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Abstract

This paper studies the auto-tuning of parallel metaheuristics and hyperheuristics. The mod-
elling of the shared-memory scheme is considered for both types of algorithms, and a first study
of message-passing metaheuristic schemes is introduced. A theoretical model of the execution
time of a parametrized metaheuristic scheme is empirically adapted for a particular metaheuristic
through experimentation. The parallelization of the shared-memory scheme is achieved through
the independent parallelization of the basic functions in the metaheuristic scheme. The model
is used to decide at running time the number of threads to obtain a reduced execution time.
The number of threads is different for the different basic functions in the scheme, and de-
pends on the problem to be solved, the metaheuristic or hyperheuristic scheme, the implemen-
tation of the basic functions and the computational system where the problem is solved. The
auto-tuning methodology for shared-memory parametrized metaheuristic schemes can in turn
be applied to shared-memory hyperheuristics developed on top of them. In the case of the
message-passing scheme, an island model implemented with the master-slave scheme is used,
and new metaheuristic-parallelism parameters representing the migration frequency, the size of
the migration and the number of processes are introduced. The applicability of the proposal is
shown with a minimization of electricity consumption in exploitation of wells problem and with
the problem of obtaining satisfactory metaheuristics for that problem. Experimental results with
these two problems show that satisfactory execution times can be achieved in metaheuristics
with auto-tuning techniques based on theoretical-empirical models of the execution time.

Keywords: parametrized metaheuristic schemes; parallel metaheuristics; parallel
hyperheuristics; shared-memory; message-passing; auto-tuning

Introduction

A unified parametrized scheme for metaheuristics facilitates the development of metaheuristics and
their application [1]. The scheme has been applied successfully in different fields, to obtain satisfac-
tory Simultaneous Equation Models from a set of values of the variables, for a tasks-to-processes
assignation problem with independent tasks and memory constraints, for the p-hub problem [2], and
for the optimization of power consumption in the operation of wells [3].

Although the metaheuristic scheme has proved efficient, its use for solving large problem instances
causes significant increases in the execution time. Based on the increased possibilities offered by
modern hardware architectures, the application of high performance computing strategies to meta-
heuristics is an interesting option for reducing the execution time. There is a large number of parallel
strategies that can be applied to different metaheuristics in parallel environments of different charac-
teristics [4, 5, 6, 7].

In our work, the parallelization of different metaheuristics is tackled through a unified parametrized
metaheuristic scheme, and so the different metaheuristics that fit the scheme are parallelized in a
unified way. Since NUMA systems are considered, we develop a parallelization based on the shared-
memory paradigm. As our long-term goal is to model the metaheuristic scheme in heterogeneous
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clusters, a first study of a message-passing parametrized metaheuristic scheme is presented. In this
case, the parametrized scheme is expanded with new metaheuristic-parallelism parameters, which
control the intensity and frequency of information exchange between processes. The island model
is used for the message-passing scheme [8, 9, 10], with an implementation with the master-slave
paradigm [11, 12].

Parallelizing the scheme for shared-memory reduces the execution time, but having a parallel routine
does not ensure it will be used correctly, and the execution time of the parallel routine may be far
from the optimum (or even larger than the sequential time) if the number of threads used in the
application of the routine is not appropriate. The same ideas are taken into account for message-
passing metaheuristics, considering for them the number of processes as the main parallel parameter
to be optimized.

The auto-tuning problem of sequential and parallel routines has been studied in different fields
[13, 14, 15, 16], and this paper considers the application of auto-tuning methodologies to parallel
parametrized metaheuristics so that the auto-tuning techniques are valid for the different metaheuris-
tics fitting the scheme. These include some basic metaheuristics and hybridations. In [3] we studied
the modelling of the basic functions of the parametrized shared-memory scheme. To our knowledge
there were no previous papers in the application of auto-tuning techniques to parallel metaheuristics.
The techniques used there are now applied to the whole parametrized shared-memory metaheuristic
scheme, and they are extended for the application to hyperheuristics which use the same metaheuristic
scheme for satisfactory selection of metaheuristics or combinations/hybridations by obtaining appro-
priate values of the metaheuristic parameters in the unified scheme. To tune a metaheuristic (or
a hyperheuristic) for a particular problem it is necessary to conduct a large number of experiments,
which means a large execution time, and a scheme with auto-tuning would be very useful for reducing
the experimentation time with a good selection of the number of threads (or processes) to use in the
parallel scheme.

The rest of the paper is organized as follows. The next section summarizes the ideas of the common
parallel parametrized scheme for metaheuristics, which can in turn be used for the development of
hyperheuristics. After describing the metaheuristic scheme, the modelling of the execution time of
the different basic and combined/hybridised metaheuriscs in the scheme is analysed theoretically and
experimentally. The following section describes the problem of minimization of electricity consumption
in exploitation of wells, which is used as a test case to validate the auto-tuning methodology. The
penultimate section shows the experimental results obtained with the optimization problem and with
a hyperheuristic for obtaining satisfactory metaheuristics. The last section concludes the paper and
offers some future research lines.

Parallel parametrized schemes for metaheuristics and hyperheuristics
The ideas of a unified, parametrized metaheuristic scheme are presented in [2], and those of the
shared-memory version are described in [1]. The general aspects are summarized here.

The concept of representing different metaheuristics under a common scheme is not new. Vaessens
et al. [17] and Raidl [18] already use this approach and present algorithmic schemes such as that shown
in Algorithm 1. The scheme considers a set of basic functions (Initialize, EndCondition, Select,
Combine, Improve, and Include) whose instantiation determines the particular metaheuristic that is
being implemented. The arguments S, SS, SS1, and SS2 correspond to the sets of solutions that the
method generates and manipulates in successive iterations. The functions can be used in one method
or another, and different metaheuristics can be instantiated with the same pattern. The scheme is also
valid as a generic mechanism in metaheuristic hybridization when, for example, the basic functions
are composed of other metaheuristics or the same element of a different metaheuristic.
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Algorithm 1 General scheme for metaheuristics
Initialize(S)
while (not EndCondition(S)) do
SS=Select(S)
SS1=Combine (SS)
SS2=Improve (SS1)
S=Include(SS2)
end while

Algorithm 2 parametrized metaheuristic scheme

Initialize(S,ParamIni)

while ( not EndCondition(S,ParamEnd)) do
SS=Select (S,ParamSel)
SS1=Combine (SS,ParamCom)
SS2=Improve (SS1,ParamImp)
S=Include(SS2,ParamInc)

end while

A parametrized metaheuristic scheme

The first observation to be made is that the basic functions presented in Algorithm 1 could receive
additional parameters, so becoming a unified parametrized scheme for metaheuristics (Algorithm 2)
that facilitates the development of metaheuristics and their application [2]. However, selecting the
appropriate values of the metaheuristic parameters (ParamX in the algorithm) to apply a satisfactory
metaheuristic to a particular problem can be difficult and is computationally demanding. The selection
of these values can be made through a hyperheuristic method also developed with the parametrized
metaheuristic scheme. For clarity, hereinafter we refer to the metaheuristic scheme directly applied to
an optimization problem as MS, and HMS refers to a hyperheuristic based on a metaheuristic scheme
for selecting the appropriate values of metaheuristic parameters.

We comment on each of the functions of the parametrized scheme, their variants and the common
parameters for the basic metaheuristics considered: Greedy Randomized Adaptive Search Procedure
(GRASP), Scatter Search (SS), Tabu Search (TS) and Genetic Algorithms (GA). We also consider
the possibility of reusing basic functions:

e Initialize: Valid random elements are generated to form an initial set with INEIni ele-
ments. A smaller subset with F'IN EIni elements is selected for the iterations in Algorithm 2. In
some metaheuristics (for example, SS and GRASP) some of the initial elements are improved
by using, for example, a local search or a greedy approach. A parameter PEIIni indicates the
percentage of elements to be improved, and the improvement may be more or less intense,
which is represented by an intensification parameter, [T EIni. The parameter ST M Ini is used
for the extension of Tabu short-term memory in the initialization improvement.

e EndCondition: The end condition is common to the different metaheuristics; it consists of
a maximum number of iterations (M NIEnd) or a maximum number of iterations without
improving the best solution (NIREnd).

e Select: The elements can be grouped into two sets, the best and worst according to the
objective function. The number of best elements will be NBESel and that of worst elements
NW ESel, and normally NBESel + NW ESel = FNEIni.
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e Combine: The total number of elements to obtain by combination s
2(NBBCom+ NBWCom+ NWWCom), where the three parameters represent the number
of combinations of the best with the best elements, the number of the best with the worst and
the number of the worst with the worst.

e Improve: As in the improvement in the initialization, PEIImp, IIEImp and SMIImp
represent the percentage of elements to be improved, the intensification of the improvement
and the short-term memory in the improvement of the elements generated in the combination,
and PEDImp, IDEImp and SM DImp represent the corresponding values in a diversification,
which is equivalent to the mutation in the GA.

e Include: The NBEInc best elements are maintained in the reference set, and the other
FNEIni — NBEInc to be included are selected from the remaining elements. LT M Inc is
a Tabu parameter (long-term memory) that allows the tracking of individuals most frequently
explored.

Thus, we have a set of 20 parameters (their meaning is summarized in table 1) with which it is
possible to experiment to hybridize, mix and adapt the metaheuristics to the target problem. If other
basic metaheuristics are considered, the number of metaheuristic parameters and their meaning would
change. We are not interested in enumerating the possible parameters, but in the methodology for
auto-tuning the shared-memory metaheuristic scheme.

Table 1 Metaheuristic parameters in the parametrized unified scheme of metaheuristics.

Initialize INEIni Initial Number of Elements
FNEInt Final Number of Elements after initialization
PEIIni Percentage of Elements to Improve in the initialization
IIEIni Intensification in the Improvement of initial Elements
STMIni Short-Term tabu Memory in the improvement of initial elements
EndCondition MNIEnd Maximum Number of Iterations

NIREnd maximun Number of Iterations with Repetition of the best solution

Select NBESel Number of Best Elements selected for combination
NW ESel Number of Worst Elements selected for combination
Combine NBBCom Number of Best-Best elements combinations
NBWCom Number of Best-Worst elements combinations
NWWCom Number of Worst-Worst elements combinations
Improve PEIImp Percentage of Elements to Improve after combination
IIEImp Intensification in the Improvement of Elements after combination
SMIImp Short-term tabu Memory in the Improvement after combination
PEDImp Percentage of Elements to Diversify
IDEImp Intensification in the Diversification of Elements
SMDImp Short-term tabu Memory in the Diversification
Include NBEInc Number of Best Elements to include in the reference set
LTMInc Long-Term tabu Memory between iterations

Classification of metaheuristic combinations

Given the functional structure of the parametrized scheme and the pure metaheuristics that will
be combined, the classification of combinations of metaheuristics considered using the taxonomy
and nomenclature established in [6] is shown in table 2. The meaning of the design structures is
HRH(A; + As), which implies a high-level hybridization between the metaheuristics A; and A,
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which are executed in sequence without altering their internal structure, and LRH (A;(A3)) means
Ay metaheuristic embedded within A; with a low-level hybridization between them. In our approach
we consider a different type of hybridation, LRH (A1, A3), which represents a low-level inner join of
metaheuristics A; and As. The difference between the two types of low-level hybridization is that in
the second type, the metaheuristics mix their structures at the same level, while in the first, the first
metaheuristic is supplemented with the structure of the second one when executed.

Table 2 Classification of the different combinations/hybridizations of metaheuristics.

Metaheuristic Design

GR+TS LRH(GR(TS))

GR+GA HRH(GR+GA)

GR+SS HRH(GR+SS)

GA+SS LRH(GA,SS)

GA+TS HRH(LRH(GA(TS))+TS)

SS+TS HRH(LRH(SS(TS))+TS)
GR+GA+SS HRH(GR+LRH(GA,SS))
GR+GA+TS HRH(LRH(GR(TS))+LRH(GA(TS))+TS)
GA+SS+TS HRH(LRH(LRH(GA,SS)(TS))+TS)
GR+SS+TS HRH(LRH(GR(TS))+LRH(SS(TS))+TS)

GR+GA+SS+TS  HRH(LRH(GR(TS))+LRH(LRH(GA,SS)(TS))+TS)

To clarify how the nomenclature is applied for the basic metaheuristics and the unified scheme
considered, we comment on the meaning of the last row in table 2, HRH(LRH(GR(TS)) +
LRH(LRH(GA,SS)(TS)) + T'S). GRASP s initially applied with TS with short-term memory.
After that, a combination of GA and SS is applied, with improvement of each element obtained by di-
versification and with the use of the short-term memory of TS. Finally, long-term memory constraints
for frequent elements are considered by TS. All combinations of metaheuristics considered include
various pure metaheuristics (heterogeneity), they search the entire space of solutions (are global) and
all solve the same optimization problem (are general). In the previous example, the complete rep-
resentation of the metaheuristic would be HRH(LRH(GR(TS)) + LRH(LRH(GA, SS)(TS)) +
TS)(het, glo, gen). For simplicity these terms are omitted in all the combinations.

Hyperheuristics

Hyperheuristics aim to automatically select, combine, generate or adapt several heuristics to effi-
ciently solve computational search problems. The fundamental difference between metaheuristics and
hyperheuristics is that most implementations of metaheuristics search within a search space of prob-
lem solutions, whereas hyperheuristics always search within a search space of heuristics. Thus, when
using hyperheuristics, our objective is to find a method with the capacity to take good decisions in
the path to finding a good metaheuristic to solve an optimization problem.

Hyperheuristics allow rapid portability to other application domains. The move to a new domain
implies the implementation of low-level heuristics. If these low-level heuristics keep standard inter-
faces, it is not necessary to modify the hyperheuristic [19]. Therefore, our proposal can be used for
hyperheuristics development, which can work by selecting appropriate values of the parameters in the
parametrized metaheuristic scheme.

In the hyperheuristic, using the notation for evolutionary algorithms, an individual or element is rep-
resented by an integer vector Metaheur Param that encodes the set of parameters that characterizes
a metaheuristic using the scheme in Algorithm 2. The set of individuals constitutes the reference set,
which means a set of metaheuristics, with each metaheuristic the combination/hybridation of basic
metaheuristics given by the values in Metaheur Param.
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Algorithm 3 parametrized shared-memory metaheuristic scheme

Initialize(S,ParamIni,ThreadsIni)

while ( not EndCondition(S,ParamEnd)) do
SS=Select (S,ParamSel)
SS1=Combine(SS,ParamCom, ThreadsCom)
SS2=Improve(SS1,ParamImp, ThreadsImp)
S=Include(SS2,ParamInc,ThreadsInc)

end while

The fitness value in the hyperheuristic for an element Metaheur Param is that obtained when
the metaheuristic with the parameters in Metaheur Param is applied. The objective is to minimize
the fitness function and so obtain the combination of the metaheuristic parameters (the prefered
hibridation of basic metaheuristics) which gives the best fitness function for the problem in question.

When executing the hyperheuristic, a lot of metaheuristics are applied to different inputs, leading
to a very large execution time, and parallelism is necessary. Parallel metaheuristics can be used to
reduce the execution time, but it is also possible, and preferable, to use parallelism at a higher level,
for which the parameterised shared-memory metaheuristic scheme is used for the hyperheuristic, and
the same auto-tuning techniques are valid for the metaheuristics and the hyperheuristic.

The shared-memory scheme

In our approach, the parametrized scheme in Algorithm 2 becomes a parametrized shared-memory
scheme just by independently parallelizing each basic function in the scheme (Algorithm 3) with new
parallelism parameters (ThreadsX in Algorithm 3) indicating the number of threads to use in each
part of the algorithm.

A parallel parametrized scheme is used here to apply a common auto-tuning technique to select the
optimum number of threads obtaining low execution times. When developing hyperheuristics with
the same scheme used for metaheuristics, the same parallelization techniques for metaheuristics [4]
are applicable for hyperheuristics. Two basic parallel schemes are identified in [1]:

e In the first scheme the elements of a set are treated independently, and the number of threads to
work with in a loop is selected. This scheme appears, for example, when combining elements in
a Genetic Algorithm or when randomly generating an initial set of elements. Thus, ThreadsIni
and ThreadsCom contain a parallelism parameter indicating the number of threads to use in
the generation of the initial set and for the combination of the selected elements. These values
can be different, so giving different values of the parallelism parameters in each function.

e The second scheme has two parallelism levels and can be used to obtain fine or grained paral-
lelism. The number of threads at each parallelism level is established. This type of parallelism
appears in improvement and diversification functions, where some elements are selected (first
level) and each element is improved by analysing its neighbourhood (second level).

The number of threads (one value or several values) is established for each function in the
parametrized shared-memory scheme. The number of parallelism parameters for each function de-
pends on the particular implementation of the functions in the unified scheme, but the methodology
is common to various metaheuristics and parallel implementations. For example, some metaheuristics
include an improvement part in the initialization, and the number of threads in the two levels of this
improvement are added to the number of threads for the initialization of the reference set. In the

improvement function there are two subsets of parallel parameters with the same structure, one for
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the intensification and another for the diversification of elements. So, we have different parallelism
parameters for the different functions in the scheme:

e Initialize: A for loop is used to generate the initial set of elements. One-level scheme
is used with a number of threads TGEIni. A two-level improvement is included as part of
the initialization, so there are two parameters for the number of threads in the two levels,
TI1Ini and TI2Ini. These three parameters constitute the set of parallelism parameters for
the initialization: ThreadsIni = {TGEIni,TI1Ini, T12Ini}.

e Combine: Pairs of elements are combined in a loop, so we have TC'PCom threads to work
with in the combination loop.

e Improve: As in the improvement in the initialization, two-level parallelism functions are used
for the improvement of the elements. Three improvement functions are considered: for the
improvement of elements in the reference set, for those obtained in the combination, and
for those obtained though diversification; so there are six parallelism parameters, T R1Imp,
TR2Imp, TC1Imp, TC2Imp, TD1Imp and T D2Imp.

e Include: An one-level parallelization with T T EInc threads is considered for the inclusion of
elements.

Thus, we have eleven parallelism parameters (table 3) that can be selected to tune the shared-
memory scheme to obtain reduced execution times. Of course, as with the metaheuristic parameters,
different parallelizations would produce a different number of parallelism parameters, and we are not
interested in an exhaustive enumeration of the possible parallelization strategies and parallelism pa-
rameters, but in the application of a methodology valid for different configurations. Furthermore, the
auto-tuning methodology with which the values of the parameters are selected will be valid for the
different metaheuristics and combinations obtained with different values of the metaheuristic param-
eters, and the optimum values of the parallelism parameters will depend on those of the metaheuristic

parameters.

Table 3 Parallelism parameters in the parametrized shared-memory scheme of metaheuristics.

Initialize TGEIni number of Threads for the initial Generation of Elements
TI1Int number of Threads in the Improvement after initialization, first level
TI2Ini number of Threads in the Improvement after initialization, second level

Combine TCPCom number of Threads for the Combination of Pairs of elements

Improve TR1Imp number of Threads in the improvement of the Reference set, first level
TR2Imp number of Threads in the improvement of the Reference set, second level
TC1Imp number of Threads in the improvement of elements obtained by Combination, first level
TC2Imp number of Threads in the improvement of elements obtained by Combination, second level
TD1Imp number of Threads in the improvement of elements obtained by Diversification, first level

TD2Imp  number of Threads in the improvement of elements obtained by Diversification, second level

Include TIEInc number of Threads for the Inclusion of Elements in the reference set

The metaheuristic scheme is used at two levels: for the hyperheuristic (HMS) and for the applica-
tion of the metaheuristics determined from the metaheuristic parameters (MetaheurParam) in each
element of the reference set in the metaheuristic (MS) with which the hyperheuristic is implemented.
Thus, parallelism can be applied in the hyperheuristic and the metaheuristics, with a total of four
parallelism levels, but it will be preferable to parallelize at a high level, and usually parallelism is only
applied in the hyperheuristic.
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The parametrized message-passing metaheuristic scheme
The use of message-passing schemes allows us to have versions which can be executed in both
multicore systems and clusters with multicore nodes, enabling larger problems to be solved in shorter
execution times. So, we analyse the development of message-passing parametrized schemes with MPI
implementations. An island model is used, with division of the population into subsets assigned to p
processes, with identifiers from 0 to p—1, where the process Py acts as master in the communications,
and the remaining processes are the slaves.

The parametrized scheme in Algorithm 2 is extended to obtain a parametrized message-passing
scheme (Algorithm 4) with the introduction of a new function (migration) and new metaheuristic-
parallelism parameters, which comprise the number of processes (p), the number of generations be-
tween migrations (NGM Par) and the volume of data transferred (N EM Par). A homogeneous data
partition is considered, with assignation of the same number of elements to each process. So, subsets
S; are processed in parallel by processes P;, with |S;| = %, and S = S,U...US,_;. Each process is ini-
tialized with W elements. Then, the metaheuristic scheme of Algorithm 5 is applied sequentially
to each subset over a number of iterations. The sizes of the other sets in each process are also di-
vided by the number of processes: FNIL;Z‘Ini, NBfSel' NWfSel' NBE;’)Com, NBV[I/)Com, NWWCom
NBEIne The end condition is established now with the number of evolution-migrations

and

p
MNIEnd
' NGMPar"

The master informs the slaves when the end condition is accomplished.

Algorithm 4 parametrized  message-passing  metaheuristic  scheme. Island  Model
(S,ParamMet ,ParamPar).
1: IN PARALLEL in each process P; (i =0,...,p — 1) DO

: Initialize(S;,ParamIni)

: while (not EndCondition(ParamEnd,NGMPar)) do
Sequential_Metaheuristic_Scheme(S; ,NGMPar)
Immigrate(S;,So,NEMPar)

In Py Integrate Subpopulations(S;)
Emigrate(So,S; ,NEMPar)

: end while

: END PARALLEL

: Solution: best sk € S

—
o

Algorithm 5 Sequential Metaheuristic Scheme(S; ,ParamMet ,NGMPar).

while (not EndCondition(NGMPar)) do
SS;=Select(S;,ParamSel)
SS1;=Combine (SS; ,ParamCom)
SS2;=Improve (SS1;,ParamImp)
S;=Include(SS2;,ParamInc)

end while

The set of metaheuristic parameters is completed with the three new metaheuristic-parallelism
parameters, ParamPar = {p, NGM Par, NEM Par}. There are many possibilities for the imple-
mentation of the new function (migration), but our initial goal is to analyse the advantages of using
a parametrized message-passing metaheuristic scheme and to model it so that the model can be
used for auto-tuning. So, we use a simple migration scheme, with immigrations from the slaves to
the master (line 5 of Algorithm 4) and emigrations from the master to the slaves (line 7), and with
the same number of elements in the immigration and the emigration (NEM Par). No exchange
of elements among slaves is considered, allowing only the combination of the best elements from
each subset (and subsequent improvements and diversifications) in the master process (line 6). The
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percentage of migrating elements of each subset should not be very high in order to enhance only
the migration of the best elements of each subset and reduce the execution time while maintaining
a certain amount of native elements in each subset. Besides, high values could produce an increment
in the cost of the communications. The number of generations between migrations (NGM Par)
also affects the goodness of the solution and the execution time. High values mean less information
exchange between processes, and possibly worse final solutions or more iterations to converge, but at
the same time they reduce the number of communications and the execution time per iteration.

Modelling and auto-tuning methodology

To reduce the execution time it is necessary to select the values of the parallelism parameters ap-
propriately. These parameters are the number of threads (T'hreadsIni, ThreadsCom, ThreadsImp
and ThreadsInc) for each basic function in the case of shared-memory, and the number of processes
and parameters controlling the amount and frequency of information exchanged between islands (p,
NEM Par, NGM Par) for the message-passing paradigm.

A theoretical model of the execution time is obtained for each function and the number of threads
of a loop or the number of threads in the first and the second parallelism levels is established in the
case of the shared-memory scheme. Considering message-passing metaheuristics, the time model is
global and includes the whole parallel scheme behaviour establishing the number of islands and the
volume and frequency of the migration of elements between them.

The auto-tuning process used in [13] for linear algebra routines is adapted to the metaheuristic
scheme. A problem of minimization of electricity consumption in exploitation of wells [3] is used
to show the modelling and auto-tuning methodology. The metaheuristics used to show how the
methodology works are Genetic Algorithm, Scatter Search, GRASP and Tabu Search, but the same
methodology could be applied with other set of basic metaheuristics and implementations of the basic
functions in the metaheuristic scheme. The process is divided into three phases:

e Design: The first phase of design is to obtain the theoretical model of the execution time for
the functions in the scheme or for the whole scheme. There are various possibilities, depending
on the parallel programming paradigm, so the shared-memory and message-passing approaches
are explained separately.

— In the shared-memory scheme, the routine is developed together with its theoretical execu-
tion time. A model of the execution time is obtained for each basic routine in Algorithm 3.
Because two types of parallelism have been identified, two basic models can be used, one
for one-level routines and another for nested parallelism. As an example for the one-level
routines, the generation of the initial population in function Initialize with an initial
number of elements in the reference set 1N EIni can be modelled:

ky - INEIni
“———tkp (1)

tone—level =
where kg represents the cost of generating one individual; k, the cost of generating one
thread; and p is the number of threads.
As an example of two-level routines, we consider the initial improvement. The improve-
ment of a percentage PEIIni of the initial elements with an intensification (extension of
improvement for each neighbour) ITEIni can be modelled:

ki-INEIni- PEIIni - IIEIni

tiwo—levels = k : + kpo - 2
two—level 10011 s +kp1 -1+ k2 p2 (2)
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where k; represents the cost of improving one element; &, 1 and &, > the cost of generating
threads at the first and second level; and p; and ps the number of threads at each level.
For each of the other basic functions, the corresponding metaheuristic parameters are
determined and the model of the execution time is obtained similarly, as a function of
those parameters and the parallelism parameters (the number of threads to be used in
each routine and subroutine).

For message-passing schemes, as in the case of shared-memory, the first step is to obtain
a theoretical model of the execution time, which is essentially divided into one part of
computing tc,p, another of communications between processes t..,., and another of in-
tegration of elements in the master t;,;. We can, in turn, divide the communication time
in two parts: one for immigrations from the slaves to the master, ., and another for
emigrations from the master to the slaves, t..,,;. Some of these times have been found
experimentally to be negligible, so the equations of the model are:

tiotal = temp + teme + ting, With ti,: =0 (3)
2
Paramz Param;
k;-——2 | . NGMPar (4)
cm
" Z ; 7 p
tcmc == tim'm, + t@fyni, Wlth temi =~ 0 (5)

where the parameters and constants in equation 4 have the meaning explained for table
4, and the immigration time has been modelled as a third grade polynomial (equation 6)
because of its simplicity and goodness in experimental data fit. It has been found that the
execution time does not vary significantly with N EM Par, so we can consider .., only
as a function of p.

The models so obtained are very simple and do not consider some architectural aspects, like

memory or threads allocation, but their simplicity facilitates their use, and satisfactory results

are obtained. Furthermore, in some execution environments those system-architecture aspects

can not be considered when the code runs; for example, when sending the job to a queue, the

system decides the cores where the threads or processes are mapped and the data allocation.

e Installation: The values of the system parameters are estimated for the system where the

scheme is being installed.

When the shared-memory parametrized scheme is installed in a particular system, the
value of the parameters influenced by the system are estimated. Parameters kg, k;, kp,
kp,1 and kj, o presented in the previous step are some of these parameters, as are the cor-
responding parameters for the other basic routines. The estimation can be made through
experimentation with each basic function in the metaheuristic, for some values of the
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metaheuristic parameters and parallelism parameters (INEIni and p in equation 1; and
INEIni, PEIIniand ITEIni, and p; and ps in equation 2) and least square adjustment.

— As in shared-memory, the value of the parameters influenced by the system are estimated
when the message-passing-parametrized scheme is installed in a particular system. The
system and metaheuristic parameters in the model for each function in the scheme are
presented in table 4.

Table 4 System and metaheuristic parameters considered in equation 4 for the message-passing scheme. Functions:
Gen-Ini, generation of elements in the initialization; Imp-Ini, Imp-Ref and Imp-Com, improvement of elements after
initialization, improvement of elements of the reference set and those obtained by combination, respectively; Com,
combination; Div-Ref and Div-Com, diversification of reference and combination sets; Inc, inclusion of elements.

fune | ki Param;
Gen-Ini | kg INEIni

f » INEIni-PEIIni-IIEIni
Imp-Ini | k;; 100

Junc | kj Param;

Com ke 2-(NMMCom+ NMPCom + NPPCom)
Imp-Ref | ki, NFEIm-PElé{)mp-UElmp

. (NBBCom+NBWCom+NWWCom)-PEIImp-IIEImp

Imp-Com | kj. 100

. NFEIni-PEDImp-IDEImp
Div-Ref kar 100

. (NBBCom+NBWCom+NWWCom)-PEDImp-IDEImp
Div-Com | kg, 100

Inc ki NFEIni+2-(NBBCom + NBWCom + NWWCom) — NBEInc

The estimation can be made through experimentation with the metaheuristic scheme, for
some values of the metaheuristic parameters and parallelism parameters and least square
adjustment.

e Execution: The solution of a problem with a particular metaheuristic or hyperheuristic is ob-
tained with the values of the algorithmic parameters (number of threads at each function or
number of processes, frequency and width of migration) which provide the lowest theoretical
execution time for that problem size and the combination of metaheuristic parameters, using the
theoretical models developed in the design phase and with the values of the system parameters
estimated in the installation phase.

— At execution time, in shared-memory, the number of threads in each basic function is

selected from the theoretical execution time (equations 1 and 2) with the values of the
metaheuristic parameters being those of the metaheuristic (or hyperheuristic) we are ex-
perimenting with and the values of the system parameters estimated in the installation
phase. The number of threads which gives the theoretical minimum execution time is
obtained by minimizing the corresponding equation after substituting in it the values of
the metaheuristic and system parameters.
After substituting in the theoretical model the values of the constants estimated by ex-
perimentation and least-squares, the values of the parallelism parameters which give the
lowest theoretical time are obtained as a function of the metaheuristic parameters, so
the equations are valid for the different metaheuristics or hyperheuristics in the particular
computational system where the scheme is installed.
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For example, for the initial generation of the reference set of HMS and experiments carried
out in a system called Ben with 128 cores and described below, the number of threads
which provides the lowest theoretical execution time is:

k
Popt = k—g -INEIni =343 -VINEIni (7)
P

and for the improvement of the generated elements the optimum number of threads in
the two-level function is:

P1.opt = 0.479 - /INEIni - PEIIni - 11 EIni (8)

P2.opt = 0.505 - VINEIni - PEIIni - [1EIni (9)

and those are the values selected for the parallelism parameters in the initialization:
TGEIN = popt, TI1InG = py opr and TI12IN0 = pa opt.

— In the case of the message-passing scheme, the parallelism parameters are also selected
from the theoretical execution time, as a function of the metaheuristic parameters and the
values of the system parameters estimated in the installation phase. As in shared-memory,
the optimum parallelism parameters (number of processes in this case) are obtained by
minimizing the corresponding equation after substituting the values of the metaheuristic
and system parameters.

For example, in one node of the cluster described below (Saturno, with 24 cores), we have:

_Kcm —
— 2 43 —4-107% - p2,, +2-0.0003 - pope — 0.006 = 0 (10)
popt

where K p,p is the sum of all constants and metaheuristic parameters in the computing
term specified in equation 4:

2 6
Kemp = Z k; - Param; + (Z kj- Paramj> - NGM Par (11)
j=1

i=1

and where the constants for each basic routine of the node Saturno, k; and kj, are
presented in table 19 in the results section.

A problem of electricity consumption in exploitation of wells

The cost-minimization problem [3] used as a test case is briefly explained. We consider a water system
consisting of a series of pumps (B) of known power, located in wells, that draw water flow along a
daily time range R. The total flow is the sum of the flows contributed by each well. The pumps may
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be running or idle at a given time. The pumps operate electrically and the electricity has a daily cost
which should be minimal:
R B
Ce = Z ZTinNixij (12)

i=1 j=1

subject to

H - ZZQ;‘IU =Via (13)

i=1 j=1
B
Vi, > Qiij = Qumin. (14)
j=1
R
o
Vi, {9 D i <V, (15)
i=1
B
5 0.0
Vi, M < Olim, (16)
21 Qj%ij
3j | DD; < MD; = Vi, ;=0 (17)

where C', represents the cost of the electricity consumed by the combination of pumps selected in a
day; T; is the cost of the electricity in the range 4; IV, is the number of hours of pump operation in
the time slot ¢; P; is the electric power consumed by the pump j; and x;; represents a binary element
of a matrix with values 1 or 0 for pump on or off in equation 12. In equation 13, H represents the
number of hours of each time slot (the same for all the slots); Q; is the flow extracted from the well
7, constant in all the time intervals in which the well is operating; and V4 is the total daily volume
demanded. In equation 14, Q.,4r. is the total minimum flow in the pipeline for each time slot. Vj ;
is the operating volume daily granted to the well j in equation 15. In equation 16, o; represents the
conductivity of each well and ;.. is the conductivity limit of the water mix. And, finally, in equation
17, DD; is the depth (m) of the dynamic level of well j and M D; is the maximum depth (m) of the
dynamic level of well j.

An individual is represented by a binary vector of size B- R that encodes the set of pumps distributed
in different time slots. The set of individuals constitutes a population. Not all possible combinations
result in feasible individuals, and each time an individual is generated or modified five constraints are
evaluated:

e Demand satisfaction (equation 13). This restriction arises from the condition that the sum of
volumes provided in the range of hours established correspond to the programmed demand at
the beginning of each day.

e Minimum flow maintenance (equation 14). We sought to establish a minimum flow in the
pipeline in all time slots of operation.

e Compliance with maximum exploitation volumes for each well (equation 15). In practice, the
accumulated volume granted for each well is updated daily and is inserted as a parameter of
the problem.
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e The conductivity of the total flow is calculated as a weighted mean of the conductivity con-
tributed by each well, and the mean conductivity is maintained below the limit established
(equation 16).

e Compliance with maximum depths of dynamic levels (equation 17). Each well must have a
minimum water level to exploit to be considered operative. Below this, the well will be classified
as temporarily unavailable.

This problem formulation means in some cases that obtaining a new individual is very time-
consuming. Furthermore, for large exploitation systems the number of wells and of time ranges may
be large, resulting in large computation times.

Experimental results
The results of applying the auto-tuning technique to the parallel parametrized schemes of metaheuris-
tics are presented below. Both metaheuristics and hyperheuristics are considered in shared-memory,
but only metaheuristics are applied through message-passing schemes. Experiments are carried out in
two computational systems whose characteristics are presented below.
Firstly, we have a HP Integrity Superdome SX2000 with 128 cores of Intel Itanium-2 dual-core
Montvale with shared-memory called Ben.
Secondly, Heterosolar, a cluster with five nodes connected through a Gigabit Ethernet working at
1 Gbit/s and comprising the following multicore systems:
e Saturnois a NUMA system with 4 Intel hexa-core NEHALEM-EX EC E7530 nodes, with a total
of 24 cores, 1.87 GHz, 32 GB of shared-memory.
e Marte and Mercurio are AMD Phenom 1l X6 1075T (hexa-core), 3 GHz, 15 GB (Marte) and
8 GB (Mercurio), each with private L1 and L2 caches of 64 KB and 512 KB, and L3 of 6 MB
shared by all the cores.
e Jupiter comprises two hexa-cores (12 cores) Intel Xeon E5-2620, 2.00GHz, and 32 GB of RAM.
e Lunais a quad-core processor Intel Core 2 Quad Q6600, 2.4 GHz, with 4 GB of shared memory.

Shared-memory results

To validate the auto-tuning methodology, the optimum number of threads and the maximum speed-
up achieved are calculated from the models for different metaheuristic parameters using the system
parameters obtained in the installation. These system parameters are calculated using small values of
the metaheuristic parameters to reduce the installation time.

Experiments in shared-memory are carried out in Ben and Saturno. The main differences between
them are their size and the structure of the memory hierarchy, which produces differences in the
shared-memory access latencies.

Firstly, as an example, we summarize the values of the system parameters obtained in the installation
phase for two basic functions of the HMS in Ben. The optimum number of threads varies with the
number of elements, and we are interested in selecting a number of threads close to the optimum
from a small number of elements (for low installation time). As an example for one-level routines, in
the initialization in a hyperheuristic the model in equation 1 is used, and parameters k; and £, in
the model are obtained by least-squares with IN EIni = 5. The values obtained are k;, = 0.577 and
kp = 0.0491 (both in seconds). For a two-level routine, like the routine to improve elements after the
initial generation or after combination or diversification, the values of the parallelism parameters are
obtained by least-squares with experiments with parameters for the hyperheuristic INEIni = 10,
PEIIni =100 and ITEIni = 1. The results are k; = 1.21, k, 1 = 0.104 and £, » = 0.0989 (all'in
seconds). By substituting these values in the theoretical model of the execution time (equation 2),
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Speed-up

experimental  +
theoretical ~ x

Figure 1 Theoretical and experimental speed-ups when varying the number of threads of the first and second level
of parallelism in a two-level parallel routine when applying the HMS in shared-memory in Ben.

the behaviour of the routine in the system is well predicted, as can be seen in Figure 1, where the
theoretical and experimental speed-ups in the improvement of the initial population are represented
for the hyperheuristic parameter combination INEIni = 50, PEIIni =50 and [TEIni = 1.

For the application of the MS, the values used in the installation were I N E'Ini = 20 for the initial-
ization and INEIni = 20, PEIIni = 50, IIEIni = 20 for the improvement in the initialization.
For the HMS those values were INEIni =5, INEIni = 10, PEIIni = 100 and IIEIni = 1. The
differences between the values of the parameters of MS and HMS are explained by the higher execu-
tion time of the hyperheuristic, which makes it necessary to have lower values for a low installation
time.

Once the scheme is installed, the next step is to determine the optimum parallel parameters and the
corresponding speed-up for the metaheuristics and hyperheuristics considered. Firstly, the results of
auto-tuning two basic routines in Ben are presented, and then the auto-tuning of the whole scheme
is analysed in Saturno.

Metaheuristics and hyperheuristics for the minimization of power consumption in wells exploitation
are considered, so experiments consider implementations of the basic functions with the metaheuristic
parameters with different computational costs.

Tables 5 and 6 compare the results for the initial generation of the reference set and for the
improvement of elements for two parameter combinations using the MS in Ben. The number of threads
selected with the auto-tuning methodology is not far from the best values obtained experimentally
and, as a consequence, the speed-up achieved with auto-tuning is not far from the experimental
maximum and the auto-tuning methodology is useful for the reduction of the execution time of
metaheuristics.

We can compare the results obtained when directly applying individual metaheuristics to a problem
of optimization of electrical costs with those for the hyperheuristic using the auto-tuning methodology.
Since the metaheuristic scheme is the same, similar results would be expected in both cases, although
there may be differences due to different implementations. For example, in the improvement function
of the MS, the second level was used to start more threads to work on the improvement of the fitness
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Table 5 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for IN EIni = 100 and 500 in the one-level
parallel routine of Initialize, when applying the MS in Ben.

threads speed-up
INEIni exp mod exp mod exp-auto

100 48 55 27 27 25
500 121 122 7 61 75

Table 6 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for other parameter combinations in the
two-level parallel routine of Initialize, when applying the MS in Ben.

threads speed-up
INEIni PFEIIni IIEIni exp mod exp mod exp-auto

100 50 10 89 67 35 17 21
500 100 5 128 150 78 51 78

function (more neighbours are analysed) but not to reduce the execution time, from which the number
of threads of second level could be taken as constant. So, in this case the model is slightly different.
In the function of the initial generation of elements there are no differences in the implementation.
The behaviour of the one-level routine when applying the MS was well predicted, as can be seen in
Figure 2, where the theoretical and experimental speed-ups are represented.

Tables 7 and 8 compare the results for the initial generation of the reference set and for the
improvement of elements for two parameter combinations using the HMS in Ben. As in the case of
the MS, the number of threads and the speed-up selected with the auto-tuning methodology were
not very different from the best values obtained experimentally, and so the auto-tuning methodology
proves useful for the reduction of the execution time of hyperheuristics, which have a high cost caused
by the application of a large number of metaheuristics. It can be seen that the technique applied for
MS is also valid for HMS.

Table 7 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in

the experiments when using the auto-tuning methodology (exp-auto), for the parameters IN EIni = 20 and 100 in
the one-level parallel routine of Initialize, when applying the HMS in Ben.

threads speed-up
INFEIni exp mod exp mod exp-auto

20 22 15 11 8 8
100 24 34 12 17 12

The advantages of using auto-tuning can be seen more clearly when comparing the speed-up ob-
tained by launching the maximum number of threads available in the system and the half of this
maximum (as a first approximation to a threads selection), with the results achieved when selecting
the optimal number of threads at each level with our auto-tuning technique. Results are presented in
tables 9 to 12. Both in the case of directly applying the MS to the optimization problem and for the
HMS, the speed-up achieved with the model is nearly always better than that obtained when running
roughly the maximum number of threads available or its half, and gets close to the experimental
optimum value in most cases.
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Table 8 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained in
the experiments when using the auto-tuning methodology (exp-auto), for two combinations of the parameters
INEIni, PEIIni and IT1EIni (paraml: 50,50,1; param2: 100,50,1) in the two-level parallel routine of Initialize,
when applying the HMS in Ben.

threads one-level  threads two-levels speed-up
parameters  exp mod exp mod exp mod exp-auto
paraml 9 6 8 7 14 15 11
param?2 9 8 4 9 15 24 14

80 T T T T T T
Sp exp. (NElIni=20) + )
7oL Sp theo. (NEIINi=20) x - - ]
Sp exp. (NEIIni=100) = _—s e -
Sp theo. (NElIni=100) ® L
60  Sp exp. (NElIni=500) = . et 1
Sp theo. (NEIINi=500) o M
50 X - 1
a .
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T a0t 5 1
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Figure 2 Theoretical and experimental speed-up when varying the number of threads for three parameters in a
one-level parallel routine when applying the MS in Ben.

Table 9 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of the
maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with our
auto-tuning methodology (auto), for IN EIni = 100 and 500 in the one-level parallel routine when applying the MS

in Ben.

threads speed-up
INEIni max max /2 exp auto max max /2 exp auto

100 128 64 48 55 20 23 27 25
500 128 64 121 122 73 49 7 75

Table 10 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of
the maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with
our auto-tuning methodology (auto), for two combinations of the parameters IN EIni, PEIIni and IIEIns
(paraml: 100,50,10; param2: 500,100,5) in the two-level parallel routine when applying the MS in Ben.

threads speed-up
parameters max max /2 exp auto max max /2 exp auto

paraml 128 64 89 67 27 15 35 21
param2 128 64 128 150 78 52 78 78

So far we have checked the validity of the auto-tuning methodology in a large system as Ben, where
the access to the shared-memory can suppose an additional delay in the execution time. For more
general conclusions, the complete auto-tuning process has been analysed on Saturno. Tables 13 and
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Table 11 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of
the maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with
our auto-tuning methodology (auto), for INEIni = 20 and 100 in the one-level parallel routine when applying the
HMS in Ben.

threads speed-up
INEIni max max /2 exp auto max max/2 exp auto

20 128 64 22 15 11 11 11 8
100 128 64 24 34 11 11 12 12

Table 12 Comparison of the speed-up obtained with the maximum number of threads available (max), with half of
the maximum number of threads available (max/2), the highest experimental speed-up (exp) and that obtained with
our auto-tuning methodology (auto), for two combinations of the parameters INEIni, PEIIni and IT1EIni
(param1: 50,50,1; param?2: 100,50,1) in the two-level parallel routine when applying the HMS in Ben.

threads one-level threads two-levels
parameters \/mar +/maxz/2 exp auto /maxr +/max/2 exp auto
paraml 11 8 9 6 11 8 8 7
param2 11 8 9 8 11 8 4 9
speed-up

parameters vmazx A /maac/2 exp auto

paraml 9 11 14 11
param?2 11 12 15 14

14 give the values of the constants of the model obtained in the installation phase in Saturno for the
whole MS and HMS.

Table 13 Values of the constants of the model (in seconds) for all the functions when applying the MS in Saturno.

One-level parallel routines Two-level parallel routines

Ini Com Inc Imp-Ini  Imp-Ref  Imp-Com Div
ks - 10* 4.43  5.69 1.44 6.05 6.01 1.20 107
kp,1 - 105” 3.96 261 58.3 3.08 1.91 3.38 63.8
kp,2 - 103 - - - 1.56 8.38 23.2 0.915

Table 14 Values of the constants of the model (in seconds) for all the functions when applying the HMS in Saturno.

One-level parallel routines Two-level parallel routines
Ini Com Inc Imp-Ini  Imp-Ref  Imp-Com Div
ks - 102 1.45 2.91 0.296 15.7 25.5 52.3 26.2
kp1-102  0.541 0.679 2.44 5.66 2.55 8.86 2.22
kpo - 102 - - - 7.09 3.25 34.8 4.84

Taking into account the values of these constants, we can verify the validity of the methodology of
auto-tuning running all the functions of the metaheuristic scheme. Table 15 gives the values of typical
metaheuristic parameters used in the MS and in the HMS. We must consider that there are differences
in the execution time between metaheuristics and hyperheuristics. While the metaheuristic executes
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problem instances directly, the hyperheuristic is more time-consuming, since it executes different
metaheuristics at the same time to optimize the resolution of the problem. So, these parameter
values have been chosen because they produce metaheuristics and hyperheuristics of intermediate
size, so allowing for a comprehensive study in a relatively reduced time.

Table 15 Values of the metaheuristic parameters used for the auto-tuning experiments when applying the MS (m1
and m2) and the HMS (hl and h2) in Saturno.

INEIni  FNEIni  PElIni  [lEIni STMIni NBESel NWESel NBBCom NBWCom

ml 20 20 50 20 - 10 10 20 5
m2 100 50 100 10 - 25 25 100 20
hl 10 10 100 1 7 5 5 20 5
h2 20 20 50 3 7 10 10 50 10

NWWCom  PEllmp llEImp SMlimp PEDImp IDEImp SMDImp NBEInc LTMinc

ml 10 100 20 - 50 20 - 10 -
m2 5 50 10 - 100 20 - 25 -
hl 10 100 1 7 100 1 7 10 7
h2 5 20 3 7 20 3 7 10 7

Table 16 shows the optimum number of threads of the first and second level of parallelism obtained
with auto-tuning for all the functions in the scheme for four metaheuristic parameter combinations in
Saturno. Results are presented for the application of the MS and the HMS. The value of the second
level parameter was fixed to 1 in the case of the MS because the second level was used to start more
threads to work on the improvement of the fitness function but not to reduce the execution time.

Our goal is not to optimize the code but, given a parametrized code, to find satisfactory values
for the parallelism parameters so that low execution times can be achieved automatically. Table 17
compares the speed-up achieved with the optimum number of threads given by the model with those
achieved when the values of the parallelism parameters are selected without an auto-tuning method.
Numbers of threads equal to the maximum number of cores available and to half this number are
considered. Results are shown for basic and optimized implementations.

Table 16 Values of the parallelism parameters for four metaheuristic parameter combinations in Saturno. Optimum

number of threads of the first level of parallelism for all the functions when applying the MS (m1 and m2). Optimum
number of threads (levels one and two of parallelism) for all the functions when applying the HMS (h1 and h2).

One-level parallel routines Two-level parallel routines
TGEIni TCPCom TIEInc TIllni  TRllmp TCllmp TD1lImp

ml 2 3 1 6 11 5 6
m2 3 5 1 14 9 5 13
One-level parallel routines Two-level parallel routines

level TGEIni TCPCom TIEInc TIlni TR.mp TC_.lmp TD_lmp

hl p1 5 12 3 3 5 9 6
p2 - - - 3 4 2 3
h2 p1 7 17 4 5 5 10 7
p2 - - - 4 4 2 3

50


alberto
Rectángulo


Cutillas-Lozano and Giménez

Table 17 Speed-ups for various metaheuristic parameter combinations when applying all the functions in the MS (m1
and m2 in tables 15 and 16) and all the functions in the HMS (h1 and h2 in tables 15 and 16). Experimental values

obtained with a number of threads equal to the number of cores available (max), and half the number of cores (max
/ 2), and values obtained with auto-tuning (auto). In Saturno and for basic and optimized implementations.

speed-up
Basic Optimized
max max /2 auto | max max /2 auto

ml 1 2 2 10 8 10
m2 5 6 6 14 10 16
h1 3 4 5 6 5 6
h2 4 5 5 6 6 7

In all cases it is observed that the speed-up obtained with the auto-tuning methodology improves
or equals the values obtained with a number of threads selected in a non-optimal manner. This result
is also observed in each function separately, which gives us an idea of the validity of the methodology
studied.

Message-passing results

For the message-passing scheme, experiments were carried out for the different metaheuristic com-
binations shown in table 18. The values of the metaheuristic parameters have been selected to have
metaheuristics with a wide variety of set sizes (between 20 and 500 elements) and with reasonable
values for the parallelism parameters (NGM Par equal to 5, and NEM Par between 5 and 20). The
number of iterations was fixed to 100 to compare the execution times between subsets of different
sizes, and because it is sufficiently high to get good fitness results.

Table 18 Values of the metaheuristic parameters used in the message-passing experiments.

INEIni  NFEIni  PElIni  [IEIni  STMIni  NGMPar NEMPar

m1l 20 20 100 20 12 5 5
m2 100 100 50 10 4 5 15
m3 500 500 25 5 2 5 20

NBESel NWESel NBBCom NBWCom NWWCom PElimp [IEImp

ml 10 10 15 20 15 100 5
m2 50 50 90 100 90 50 5
m3 250 250 450 500 450 25 5

SMilmp  PEDImp IDEImp SMDImp NBEInc LTMinc

ml 4 10 5 2 10 12
m2 4 10 5 2 50 12
m3 4 10 5 2 250 15

Similarly to shared-memory, to validate the auto-tuning methodology with the message-passing
paradigm, the optimum parallelism parameters (p, NEM Par and NGM Par) and the maximum
speed-up achieved are calculated from the models for different metaheuristics using the system pa-
rameters obtained in the installation for different configurations of the computational system. These
system parameters were calculated using small values of the metaheuristic parameters to reduce the
installation time. It has been determined experimentally, for all the systems studied, that only the
computation and immigration times contribute significantly to the total time modelled.

A first study of the methodology is carried out in Saturno, which is a shared-memory homogeneous
system, in which we use the message-passing scheme, considering it as a distributed homogeneous
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system. In table 19 the specific values of the constants in equation 4 for the computation time are
presented. The values for the constants in equation 6, which models the immigration time, t;nm, are
A= —4, B=0.0003, C = —0.006 and D = 0.0549. Table 20 shows the speed-up and corresponding
optimal number of processes when executing metaheuristics m1 and m2. We can see that the number
of processes predicted by the model is quite close to the optimum obtained experimentally, with
the speed-ups achieved with the auto-tuning methodology (exp-auto) close to the best obtained
experimentally (exp).

Table 19 Values of the system and metaheuristic parameters considered in equation 4 in Saturno.

Junc | k; Param;
func_| ki Param; Com 3.98-1075 2. (45 + 50 + 45)
Gen-Ini | 4.70-1073 50 Imp-Ref | 3.36-10* 50.75-5
Imp-Ini | 3.36- 104 % Imp-Com | 6.72-10~4 w
H —4 50-10-5
Div-Ref 3.53-10 2 o0 2
Div-Com | 7.06-10—4 (45+450445)-105
° 101
Inc 1.50-1075 50+ 2- (45 + 50 + 45) — 25

Table 20 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained
experimentally when using the number of processes given by the auto-tuning methodology (exp-auto), for the
metaheuristics m1 and m2 in table 18, when applying the metaheuristic scheme to PECEW in Saturno.

MPI Processes Speed-up

metaheuristic | exp mod exp mod exp-auto
ml 16 20 15 11 12
m2 24 24 17 16 17

The same procedure was carried out in the small homogeneous cluster Marte + Mercurio, with
different values for the installation constants of the model. As in the case of Saturno, the number of
processes given by the model are close to the experimental ones for the metaheuristics studied, with
the speed-ups achieved close to the best obtained experimentally (table 21).

Table 21 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained

experimentally when using the number of processes given by the auto-tuning methodology (exp-auto), for the
metaheuristics m1 and m2 in table 18, when applying the metaheuristic scheme to PECEW in Marte + Mercurio.

MPI Processes Speed-up

metaheuristic | exp mod exp mod exp-auto
ml 11 12 10 7 9
m2 12 12 8 9 8

Finally, the auto-tuning technique was applied in the whole cluster Jupiter + Luna + Saturno +
Marte + Mercurio. There were not big differences in the speed of the nodes when applying the
sequential scheme, so the methodology for homogeneous systems was considered, with the execution
time limited by the islands assigned to the slowest cores.

We can see the results of speed-up and optimal number of processes for each metaheuristic in
table 22. The experimental and modelled values for the number of processes and speed-up are
close, especially in m1 and m3. Furthermore, for the population sizes considered (up to a value
of NFEIni=500), the results obtained with the process mapping given by the model suggest that
the number of cores available in the cluster is sufficient to minimize the execution time effectively
without the requirement of more processors.
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Table 22 Comparison of the highest experimental speed-up (exp), the modelled speed-up (mod) and that obtained
experimentally when using the number of processes given by the auto-tuning methodology (exp-auto), for the
metaheuristics m1, m2 and m3 in table 18, when applying the metaheuristic scheme to PECEW in Jupiter + Luna +
Saturno + Marte + Mercurio.

MPI Processes Speed-up
metaheuristic | exp mod exp mod exp-auto
ml 20 18 10 7 9
m2 38 26 18 13 11
m3 40 37 24 23 20

Conclusions and future work

An auto-tuning methodology for parametrized shared-memory metaheuristic schemes that can in turn
be applied to hyperheuristics based on metaheuristic schemes has been shown. The technique has
been also introduced and analysed for the message-passing scheme. A problem of minimization of
electricity consumption in exploitation of wells has been used as a test case, but similar results can
be obtained with other problems. As far as we know, this is the first time that auto-tuning techniques
are applied to parallel metaheuristics. The methodology provides satisfactory values for the number of
threads to use in the application of the parallel metaheuristics and hyperheuristics in NUMA systems.
The parallel parameters are also optimized for the message-passing scheme in a cluster with multicore
nodes.

One possibility to improve the application of the hyperheuristic is to determine search ranges for
each metaheuristic parameter, so reducing the possible values of the elements in the metaheuristic
with which the hyperheuristic is implemented. For this, statistical analysis like those in [2] can be
used.

As future research lines, the parametrized schemes and the auto-tuning methodology could be ap-
plied to other optimization problems. At present we are working with problems in the fields of data
envelopment analysis, determination of chemical components of polymers and drug design. The inclu-
sion of new basic metaheuristics, for example, Ant Colony Optimization or Particle Swarm Optimiza-
tion, would generate new parametrized schemes with a larger number of metaheuristic parameters.
Similar parametrized, parallel metaheuristic schemes, together with the corresponding auto-tuning
methodologies, should be developed for GPU or manycore systems (Xeon Phi) and in heterogeneous
clusters comprising nodes of multicores + multiple GPU or manycores. The use of large, heteroge-
neous clusters would be of especial interest for the application of hyperheuristics with large reference
sets or with a high fitness function cost.
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