
Revista Investigaciones Aplicadas | ISSN 2011-0413 | Medellín - Colombia 

Vol. 9, No.1 (2015) Enero – Junio | PP. 1-6 

http://dx.doi.org/10.18566/ria.v09n01.a01  

 

 

 

THE SPATIAL COHERENCE WAVELETS AND SECOND-ORDER CORRELATION 
 

Juan González*†, Román Castañeda ** 


* Fundación Universidad Autónoma de Colombia, Calle 13 # 4-31, Bogotá. 

**Universidad Nacional de Colombia, Sede Medellín, Calle 59ª # 63-20, 

Medellín. 

 
Recibido 27 Noviembre 2015; aceptado 15 Abril 2015 

Disponible en línea: 27 Octubre 2015 





Abstract: A description of the second-order spatial coherence based on the theory 

of spatial coherence wavelets is presented. Such description is performed in the 

classical context of optical fields and chaotic sources. The concepts of radiant and 

virtual point sources are introduced. This theory suggests that the second-order 

spatial coherence state of light can be described in terms of three layers of point 

sources; a strategy that can increase the performance of numerical algorithms. The 

modulation in coherence found is similar to that measured in Hanbury-Brown and 

Twiss effect for binary stars. 
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LAS ONDITAS DE COHERENCIA ESPACIAL Y CORRELACIÓN DE SEGUNDO 

ORDEN 
 

Resumen: Se presenta una descripción de la coherencia espacial de segundo orden 

basada en la teoría de onditas de coherencia espacial. Tal descripción es realizada 

en el contexto de campos ópticos y fuentes caóticas. Se introducen los conceptos 

de fuentes puntuales radiantes y virtuales. Esta teoría sugiere que el estado de 

coherencia espacial de segundo orden puede ser descrito en términos de tres capas 

de fuentes puntuales; una estrategia que puede mejorar el rendimiento de los 

algoritmos numéricos. La modulación en la coherencia encontrada es similar a la 

medida en el efecto Hanbury-Brown y Twiss para estrellas binarias.  
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1. INTRODUCTION 

The theory of spatial coherence wavelets provides 

a phase-space representation for classical optical 

phenomena within the scope of the first-order 

coherence (Castañeda, 2010a). In this theory, an 

optical field in any state of spatial coherence can 

be described by the emission of two types of 

point sources distributed in two different layers of 

space (Castañeda, 2010b).  

The first type is called radiant point sources and 

they are located at first layer. These are 

responsible for the propagation of the radiant 

energy of the field, a definite positive quantity, 

independent of its spatial coherence state and it is 

recordable by the squared-modulus detectors.  

The second type of sources is named virtual point 

sources and they are placed at second layer. Their 

energies can take positive and negative values 

and they are not recorded directly by detectors, 

but their energies are crucial to the description of 

the diffraction and interference because they 

modulate the radiant energy to be added to it; 

increasing and decreasing local value without 

altering the value of the total energy of the field. 

Such energies depend on its spatial coherence 

state. A virtual point source is turned at the 

midpoint of any pairs of radiant point sources, not 

necessarily consecutive, within the structured 

spatial coherence support centered at that position 

(Castañeda, 2010b), which implies that the set of 

radiant sources must be discrete. Because of this 

fact, these virtual sources are called first-order 

virtual sources. This modeling can completely 

describe the first-order spatial coherence 

properties of scalar wave fields. 

Now, Young’s experiments with first-order 

virtual sources are analyzed. The interference 

between contributions from these sources is a 

result of the state of second-order spatial 

coherence of the field. It leads to correlation 

between the spatial coherence wavelets, which 

also involves the correlation of the cross-spectral 

densities. Such result is compared with that 

obtained in the Hanbury-Brown and Twiss effect 

to measure the angular separation of binary stars 

systems. 

At the present, the study in the spatial domain of 

this effect is vital to construction of modern 

intensities interferometers with Cherenkov 

telescopes (Le Bohec and Holder, 2006). 

 

2. SPATIAL COHERENCE WAVELET 

 

Spatial coherence wavelet is defined as the basic 

vehicle for simultaneous transport of information 

about the energy (power spectrum) and the state 

of the first-order spatial coherence of optical field 

(correlation between the complex amplitudes of 

the field at two different points of the space) from 

the aperture plane (AP) to the observation plane 

(OP) (Castañeda, 2010a). The planes are 

separated by a distance z. Center-difference 

coordinates in the AP  DA ξξ ,  and in the OP 

 DA rr ,  
are used in order to denote pairs of points 

at the positions  2,2 DADA ξξξξ   and 

 2,2 DADA rrrr  , like is illustrated in Fig. 1. 

These points are simplified as  2DA ξξ   
and 

 2DA rr  , respectively. 

 

Fig. 1. Illustration of the center-difference     

coordinates at the aperture plane  DA ξξ ,   and 

the observation plane.  DA rr , . 

 

The radiant and virtual point sources are located 

at the AP, each of these in the corresponding 

layer. Dξ  is the separation vector between radiant 

point sources. The wavelet is denoted as: 

 

    ,exp,;
2 

















 DAAAA

D

A
z

k
i rξrξξ

r
r SW  (1) 

 

with wave-number 2k , wave-length  and 

 AA rξ ,S  
the marginal power spectrum. It is a 
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Wigner distribution function with energy units, 

defined as (Castañeda, 2010a): 
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The cross-spectral density W provides a measure 

of statistical similarity between light fluctuations 

at two points of space-time, which is a measure of 

the correlation between the complex amplitudes 

on the component frequency spectrum   of light 

vibrations at these points (Mandel and Wolf, 

1995). The superposition of spatial coherence 

wavelets produces the cross-spectral density of 

the field in the OP: 
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Interference terms between wavelets are not 

included in (3). It generates a moiré, which is 

called spatial coherence moiré (Castañeda, 

2010a). 

3. CORRELATION BETWEEN SPATIAL 

COHERENCE WAVELETS 

The following equation determines the correlation 

between the cross-spectral densities of the field at 

the OP referred to the structured spatial 

coherence supports centered in the points Ar  and 

Ar , respectively: 

 

,
2

'*
22

,
2








 

















 
 D

A
D

A
D

A
D

A WWG
r

r
r

r
r

r
r

r   (4) 

 

with  denoting ensemble average. Thus (4) 

and (3) load to the correlation between spatial 

coherence wavelet: 
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Thereby (1), (2) and (5) point out that the second-

order spatial coherence state of the field at the 

OP, represented by

 

   22 DADA WW rrrr   , results 

from contributions of the second-order spatial 

coherence state of the field at the AP, given by 

   22 DADA WW ξξξξ   , which are propagated 

by:  
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such propagation is depicted in Fig. 2. Using (6), 

the new second-order spatial coherence wavelets 

that propagate the second-order spatial coherence 

state of the field can be expressed as: 

 
Fig. 2.  The cones represent the propagation of           

 2,2 DADAG rrrr   
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With (7) in (5), the next equation is obtained:  
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The measurement of second-order correlation 

involves the combination in a correlator of the 

power spectrum values recorded simultaneously 

by two squared-modulus detectors placed at two 

different points of the OP. The correlator is an 

electronic device that receives the signals from 

both detectors and multiplies them (Hanbury- 

Brown and Twiss R, 1956). Such measuring 

strategy imposes the arrangement of the detectors 

are in the same structured support, i.e., 
AA rr   and 

DD rr  , so that (8) becomes: 
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4. SECOND-ORDER YOUNG’S 

EXPERIMENT 

 

The simplest configuration to consider second-

order correlation of the field is one that involves a 

pair of virtual point sources at the second layer, 

each of them turned on by a specific pair of 

radiant sources on the first layer. This 

configuration contains four co-linear radiant point 

sources on one-dimensional mask. Such situation 

is illustrated in Fig. 3. 

 

 
 

Fig. 3. Diagram of layers at AP for second-order 

Young’s experiment with four co-linear 

radiant point sources. 

 
The propagation occurs in Fraunhofer domain and 

degree of first-order spatial coherence 

 2DA ξξ   is real-valued function.  

 

The correlated pairs are constituted by the first 

and the second sources; and the third and fourth 

sources, respectively. Two squared-modulus 

detectors placed at two positions with separation 

vector xrD   
and the coordinate origin 0Ar at 

the OP. The first-order virtual sources of the 

second layer turn on a second-order virtual source 

at the third layer. 

 

The first and second layers of AP are involved 

with radiant energy and modulated energy, 

respectively. The third layer is associated with 

modulated coherence. The fourth layer 

represented in Fig. 3 is the unified structure; this 

one contains the three types of sources.  

5. RESULTS 

 

The dimensionless functions     DD CC ξξ   11            
and     DD CC ξξ   '1'1  are introduced in 

order to separate the contributions of radiant and 

virtual sources in the equation (9). Since 

       2222 DADADADA SSW rrrrrrrr   , 

with S  the power spectrum at the points 

 2DA rr   and  2DA rr   (Mandel and Wolf, 

1995), (9)  can be expressed like the sum of the 

terms: 
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Grad is the square of the power spectrum values 

recorded individually by the detectors; it is the 

contribution by the radiant point sources. Grad 

does not depend on the coordinates of OP. The 

two first terms of Gvir are the contributions due to 

the first-order virtual sources while the last term 

is the contribution due to the second-order virtual 

source.  

 

A pair of radiant point sources can be associated 

to the extremes of a star. Fig. 4 shows schematics 
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of normalized Gvir when the pairs of radiant point 

sources (stars) are: a) correlated system of 

identical elements (same size and bright), b) 

correlated system with one element twice brighter 

than the other. 

 

 

 
 

Fig. 4. Schematics of Gvir vs. xD obtained of two 

different instances of second-order Young’s 

experiments. 

6. HANBURY-BROWN AND TWISS 

EFFECT 

The first measure of the degree of second-order 

spatial coherence was performed by Hanbury- 

Brown and Twiss (HB&T) with the intensity 

interferometer. This type of interferometer 

measured the correlation of fluctuations of the 

intensities recorded at two points (telescopes) at 

the same time. They wanted to measure the 

angular separation of binary stars systems which 

could not be solved by other methods. HB&T 

reported the following expression (Hanbury-

Brown et al., 1967): 
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with 2  as normalized degree of second-order 

spatial coherence, where d is the distance 

between the telescopes  (called baseline), I1 and I2 

are the recorded intensities, 
1  and 

2  are the 

degrees of first-order spatial coherence for each 

star,   is the  angular separation of binary stars 

system,   is the chosen component of the light 

emitted by the stars and   is the angle between 

the line joining of stars and the baseline. The 

patterns given by (11) are similar to Fig. 4 (Le 

Bohec and Holder, 2006). 

 

7. CONCLUSIONS 

 

The second-order spatial coherence state of wave-

fields can be analyzed and described in the 

framework of the classical wave picture, through 

the second-order spatial coherence wavelets. This 

description leads to correlation of power 

spectrums on the observation plane, which is 

product of Young’s experiments with first-order 

virtual sources at the second layer. Second-order 

virtual point sources at a third layer are turned on 

because of correlations by pairs of the first-order 

virtual point sources. Such sources are 

responsible of modulation on the coherence. 

 

It suggests that the second-order spatial coherence 

state of light can be described in terms of three 

layers of point sources; a strategy that can 

increase the performance of numerical 

algorithms. Such modeling leads to a degree of 

second-order spatial coherence which is closely 

related to the result obtained by HB&T for binary 

stars.  
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