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A novel finite element method for designing floor slabs on 
grade and pavements with loads at edges

Novedoso método de elementos finitos para diseñar losas para  
pisos industriales con cargas en los bordes o juntas

H. E. Camero1

ABSTRACT 

In the present paper a methodology to design slabs on grade for industrial floors and pavements using bi-dimensional finite elements 
and integrating the subgrade in the design is presented. The suggested method to design slabs on grade for industrial floors and pave-
ments has been called the Camero Finite Element Method. An example of an industrial floor designed to be capable of sustaining an 
infinite number of load applications (or a 50 years lifespan period) is here presented in order to be compared with the results of the 
Camero Finite Element Method, the PCA (Portland Cement Association), and the WRI’s (Wire Reinforcement Institute) simplified me-
thods. In this example, an industrial floor is designed to be capable of sustaining an infinite number of load applications comparing 
the results of the Camero Finite Element Method and the simplified methods of the PCA and WRI. The industrial floor or pavement 
will be able to resist an infinite number of load applications if it is designed with the Camero Finite Element Method. On the other 
hand, if it is designed using the PCA and the WRI methods, it will last a few years (in this example, in one year period, the number of 
axle load applications is equal to the number of allowable repetitions). To conclude, if an industrial floor o pavement is designed with 
the Camero Finite Element Method, it will be able to sustain an infinite number of load applications (up to 50 years lifespan period). 

Keywords: Floor slab on grade, industrial floor slab, Portland Cement Association, wire reinforcement institute, slab design on 
grade, floor design, industrial floor slab, concrete floor, concrete slab on grade, pavement, rigid pavement, Camero finite element 
method.

RESUMEN

En el presente artículo se presenta una metodología para el diseño de losas sobre terreno para pisos industriales y pavimentos uti-
lizando elementos finitos bidimensionales e integrando el suelo en el diseño. El método propuesto para diseñar pisos industriales 
ha sido llamado Camero Finite Element Method. Un ejemplo de un piso industrial diseñado para soportar un número infinito de 
repeticiones de carga (o un periodo de vida útil de 50 años) es aquí presentado con el fin de comparar los resultados de Camero 
Finite Element Method, los métodos simplificados de la PCA (portland Cement association) y la WRI (wire Reinforcement Institute).  
En el ejemplo, un piso industrial es diseñado para ser capaz de admitir un número infinito de aplicaciones de carga (o un periodo 
de vida útil de 50 años), comparando los resultados de Camero Finite Element Method y los métodos simplificados de las PCA y la 
WRI. El piso industrial o pavimento será capaz de resistir un número infinito de aplicaciones de carga (50 años) si es diseñado con 
Camero Finite Element Method. De otra manera: Si es diseñado por los métodos de la PCA y la WRI únicamente durará pocos años 
(en este ejemplo, en el periodo de un año el número de aplicaciones del eje cargado es igual al número de repeticiones admisibles). 
Concluimos que el piso industrial o pavimento será capaz de admitir un número infinito de aplicaciones de carga (periodo de vida 
útil de 50 años) si es diseñado con Camero Finite Element Method.

Palabras clave: Losa sobre terreno, losa industrial, Portland Cement Association, Wire Reinforcement Institute, diseño de losas 
sobre terreno, diseño de pisos, placas de pisos industriales, losas de pisos industriales, pisos de concreto, pisos de concreto sobre 
terreno, pavimentos, pavimentos rígidos, método de elementos finitos de Camero.
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Introduction
Designing slab floors on grade for industry consists in desig-
ning slabs for storage and traffic loads produced by vehicles 
and forklift trucks, these generally being the most critical. 
This article shows how the Portland Cement Association 
(PCA) and Wire Reinforcement Institute (WRI) simplified 
methods for designing slabs for forklift truck traffic, consi-
der the bending moments applied to slabs smaller than tho-

se presented under operational conditions by forklift trucks 
being misaligned with the slab’s longitudinal axis centre 
(eccentricity between slab centroid and the centre of the 
forklift’s truck loaded axle). 

Figure 1 shows the geometry of the forklift’s truck loaded 
axle. WS is wheel spacing of the forklift truck’s loaded axle. 
Figure 2 shows the loaded axle working on the slab. The 

http://dx.doi.org/10.15446/ing.investig.v35n2.45603
http://dx.doi.org/10.15446/ing.investig.v35n2.45603


A novel finite element method for designing floor slAbs on grAde And pAvements with…

IngenIería e InvestIgacIón vol. 35 n.º 2, august - 2015 (15-22)16

forklift’s truck centre longitudinal axis has been called CC 
and the slab’s centre longitudinal axis, has been called ¢. 

The article explains the development a method to design 
slabs on grade for industrial floors and pavements with fini-
te element analysis in two-dimensional problems including 
the subgrade. The terms for stresses are obtained on the  
assumption that the soil is a perfectly elastic material. 

Figure 1. Geometry of the lift truck loaded axle on the slab (From Ca-
mero, 2007).

Figure 2. Geometry of the lift truck loaded axle operating on the slab. 
Shows the positives axes, X, Y, and Z and the positive direction of the 
internal forces in a slab element. Shows probable, transversal pressure 
distribution.

Analytical investigation

Stress due to load

The reduction of a three-dimensional problem to a two-di-
mensional problem can occur in plane stress and plane 
strain. For each case, see Segerlind (1984) and Oñate (1995).

The state of plane stress occurs if a pavement has isolation 
joints, contraction joints and expansion joints. The stress 
components associated with the direction perpendicular to 
the plane of the applied loads, σzz, σzx, and σzy are very 
small and assumed to be zero, when the applied loads lie 
in the x-y plane.

The example showed in this article is limited to elasticity 
problems. 

The generalized Hooke’s law can be written as (and re-
member that σzz = 0, σzx, and σzy = 0):

 σ ε= ∗D  (1)

σ is the stress vector and can be written as:

 σ σ σ σT
xx yy xy{ }=  

                    (2)

The matrix D is (Linero and Garzón, 2010, chapter 5)
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Where v is a constant called Poisson’s ratio and E is the 
modulus of young or modulus of elasticity.

ε, the elastic strain vector is

 ε ε ε εT
xx yy xy{ }=  

                   (4)

The displacement equations 

There are two unknown displacements in a two dimensio-
nal elasticity problem, μ and v. The displacement parallel to 
the z-axis, ω, is related to μ and v.

The μ and v displacements are modeled in a continuum 
element by defining two displacement components at each 
node (Figure 3).

Figure 3. The nodal displacements for a triangular elasticity element. 
Its six nodal degree of freedom are shown.

The linear triangular element is perhaps the earliest and 
simplest finite element. A resume of formulation in element 
finite is show below. The author recommends the readers to 
read Segerlind (1984) and Oñate (1995). 

The horizontal displacement μ is approximated using:

 µ µ µ µx y N N Ni i j j k k, �
�

( )= + +  (5)

The vertical displacement component ν is represented by:

 ν ν ν νx y N N Ni i j j k k,  ( )= + +  (6)

Utilizing matrix notation yields

 U U
x y
x y

N Un{ }= { }=
( )
( )
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µ
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,
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�  (7)

Where [N] is the matrix 2x6 that contains the element sha-
pe functions and {Un} is the vector that contains the ele-
ment nodal displacements.
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Ni, Nj and Nk are the linear shape functions that by a linear 
triangular element are (Segerlind, 1984, pp. 51-67):
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And:
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The strain components and displacements are related. The-
se relationships are called the strain-displacement equations 
and are derivated in all elasticity books (Linero and Garzón, 
2010 and Timoshenko and Goodier, 1970). They are:
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Using matrix notation, the vector strain with Equations (4), 
(5), (6), (7), (8), and Equation (11), is:
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Using matrix notation, the Equation (12) can be written as: 

 ε{ }=[ ]{ } B Un   (13)

Equation (13) defines the gradient matrix [B] for the triangu-
lar element. It is a 3x6 matrix.

The linear triangular element shown in Figure 3 has straight 
sides and three nodes, one at each corner.

In each node of the linear triangular element or in each 
node of the grid the designer has to evaluate the equilibrium 
among the strain energy equations and the forces acting on 
the system: work done by the forces due to concentrated 
loads, work done by the stress components acting on the 
outside surface and work done by the body forces (Linero, 
Garzón and Ramirez, 2013, chapter 2, Linero and Garzón, 
2010, chapter 4 and Segerlind, 1984, chapter 18, 21, and 
22), This is the principle of minimum potential energy.

The general form of the finite element equations for poten-
tial energy formulation is:

 K Un f[ ]{ }={ }   (14)

Where  K B D B t dA
A

T[ ]= [ ] [ ][ ]∫      (15)

Where [B] is defined by (13), [D] is defined by (3) and {Un} 
is defined by (8). The element has a volume V that is equal 
to its area, A by its thickness, t.

If calculating [K] according to Equation (15) by linear trian-
gular element:
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[K] is symmetric and bi, bj, bk, ci, cj, and ck are definite by 
Equation (10). A is the area of the triangle. [K] is called the 
stiffness matrix.
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In the Equation (14), {ƒ} is the force vector. If a Triangular 
Linear Element (Figure 3) has surface stress on the side ij, 
px and py, body force, bx and by (bulk unit weight), and 
concentrated load, P on node k., the resulting equation is:

 f tL{ }=
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As the linear triangular element has six de gree of free-
dom, if there are concentrated loads, it goes in {ƒ} in the 
position of its degree of freedom. L is the length of each side 
of the element.

The Equation (14) is evaluated for each element of the grid. 
The global stiffness matrix and the global force vector {ƒ} 
come from element contributions. The [K] and {ƒ} of each 
element are introduced in [K] and {ƒ} global for all structu-
ral problem in function of each degree of freedom of each 
element.

To solve Equation (14), find {Un} and with Equations (13) 
and (1) find the stress σ.

For a plain concrete slab it has been demonstrated in texts 
on the mechanics of materials that the relationship between 
bending moment and stress is as follows:

 σmax �bending
Mc
I

= �  (18)

In the Equation (18), M (bending moment) = Mzz, and the 
moment of inertia regarding the neuter axis is I, and I = Izz.
The direction of the axes is illustrated in Figure 2.

Proposed method to design  
(Camero Finite Element Method):

The following procedure is proposed: 

1. Calculate the bending moment considering that the ve-
hicle is in the edge of the slab (See example).This is if 
the axle load from a moving vehicle will move along 
the floor or pavement and eventually crosses a joint. 
Other loadings, such as rack posts, swing lift trucks, 
or columns must be considered. PCA and WRI charts 
give thicknesses based on loadings at the interior of the 
floor slab (if the forklift’s truck centre longitudinal axis, 
CC, coincide with the slab’s centre longitudinal axis ¢). 

 Remember that the stress, σ, was obtained by finite 
element, and for each element with Equation (18) we 
calculate the bending moment.

2. From 1, the engineer obtains the maximum bending 
moment and with the results of finite element he ob-
tains the maximum bending stress. He can also calcu-
late the maximum bending stress applied to the slab (or 
pavement) with Equation (18).

3. Establish allowable stresses: the stresses should not ex-
ceed the elastic limit at any point. The following maxi-
mum compression and tension

 σmax� � . � �compression f c= ′0 45  (19),

 is allowable concrete compression. 

 σmax� �

.

�
��tension

f c
Safety Factor

=
′1 6

�  (20),

 is allowable concrete tensile stress and the designer 
must specific passive steel as control for shrinkage and 
concrete temperature effects.

4. Calculate the thickness of the slab or pavement. 

 The typical way to calculate the thickness (t) of the slab 
or pavement is using a 1.0 meter-wide slab trip (or 1.0 
foot-wide slab strip or 1.0 inch – wide slab trip). The 
Equation (18) takes the form:

 σmax �
*

�bending
M
b t

=
2

6

�   (21)

 Where b is the width of the transversal section of the 
slab or pavement being analyzed, taken as 1 me-
ter (m.), 1 foot (12 inches) or 1 inch; and t is the slab 
or pavement thickness (Camero, 2007, and Ringo and 
Anderson, 1996).

5. Verify that the applied stress calculated in Equation 
(21) is smaller than allowable, Equations (19) and (20). 
If it is not satisfactory, increase the slab thickness.

6. Verify that the reaction on the sub-grade is smaller 
than the bearing capacity of the same. Since soil can-
not take tension stresses, the engineer must verify it 
(Bowles, 1975, pp. 504-514).

7. Verify slab shear stress resistance due to load action.

8. If the designer wants to design a structurally reinforced 
slab, select the load factor to give the design moment 
(greater than the applied moment). To this design mo-
ment, which is an ultimate moment, calculate the requi-
red steel areas and spacing. Use the theory of reinforce-
ment concrete to calculate the required steel areas.

9. Calculate the angular distortion. With finite element, for 
each node of the grid we have found the settlement. The 
results in Equation (14) gives us directly the settlement 
in each point of application of loading and helps us to 
calculate the angular distortion. For Flat floors a distor-
tion angular limit = 1/1000 is recommended. Lambe 
and Whitman (1989, pp. 210-242) show an example.

In the following example, the slab adjacent and the mass of 
soil in the area of influence are considered. To determine 
this mass of soil, the attenuation of stress with its depth 
must be calculated. This can be done with Equation (14) 
and a big grid. The stress distribution can also be calculated 
following Perloff (1975) suggestion. The examples showed 

P
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by Perloff (1975) indicate that the use of an equivalent cir-
cular area is an excellent approximation. Perloff (1975) 
shows it at the centerline: the stress due to the loaded area 
is maximum immediately below the loaded area, and at-
tenuates to less than 10 percent of the initial vertical stress 
at a depth equal to twice the width of the loaded area or 
effective diameter of contact area.

Example to calculate bending moments

Example 1: Calculate the bending moment for designing an 
industrial floor with the following values:

Characteristics of the materials, site: 
Concrete: 
Concrete modulus of elasticity: Ec = 21 000 MPa 
(3000 kpsi = 21 x 106 kN/m2) 
Modulus of rupture: MR = 4.2 MPa (600 psi). 
Concrete Poisson’s ratio, ν = 0.24 (See Mindess, young and 
Darwin, 2003). 
Concrete, bulk unit weight: 24 kN/m3 (149.8 lb/ft3)

Soil: 
Subgrade soil modulus of elasticity, E 
Soil: = 25 100  kN/ m2 (3570 psi) 
Soil, bulk unit weight: 18 kN/m3 (112.4 lb/ft3) 
Soil Poisson’s ratio, ν = 0.50 
Safety Factor: 2.0 
Slab width: 3.66 m = 12 ft. 
Depth of analysis to consider (area of influence): 
0.9 m = 2.95 ft. 
Wide of analysis of slab adjacent:  
Consider 0.90 m = 2.95 ft.

Forklift truck specifications: 
Total axle load: 13 000 kg (28.6 kips = 127.4 kN), with 
equal wheel axle kpsi, then in Figure 2, P1 = P2 =  6500 kg 
(14.3 Kips = 63.7 kN for calculates,  
I have taken 65 kN). 
Post Load in Slab Adjacent: 70.0 kN = 15.75 kpsi. 
Wheel Spacing (WS): 1.83 m (72 in). 
Tire Pressure: 65 kg/cm2 (930 psi). The wheel tread is a 
very hard material. 
When the tire pressure is low (example: 
5.6 kg/ cm2 = 80 psi), building the grid of finite element 
including the tire is recommended.

Slab width where the forklift truck goes was determina-
te by (Figures 2): 
A = 1.76 m (69.29 in) 
B = 0.07 m (2.76 in) 
C = 3.59 m (141.34 in) 
L = 3.66 m (144.09 in)

In Figure 4: 
Wide joint: 0.01 m (0.39 in) 
In Slab adjacent: A = 0.05 m (1.97 in) In this point there is 
a post load. 
Slab thickness: 0.193 m = 7.6 in.

We will lay a grid as shown on Figure 4 and 5 with trian-
gular elements on slab (transversal section). The boundary 
conditions can be seen: the line of soil where vertical dis-

placements are zero (νi, νj, νk = 0 in the Equation (8) on the 
bottom line, Figure 4 -//////).

Figure 4. Grid of transversal section of slab with triangular elements 
(1 in = 0.0254 m)

The Grid has 4974 elements and 2647 nodes. 

To solve the Equation (14) we have created a software. This 
software was created taking as a guide the software PEFICA 
(Linero, 2010). Examples of computer output are shown in 
Figures 6, 7 and 8.

Figure 5. Detail about the materials on grid. Detail of joint into slab to 
design and slab adjacent. Details on elements 1 and 2 – Grid with nodes.

The following moments were found by calculating the ben-
ding moment applied according to PCA and WRI methodo-
logies (their design charts are given in Ringo and Anderson, 
1996 and ACI 360, 2010. These documents present infor-
mation on the design of slabs on grade with methods attri-
buted to the PCA and WRI and examples that appear in the 
appendix. The design chart of PCA is shown in Gunalan, 
1986, as well):

M PCA method = 2900 lb - in / in = 1.32 T– m / m = 12.9 kN – m / m 

M WRI method = 2850 lb - in / in =1.3 T– m / m = 12.7 kN – m / m 

The following is obtained if the applied bending moment 
is calculated according to Camero Finite Element Method 
(Figure 4, 5, 6, 7 and 8): 

M CAMERO Finite Element method = 4718 lb - in / in = 2.14 T– m / m = 
20.973 kN – m / m.

For this example it was found that the real bending moment 
applied to the slab was 65 % greater than the one calcula-
ted by the PCA and/or WRI methods. 
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Figure 9. Illustrates the bending moment applied on the 
slab calculated with Camero Finite Element Method (on 
line “OS” in Figure 5). 

More accurate values for bending moment are obtained 
using grids with a larger number of linear triangular ele-
ments to obtain the converging value. The maximum ben-
ding moments for the various grids are summarized in Ta-
ble 1. If we are interested in quantities, then we need a fine 
grid of linear triangular elements or other types like several 
quadratic elements. 

Table 1. Computer Solutions with Software Camero Finete Element 
Method.

Grid (number  
of elements)

Maximum Bending 
Moment  

[Pounds-in /in]

Maximum Bending 
Moment  

(kN-m/m).

1478 -3262 -14,5

1716 -3937 -17,5

2901 -4432 -19,7

4011 -4612 -20,5

4974 -4718 -20,97

**** Software camero finite element method  
with two dimensional elements *****

Xyz() (2647x2) nodal coordinates (only are shown some nodes).

X (m) y (m)

F2125 3,6293 0,7070

F2137 3,6448 0,7070

F2138 3,6411 0,7266

Element data (only are shown some elements)

Ele ni nj nk

2 2125 2137 2138

Concentrated forces

kN kN

Node fx fy

1010 0,000 -65,000

2128 0,000 -65,000

2225 0,000 -70,000

Surface stress and body forces on elements  
(only are shown some elements)

kN/m3 kN/m3

Elem bx by

1 0,00 -24,00

Figure 6. Results for example 1.

**** Software camero finite element method  
with two dimensional elements *****

Valor modulo elasticidad elemento2 (1x1)
21.000.000,00

Valor relacion de poisson2 (1x1)
0,24

Valor espesor elemento2 (1x1)
1

Matriz de rigidez triangular lineal de elasticidad, elemento2 (6x6)

Element stiffness matrix for element 2 (6x6)

C1 C2 C3 C4 C5 C6

F1 14251169,07 1633503,46 -13457993,65 1040520,31 -793175,42 -2674023,77

F2 1633503,46 5837753,67 2600367,51 -3750449,94 -4233870,97 -2087303,73

F3 -13457993,65 2600367,51 16019064,14 -5274391,28 -2561070,49 2674023,77

C1 C2 C3 C4 C5 C6

F4 1040520,31 -3750449,94 -5274391,28 10490109,13 4233870,97 -6739659,19

F5 -793175,42 -4233870,97 -2561070,49 4233870,97 3354245,91 0,00

F6 -2674023,77 -2087303,73 2674023,77 -6739659,19 0,00 8826962,93

Dxy() desplazamiento ordenados de cada nudo (2647x2)
Dxy() nodal displacment values, m using Equation (14) for all structure (2647x2)  

(only are shown some nodes)

C1 C2

F1 -3,1233E-04 0,0000E+00

F2125 1,2652E-04 -3,8146E-03

F2137 1,2666E-04 -3,8552E-03

F2138 1,7739E-04 -3,8455E-03

F2139 1,6682E-03 -2,0268E-04

F2149 1,2680E-04 -3,8951E-03

Figure 7. Results for example 1.

**** Software camero finite element method  
with two dimensional elements *****

 List of nodes on superior line “os”, on the slab (110x1)  
(only are shown some nodes)

C1

F1 2183

F2 2165

F3 2128

F4 2113

F5 2096

F6 2055

F7 2040

F8 2025

F9 2010

F10 1994

σxx (kN/m2), stress average in nodes 
of superior 

Nodal  
coordinates. Bending moment 

applied on the 
slab, kN-mline “os” on the slab, σxx for node 

(110x1) (only are shown some nodes) 

Nodes  
on superior line  

of slab. (m)

C1

F1 -3,3579 3,66 0,0208

F2 -30,9051 3,63 0,1919

F3 -433,9163 3,59 2,6938

F4 -82,1369 3,57 0,5099

F5 341,3994 3,55 -2,1195

F6 925,9585 3,49 -5,7485

F7 1048,9263 3,47 -6,5119

F8 1197,0083 3,45 -7,4312

F9 1344,6360 3,43 -8,3477

F10 1456,2993 3,41 -9,0409

F11 1877,8004 3,35 -11,6577

F12 1959,2321 3,33 -12,1632

F13 2108,6861 3,31 -13,0911

Figure 8. Results for example 1.
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Figure 9. Bending moment caused by the lift truck, Example 1 
(kN m/m = 224.96 Pounds –in/in).

Results discussion
If the maximum stresses applied to the slab were calcu-
lated with PCA and WRI methods, the thickness of slab 
(applying Equation (21)) would be t = 7.6 in (19.3 cm.), 
M =  2900 lb-in/in (12.9 kN-m / m) and safety factor of 2.0, 
and with Equation (18):

σmaximum applied tensile stress = 300 psi = 2.1 MPa. = 21 kg/cm2

If the stress applied to the slab (pavement) is calculated  
according to the applied bending moment found with 
CAMERO Finite Element Method, the thickness of the plain 
concrete slab (with safety factor of 2.0, and with Equation 
21), should be, t = 9.71 in (24.7 cm).

It can be found that with t = 7.6 in (19.3 cm) and 
M = 4718  lb-in/in (20.97 kN-m/m):

σmaximum applied tensile stress = 490 psi (lb/in2) = 3.4 MPa. = 34.5 kg/
cm2 (This value is obtained with the software; see Figure 9).

If the σapplied/MR relationship is calculated, then the fo-
llowing is found:

 

σapplied
MR

= =
490

600
0 81.

Plain concrete slabs will generally sustain an infinite num-
ber of load repetitions (infinite amount of forklift truck tra-
ffic), as long as extreme fiber stress does not exceed 50 % 
of static modulus of rupture (see Camero, 2007, pp. 93-100 
and Yoder and Witczak, 1975, p. 603).

Minor’s charts (published in Yoder et al., 1975, p. 566, 603) 
show that there are 90 allowable repetitions of loaded axles 
of 13000 kg (127.4 kN), when σapplied/MR = 0.81. PCA and 
WRI safety factor for this example is 1.2 and not 2.0 as 
we believed according to PCA and WRI design charts. MA 
Minor found that if a load produces bending stress greater 
than half concrete rupture modulus, then such load indu-
ces material fatigue.

With the bending moment found with Camero Finite Ele-
ment Method and safety factor of 2.0 we must select the 
Slab thickness. A plain concrete slabs design with Came-
ro Finite Element Method will generally sustain an infini-
te number of load repetitions (infinite amount of forklift 
truck traffic), because the extreme fiber stress does not ex-
ceed 50 % of static modulus of rupture (Yoder et al., 1975, 

p. 602). In structural terms, the slab designed or pavement 
designed with Camero Finite Element Method has a lifelong 
useful life. The durability of concrete is very important too. 
If properly designed for the environment to which it will be 
exposed, and if carefully produced with good quality con-
trol, concrete is capable of maintenance free performance 
for decades without the need of protective coatings. The en-
gineer can find an example of this in Mindess et al., 2003.

Conclusion 
A new method to design slabs on grade for industrial floors 
is presented in this paper. The Camero Finite Element Me-
thod is the new solution to design slabs on grade and pa-
vements.

The Camero Finite Element Method shows that the bending 
moment applied by the forklift truck on the slab is bigger 
than those considered by the simplified PCA and WRI de-
sign methods. This article explains how the traditional way 
of designing industrial floors critically reduces the lifespan 
of the floor. 

Industrial floor design using the Camero Finite Element Me-
thod can sustain an infinite amount of traffic; while floors 
designed by traditional methods will only sustain a limited 
amount of traffic (limited number of load repetitions).

Industrial floors using the PCA and WRI methods can only 
support a smaller amount of traffic due to concrete fatigue. 
Even though 2.0 was used as a safety factor (calculated in 
relation to the modulus of rupture), this happens when the 
forklift truck’s centroid loaded axle is eccentric with the 
slab’s centroid. When the preceding occurs, the bending 
moment applied by the forklift truck loads is greater than 
that proposed by the PCA and WRI methods. The designed 
slabs (with PCA and WRI methods) allow a smaller amount 
of load repetitions to fail by fatigue. Ringo and Anderson, 
1996, p. 29 quote: “PCA charts give thicknesses based on 
loading at the interior of the floor slab. The same is true for 
WRI charts”. In other words, if the axle load from a moving 
vehicle travels along the floor and eventually cross a joint, 
the CAMERO FINITE ELEMENT METHOD is the best and 
recommended method to be used. 
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