will remove the variable V3 because the area Tank does not 

change. We remove the variable V2 because we do not 

measure the weight (See the Figure 10). 

 
Figure 10. Reduce Causal graph. 

 
The causal graph could be constructed using the tool 

“Causalito” [48, 46]. For do that, we need construct a matix 

formed by the components and the variables. The 

components are related with the ecuations as it is show in 

the following table (Table 2): 

 

Table 2. Equation for each componet of the System.  

Equation Component 

e1 Tank and Valve 1 

e2 Tank 

e3 Tank and Valve 1 

e4 Pump, Tank 

e5 Pump 

e6 Valve V2 

 

 

The matrix that relate the components with the variables is 

give by Table 3: 

 

Table 3. Relationships Matrix.  

Component/Equ

ation 

Variable 

V

1 

V

2 

V

3 

V

4 

V

5 

V

6 

V

7 

V

8 

V

9 

e1          

e2          

e3          

e4          

e5          

e6          

 

The SDG model for this process is conventional by the 

representation of the process variables as graph nodes and 

representing causal relations as directed arcs. An arc from a 

node X to node Y implies that the deviation of X may cause 

an deviation of Y. Figure 10. 

 
Figure 10. SDG model with Alarms. 

 

7.4. Chronicle Example 

 

One of the most important steps for fault detection is to 

determine the sequence of events that can be carried to a 

failure.  Each situation model is a set of event patterns and 

temporal constraints between them; then a situation model 

may also specify events to be generated and actions to be 

triggered as a result of the situation occurrence. In an 

industrial process, especially on the petrochemical sector the 

alarm management is an important aspect. 

 

For the startup procedure in the example process we will 

construct the next chronicle than describe the normal 

behivor, where: ValveV1_ON, ValveV2_ON, 

PumpPu_ON, Alarm_1, Alarm_2, and Alarm_3 are 

observable events in the system. The Alarm_1 is the alarm 

of high level in the tank, Alarm 2: outlet high pressure and 

Alarm 3: outlet high flow. Then, in the startup procedure for 

this part of the process the six steps are: First, check the 

initial conditions like valves off, pump off, tank empty. 

Second, turn ON the Valve 1 after t1 time units. Third, wait 

to the liquid full the tank after t2 time units, this Alarm_1 

must be activate between 1 and 2 time units. Fourth, turn ON 

the valve 2 to t3 time units. Fifth, turn ON the pump to t4 time 

units. Sixth, wait to the pressure outlet will be in high 



 

 

 

 

 
 

 

19 

(Alarm_2) after t5 time units and it must hold between 1 and 

3 time units. Seventh, wait to the maximun flow will be 

reached, the Alarm_3 activate to t6 time units and it must 

hold between 1 and 2 time units. On the Causal Graph the 

alarms are located as show the Figure 11. 

 

 
Figure 11. Causal graph with alarms 

 

Diagnosis depends on an event-based method for the 

monitoring approach.  A workflow describes then a partial 

order of events and a workflow run is a arrangement of event 

instances: (e1, t1) . . . (en, tn) where (e1, t1) could be  the 

first event instance of the run [61] [64]. From startup 

procedure and  causal graph we construct the workflow run 

for describe after the chronicle, as can see in the Figure 12. 

 

 
Figure 12. Worflow run Startup procedure. 

Chronicle: 

 
evt(InitialConditions) 

evt(ValveV1_ON, (t1, +𝑡1,  + ∞)) 

evt(Alarm_1, (t2, +t1,  + ∞)) 

hold (Alarm1, (1,2)) 

evt(ValveV2_ON, t3 ) 

evt(PumpPu_ON, t4 ) 

evt(Alarm_2, t5) 

hold (Alarm2, (1,3)) 

evt(Alarm3, t6 ) 

hold (Alarm3, (1,2)) 

 

t1<t2<t3<t4<t5 <t6 <t7 

 

When recognized  

 emit event ( NO_FAULT, t7) 

 

Pattern combination: 

 

C: evt(InitialConditions) ^ evt(ValveV1_ON, (𝑡1,  +

∞))^ evt(Alarm_1, (𝑡2,  + ∞)) ^ hold (Alarm1, (1,2)) 

^ evt(ValveV2_ON, t3 ) ^ evt(PumpPu_ON, t4 ) ^ 

evt(Alarm_2, t5) ^ hold (Alarm2, (1,3)) ^ 

evt(Alarm3, t6 ) ^ hold (Alarm3, (1,2)) ^ 

t1<t2<t3<t4<t5 <t6 <t7 

 

A Failure Mode Analysis (FMA) is required to determine all 

the possible chronicles that carried the system to an inminent 

failure. The process for managing Risk is followed basically 

into four steps: Information on the process. Identity hazards, 

Evaluate risks and Specific risk reduction measures. After 

obtaining all the chronicles necessary a  pattern reconigtion 

with  a  search motor which in real time recognize the “good” 

and “bad” chronicles [47] [65]. 

 

8. Conclusions 
 

A preliminar basic method for an Alarm management with 

fault diagnostic was present using the Causal graph and the 

Chronicles as the fault diagnostic techniques. When the 

process is new the analisys of a chronicle and determinate 

the unobservable events and fails could be problematic. The 

determination of some base chronicle requires of hystoric 

data and experience with the process dinamic. 

 

The use of LTPNPrs to recognize the chronicles could be 

remplaced for a GRAFCET model to check signals of alarms 

in a process in a next job. Another possible continuation of 

this analysis would be the study of the design a method, 

strategy or approach for design and structure a alarm 

management on starting process for fault diagnostic. 

 

The evolution of the model shows how the process 

progresses and we can have information to determinate if if 

the actual process is evolving correctly or not.  
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The next analysis could be the use of Chroniques apply to 

the model for structure a new model that can determinate the 

good chroniques of the system comparing with the operation 

on real time of the process. 
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