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RESUMEN 

 

Antecedentes: El gen noggin  (Nog) es uno de los antagonistas de las proteínas morfogénicas 

óseas (BMPs)  y tiene como función modular la señal de estas. Cuando su acción no es efectiva, 

ocurre una actividad excesiva de las BMPs que causa serias anormalidades en el desarrollo. 

http://www.javeriana.edu.co/universitasodontologica


Estudios han demostrado que Nog es crítico para la condrogénesis, osteogénesis y formación de 

las articulaciones y parece estar involucrado con el crecimiento de estructuras craneofaciales, 

entre ellas, la mandíbula. Existen en la literatura pocos estudios acerca de la relación entre Nog  

y su papel en el desarrollo mandibular. Objetivo: Esta revisión hace una descripción de  los 

factores moleculares que intervienen en la formación de la mandíbula. Se hace un énfasis 

principalmente en las BMPs, su función, vía de señalización y cómo Nog regula esta vía, para 

conducir a  formular una  hipótesis del posible papel de este gen en el desarrollo mandibular y 

cómo su alteración podría llegar a causar el micrognatismo mandibular. 
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ABSTRACT 

 

Background: Noggin (Nog) gene is one of the antagonists of bone morphogenic proteins 

(BMPs) and its function is to modulate the signs. When Nog’s action is ineffective, an excessive 

activity of BMPs occur causing serious developmental abnormalities. Studies have shown that 

Nog is critical for chondrogenesis, osteogenesis, and joint training and appears to be involved in 

the growth of craniofacial structures, including the jaw. There are in the literature, few studies 

about the relationship between Nog and its role in the mandibular development. Purpose: This 

article reviews the molecular factors involved in the jaw development, focusing primarily on 

BMPs, their function, signaling pathway as Nog regulates this path. It leads to hypothesize the 

Nog’s possible role on the mandibular development and how its alteration can cause mandibular 

micrognatism. 
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RESUMO 

 

Antecedente: O gene Noggin (Nog) é um dos antagonistas das proteínas morfogênicas ósseas 

(BMPs) e tem como função modular o sinal das mesmas. Quando sua ação não é efetiva, ocorre 

uma atividade excessiva das BMPs causando sérias anormalidades no desenvolvimento. Estudos 

veem demonstrando que Nog é essencial para a condrogênesis, osteogênesis, formação das 

articulações e parece estar envolvido com o crescimento de estruturas craniofaciais, incluindo a 

mandíbula. Na literatura há poucos estudos sobre a relação entre Nog e seu papel no 



desenvolvimento mandibular. Objetivo: Esta revisão fornece uma descrição do desenvolvimento 

da mandíbula, os fatores moleculares envolvidos na sua formação, com ênfases principalmente 

nas BMPs, sua função, via de sinalização e como Nog regula esta via, levando-nos a formular 

uma hipóteses do possível papel de Nog no desenvolvimento mandibular e como sua alteração 

poderia causar micrognatismo mandibular. 

 

PALAVRAS-CHAVE 
 

Desenvolvimento mandibular; estruturas craniofaciais; gene Noggin, proteínas morfogenéticas 

ósseas. 

 

ÁREAS TEMÁTICAS 

 

Anomalias craniofaciais, genética 

 

INTRODUCTION 

 

The lower jaw, the teeth, and Meckel's cartilage develop when cells of the cranial neural crest 

(CNC) that give rise to dorsal neural tube migrate into the gill arches (1-3). As the jaw develops, 

the ectoderm guides patterning into the mesenchyme (3) involving an antagonistic action 

between a signal of bone morphogenic protein-4 (BMP-4) and fibroblast growth factor -8 

(FGF8) (3,4). BMPs, which belong to the superfamily of transforming growth factor β (TGF-β), 

operate in a variety of tissues in space and time, requiring adjustment to different levels that 

ensure their specific responses (5,6). These regulations are given by modulators containing 

extracellular cysteine-rich domains that are folded in the form of rings of different sizes. Based 

on the number of ring cysteine domains, they are classified as: a) 8-ring cysteine proteins, 

members of DAN (7,8); b) 9-ring cysteine proteins, twisted gastrulation (tgs) (9,10); and c) 10-

ring cysteine proteins, Chordin (Chd) and Noggin (Nog) (11-14). The latter proteins are encoded 

by Chd and Nog genes respectively, which are expressed in the pharynx and during early and 

late formation of the lower jaw (15). Specifically, the Nog gene encodes for the homodimeric 

Nog protein, which has a molecular weight of 64 KDa, regulates BMPs (14,15), bonds with 

some BMPs, and prevents its activation by blocking the smad-dependent route (13-16). The Nog 

gene is a pleiotropic factor that is expressed in both early and late stages of development of 

various structures derived from ectoderm, such as neural tube, teeth, hair follicle, dermal papilla, 

and eye (17). Nog is also expressed in tissues derived from the mesoderm and is required for 

skeletal patterning where it plays a critical role in embryonic chondrogenesis and osteogenesis 

during the formation of joints. The expression is promoted by Wnt-1 and Shh genes (18). Its role 

in skeletal physiology has been documented by studies in mice and humans that show that 

mutations in this gene cause abnormalities in skeletal development (19-21). Computational 

analyses predicted that the alteration of the Nog heparin-binding site might have caused proximal 

symphalangism and conductive hearing loss (22). Another study by Matsui and Klingensmith 

(23) employed the extraction of genes in relevant tissue domains for the formation of upper and 

lower jaw, in order to determine the role of Nog. They found that the expression of the Nog 

middle-axial domain is relevant to the development of the first pharyngeal arch in the early 

stages of development, which in turn promotes the growth of the mandibular right bud, and 

suggests an indirect mechanism for secondary cleft palate. Based on that evidence, this review 



aimed at briefly describing the current knowledge regarding the Nog mechanisms that could be 

involved in mandibular disorders.  
 

DEVELOPMENT OF THE JAW 

 

The development of the jaw is carried out by multiple processes which include the formation of 

its skeletal elements, which are derived from cells of the CNC of the first gill arch. In this 

formation, the condylar development plays an important role, in a form that any alteration level 

specifically contributes to causing mandibular condyle asymmetries. When the condyle is 

affected bilaterally, jaw rotation in a posterior-inferior direction is produced causing   anterior 

open bite (24,25). However, if it is affected unilaterally (24), lateral crossbite type occurs. Only 

the condylar cartilage jaw endures through life and contributes to growth and joint function, 

becoming a tissue that serves several functions at once (26,27). Studies in human fetuses of 8 

weeks of intrauterine life show that the growth of the ramus of both its width and its height is 

faster than the body of the mandible (28), and this seems to be due to the presence of this 

cartilage. Previous research which focused on the study of development of the symphysis and 

condyle (29) found that the cartilage of the mandibular condyle allows the endochondral bone to 

grow, thus exerting an adaptive role in the growing site, being this growth determined by genetic 

and epigenetic factors (30); but it can also be influenced by cytokines, hormones, vitamins and 

mechanical stimuli (31,32). Thus cytokines and the growth factors are molecules that rapidly 

degrade. Specifically, this latter are involved in the proliferation and differentiation of the cells 

forming the mandibular condyle. Among them are: The Vascular endothelial growth factor 

(VEGF),  Insulin growth factor  (IGF), FGF, TGF, the related protein Parathyroid hormone 

(PTHrP), Indian hedgehog (Ihh) and bone morphogenic proteins (BMPs), this of special interest 

in their specific role in mandibular growth and development (32-35). These growth factors have 

the role of nuclear transcription factors present in chondrocytes and these latter are found in the 

Sox and Runx2 family members, which are substantial in the initiation of embryonic growth of 

the condyle. In the (table 1). Growth factors and transcription involved in mandibular growth and 

development and specific action in this region is summarized. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 1 

FACTORS INVOLVED IN THE MANDIBULAR GROWTH. 

 

 

Given the fact that the bone morphogenic proteins (BMPs) act by modulating the growth and 

development of the 3 mandibular components.  The focus will be on understanding how these 

work. Bone morphogenic proteins (BMPs) are synthesized by cells such as osteoblasts, 

chondrocytes and platelets (52,53) and belong to the family of TGFß, except the BMP1. Not only 

do they act on the bone level but they also have different functions in the formation of organs 

like the teeth, in embryonic development, repair, apoptosis and chemotaxis of various tissues 

(54,55). They additionally regulate iron homeostasis and induce intramembranous ossification 

and chondrogenesis (56). To this day there are 20 types of BMPs that have been grouped 

according to the similarity of its sequence and its functions. BMPs are dimeric molecules made 

up of 120 amino acids including cysteine residues highly conserved, (57,58) a signal peptide at 

its N-terminal region composed of 50 to 100 hydrophobic amino acids which guides the protein 

and its secretory pathway C-terminal prodomain that allows proper folding (59), also contains N- 

and O-glycosylated sites that give stability and specificity with which the receivers to be 

coupled. (60,61). Signaling pathway of BMPs, is regulated by extra- and intra cellular mediators 

which may be attached directly to them or any component blocking the transduction signal 

leading to a decrease in the bone formation (Figure 1). Nog expression blocks the effects of 

BMPs in osteoblasts, whether they are differentiated or undifferentiated (62). Also it inhibits 

intramembranous ossification and prevents chondrogenesis. BMPs may act in an autocrine and 

paracrine form (63).  

 
 

 

 

 

Name Action at mandible 

VEFG Express at chondrocytes for the induction of bone formation in development and adaptation 

to mechanical charges (33,34). 

IGF   Involves in the growth and development of tooth, mandible, maxillary and tongue (36,37). 

FGF Express in chondrocytes.  

FGF-2 is highly expressed in the absence of mechanical charge, reduces MEC production 

that directs to bone formation.  

FGFR-3 induces chondrocytes proliferation. Mutations of FGFR-3 cause skeletal dysplasia 

such achondroplasia (38). 

FGF-8 expression is critical for jaw development (39), as well as for facial mesenchymal 

neural crest derived and growth regulation of facial primordium (40). 

TGF TGFβ-1 is strongly expressed at mature layers and hypertrophic condyle of mandible 

(39,40). Also increases proliferation and synthesis of glycosaminoglycans, and decreases 

chondrocytes hypertrophy and bone mineralization (41). 

PTHrP and Ihh Regulates proliferation and growth of chondrocyte. Prevents chondrocyte hypertrophy 

(PTHrP). Blocks ossification (Ihh) and is involved at the early formation of TMJ (42-46) 

BMPs Modulates growth and development of the 3 mandible components (47). Wnt inhibits part of 

chondrogenesis activity by BMP-2. 

Sox 9 Regulates chondrocytes for collagen type II production  at the cartilage  

(48,49). 

RunX-2 (cbfa1) Express in osteoblasts and mesenchymal condensation prechondrogenic. Regulates 

hypertrophy chondrocytes, calcification of bone matrix and differentiation of osteoblasts and 

osteoclasts (50,51) 



FIGURE 1 

FACTORS INVOLVED IN THE MANDIBULAR GROWTH 

 
The BMPs (Color Purple) begin their signaling by uniting to two different receptor types I and II in the extracellular 

region causing phosphorylation of proteins. This attachment may activate Smad cytoplasmic proteins, including 

three classes: the Smad 1, 5 and 8 which bind transcription factors in the nucleus (gene promoter region) important 

genes for transcription. Another signaling pathway of BMPs is independent Smad, which is initiated by growth 

factors such as FGF, epidermal growth factor (EGF) and the growth factor (IGF ), which in turn activate the MAP 

kinase (MAPK) pathway that also includes 3 proteins Kinases: Erk, JNK and p38 MAPK. When the BMP (violet) 

joins the antagonist Nog (Blue), they form the Nog / BMP complex, which results in inhibition and modulation of its 

signal causing decrease in bone formation. 

 

Noggin gene 

The human NOGGIN gene (NOG), with a length of 1.9 kb is located on chromosome 17q22 

(NOG; MIM # 602991). Consists of a single exon and encodes a protein of 232 amino acids (NP 

005441) with a molecular weight of 25,7 KDa (UniProt NOGG_HUMAN, # Q13253). The 

protein on the other part is characterized by a carboxy-terminal cysteine-rich, which is used to 

classify antagonists of BMPs in the different subfamilies: chordin and noggin, DAN and twisted 

gastrulation (7).The form of this protein is the two axes; one is butterfly-shaped and another 

called snake-shaped clip, which is rolled around the ligand and occludes BMPs and these binding 

sites to their type I and II receptors. Nog dimers forming the shaft 1, consisting of two pairs of 

chains extending β preceded by an N-terminal 20 amino acids that form the axis 2 (CLIP 

segment) (13) (Figure 2). 

 
 



FIGURE 2 

NOG PROTEIN STRUCTURE 

 

 
The N-terminal domain  of the noggin  protein involves the peptide signal and the clip fragment, which are formed 

by approximately by  20 amino acids  This region is constituted  in totality by β-sheet,  while the C- terminal region  

is formed by  α helix  and  β sheet. And contains the cysteine Knot which allows this protein classification. 
 

Nog acts as a modulator of BMPs, a regulator of BMP signaling complex: 2, 4, 6, and 7 in 

particular. Nog has a very important role in embryogenesis, as it influences the differentiation 

and development of cartilage, skeletal muscle, and neural tissues and craniofacial structures (64). 

Nog is critical to chondrogenesis and osteogenesis embryonic joint formation (19-21). It is 

regulated by the FGF-2 and FGF-9 which in recent studies showed that when combined with  

Nog  prolong human embryonic stem cells in vitro (65) they could be used to normalize or 

balance somehow bone remodeling activity (66). 

 

Noggin/bmp complex 

As mentioned earlier, Bone Morphogenic Proteins (BMPs) are important for both embryonic and 

postnatal skeletal and bone development (67,68). The activity of BMPs is regulated by several 

soluble antagonists  among them Nog  are very important because it prevents the binding of 

BMPs to the surface of its receptors avoiding  signal transduction BMPs start on target cells 

(13,67) (Figure 3). 

 
 

 



FIGURE 3 

STRUCTURAL CHANGES IN JAW DEVELOPMENT 

 
The union of Nog to some BMPs inhibits activation of these receptors by the CLIP segment (red). The type I 

receptor (ALK1, Alk2, Alk3, and ALK6) and type II (BMPR-II, ActR-II and ActR-IIB) are the ones that primarily 

occlude by its high specificity with some BMPs. This receptor blockage by Nog prevents signaling through Smad-

dependent pathway and nondependent Smad. As for the dimerization of BMPs, this is similar to Nog; it extends in 

the form of butterfly (violet) but from a central body allowing it to be assembled with Nog. 

 

Nog antagonistic action occurs in undifferentiated mesenchymal cells that are to be differentiated 

into osteoblasts (69). However, sometimes antagonists are promiscuous, that is, their role is not 

limited to BMPs. They can join other members of the superfamily of TGF β (17). For example 

Nog and sclerotin interact with each other to cancel their respective antagonism (70). This 

indicates that the function of the antagonists is dependent on its affinity for BMPs with which 

they interact (62,70). BMP2 interacts or has high affinity for heparin sulfate proteoglycans.  Nog 

and chd also interact with these proteoglycans, however it is not clear whether these associations 

which are covalent unions, are irreversible at some point (71). What is clear is that the potential 

for interaction between receptors and ligands may also depend on the concentrations of ligand. 

For example, at low concentrations it appears that BMPs can join dimeric receptors Type I.  

Specific receptor affinities have not been determined for all BMPs (60,72-73). It has been found 

that the BMPs are expressed in a specific time and place in order to regulate the growth of 

craniofacial elements derived from the neural crest, and that Nog union alters this growth 

through via binding to type I receptor Alk2 using the Wnt pathway, which results in cleft lip and 

palate and mandibular hypoplasia (74). Similarly, the loss of these inhibitors of BMPs (Nog-

Chd) may affect mandibular growth and positioning of the temporomandibular joint, which 



definitely seems to suggest that, the dose of BMPs is very important (41,75-78). Mutations in the 

Nog/Bmp complex are manifested in rare skeletal disorders such as the multiple synostosis 

syndrome 1 (78). Also it has been observed in mouse model that Nog overexpression causes a 

severe form of osteoporosis, while its haploinsufficiency can act in the protection from arthritis 

(79). Moreover, Nog transgene expression under the control of skin keratin 14 promoter, cause 

tumorgenesis, suggesting that this gene may inhibit tumor suppressing properties of the BMPs 

(80). It has also been reported that Nog, could act as a molecule that maintains pluripotency by 

short periods from stem cells that are supported on hydrogel matrices, which could be used in 

case of bone regeneration (81). BMPs can be integrated with other signaling proteins according 

to cell needs and are regulated from the nucleus epigenetic shape. They also influence growth 

factors such as FGF, Wnt, Sonic hedgehog (Shh) and Notch in order to develop different tissues. 

It is unclear what role the BMP antagonist Nog plays in the formation of the craniofacial 

skeleton, due to its multiple domains of expression during formative stages. 

 

Noggin and jaw development 

The mandibular development takes place in three components: The first component comprises 

the prominence of the jaw which grows distally from the embryo. The second component is the 

formation of teeth (Odontogenesis) and the third component is the development of the supporting 

structures of the jaw (82,83). The three components require specific modulation of the activity of 

the BMPs, this has been demonstrated by the ectopic application over the jawbones (22,84-85). It 

has also been shown that the lack of function of its antagonist Nog results in skeletal defects and 

neural tube. Nog has a unique role in the early development mandibular (17,86) but acts with 

Chd for mandibular growth. Apparently both antagonists are also expressed in the three major 

phases of development of the gill arches and are both expressed around the pharynx and 

mandibular buttons (22). Winnier et al. in 1995 (87) analyzed the pharyngeal endoderm and 

ectoderm mandibular BMP-4 mutant mice, finding absence of the development of the early 

phases of the jaw, with implications in the almost complete loss of the jaw. 

 

Studies in knockout  of Nog shows abnormalities in the neural tube and the somites and 

mandibular defects ranging over a range of phenotypes from the mandibular hypoplasia, passing 

through an intermediate phenotype micrognathia (poor formation of the jaw) to agnathia 

(absence of mandibular formation) (88,89). It has  also been suggested that gene coding  Nog  

variants can act  as a holoprosencephaly aetiological factor for human, in which the presence of 

the mandibular micrognathism is evident (90). Nog seems to play an important role in the early 

mandibular development (89) and functions redundantly with Chd for mandibular growth 

(88,89). Analysis of the NOG gene polymorphisms in Colombian individuals with mandibular 

micrognathia suggests that this gene is involved in the genesis of this anomaly (91). Studies in 

mice with mutations in the Nog gene (Nog +/-) have shown micrognathia with incomplete 

penetrance, a thin jaw and bilateral asymmetries. In general, the most severe defects were found 

in double mutants than in heterozygotes (40,89). 

 

Similarly, it has been observed that the direct application of Nog regulates the BMPs in 

chondrogenesis, deducing that the activity of these proteins is increased when the antagonists 

decrease, and this increase reduces the expression of FGF-8 leading to improper migration of 

neural crest cells of the first gill arch, causing stunt growth of the bones of the upper and lower 



jaws. This shows that the coordination of the expression of FGF-8 and BMP-4 in time and 

adequate space is also critical to the jaw development (92). 

 

Mandibular development therefore appears to be influenced by the modulation occurring in the 

BMPs by their antagonists, (Nog and Chd). Given that BMP signaling is key to the formation 

and migration of neural crest cells and jaw formation depends on this migration, alteration of this 

signal produces, among other craniofacial bone defects, a severe hypertrophic jaw. This is shown 

in studies conducted in mouse embryos, where expression of BMP-4 and their antagonists was 

blocked presenting cell death of mesenchymal cells of the mandibular base causing agnathia 

(9,40).   

 

Considering the above, the hypothesis proposes how mutations in the gene Nog can alter the 

formation of its protein, which in turn would prevent a proper fitting of the BMPs receivers 

causing a lack of regulation of their signaling. This leads to overexpression of BMPs generating 

apoptosis of mesenchymal cells involved in mandibular growth. This lack of growth is based on 

the dose, going from a range of hypoplasia, micrognathia through agnathia (Figure 4).  

 
FIGURE 4 

STRUCTURAL CHANGES IN JAW DEVELOPMENT 
 

 
The BMPs play an important role in the migration of neural crest cells for the formation of the 3 components of the 

jaw (thin blue arrows). Mentonian symphysis, teeth and supporting structures such as ascending branches and 

Meckel's cartilage.  Nog modulates of BMPs signal through binding to their receptors in the extracellular space. 



When the gene which encodes Nog protein suffer impaired function primarily by mutations, the dose of the BMP 

signaling is increased which leads to lack of migration and death of mesenchymal cells of the neural crest which 

form the jaw. Therefore this could explain the presence of the different phenotypes according to the dose of 

signaling and these can range from hypertrophy and / or mandibular hypoplasia, through the micrognathism, up to 

the total lack of formation of the jaw called agnathia. 

 

CONCLUSIONS 
 

In conclusion, in the development of the mandible there are numerous genes involved in each 

stage of the formation of this structure. By altering these genes, defects occur that affect its 

growth, leading to abnormalities. Among these defects, the most often is mandibular 

micrognathia. It is known that the mandibular tissue derived from the neural crest, which in turn 

interacts with tissue as the endoderm and ectoderm result in the formation of this structure and 

the BMPs in turn play a key role as a regulator of development of neural crest cells and their 

derivatives. 

 

It is also known that these BMPs have main antagonists (Nog and Chd) and modulating the 

signal act in regulating the development of craniofacial structures. The Nog antagonist 

specifically, plays an essential role and acts as both in the early pleiotropic development in the 

late development of the jaw and in the presence of BMP 2, 4, 5, 6 and 7 increases its expression 

in osteoblast cells and chondrocytes.  

 

RECOMMENDATIONS 

 

The mechanisms by which this gene could cause this malformation are not well understood. 

Therefore is necessary to undergo more molecular studies of the NOG gene and other regulator 

genes of the BMPs signaling in patients with mandibular micrognathism and mandibular growth 

alterations, which can give light to the etiology of this anomaly. Epigenetic studies are suggested 

in order to determine not only the aspects which influence the ethiology of these anomalies from 

the classic genetics standpoint, but also the environmental factors involved. 

 

PROSPECTS AND CHALLENGES 

 

For several decades, studies have been conducted on craniofacial development and 

morphogenesis and have identified alterations in the gene sequences involved in the formation of 

these tissues. Animal models have also been used in which specific mutations and embryological 

techniques have been performed, allowing us to determine the importance of different signaling 

pathways. The Nog gene has recently attracted attention due to its involvement in the 

development of the mandible and several other craniofacial elements derived from neural crest 

cells (NCCs). Moreover, a lack of proper Nog function appears to be related to another 

craniofacial malformation that has one of the highest rates of morbidity in the world, one of them 

being cleft palate. Several studies using a topical treatment of the noggin recombinant human 

protein (rh Noggin) in mice with craniosynostosis (premature closure of cranial sutures) have 

shown that rhNoggin prevents this premature closure and may be a potential medical alternative 

for treating craniofacial syndromes. Furthermore, rhNoggin may also be used to treat mandibular 

growth alterations, such as prognathism and micrognathia as well as cleft palate. Viral and non-

viral methods have been designed for transgene introduction and are potential strategies for 



craniofacial regeneration and treatment because more studies are focusing on designing safe gene 

therapy protocols for a single gene with the long-term goal of using similar protocols to treat 

complex diseases that involve several genes in their etiology. The use of these ex vivo strategies, 

such as cell transduction with retroviruses, is promising and may lead to successful treatment. 

However, it is essential to perform each step carefully, taking into consideration genotoxicity, 

and to begin integrating gene therapy with craniofacial engineering. 
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