
Lat. Am. J. Phys. Educ. Vol. 10, No. 1, March 2016 1301-1 http://www.lajpe.org 
 

A simple method for construction of higher-order 
potentials and computation of scattering phase 
shifts 
 
 

U. Laha and J. Bhoi 
Department of Physics, National Institute of Technology, Jamshedpur-831014, India. 
 
Email: ujjwal.laha@gmail.com 
 
(Received 23 July 2014, accepted 4 January 2016) 
 
 

Abstract 
By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon 
potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground 
state wave function with the parameters of Arnold and Mackellar are used as the starting point of our calculation. We 
compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit 
of our approach to the problema 
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Resumen 
Por la explotación racional del formalismo de la supersimetría de la mecánica cuántica, potenciales parciales superiores 
de onda nucleón-nucleón, se generan a partir de sus interacciones en estado fundamental. El potencial nuclear Hulthén y 
la correspondiente función de onda del estado fundamental con los parámetros de Arnold y Mackellar, se utilizan como 
punto de partida de nuestro cálculo. Calculamos los cambios de dispersión de fase de nuestros potenciales construidas a 
través del Método de la Función de Fase, para examinar el mérito de nuestro enfoque del problema. 
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I. INTRODUCTION 
 
Witten [1], first developed the methodology to study the 
quantum mechanical system governed by an algebra identical 
to that of supersymmetry in field theory. Since then, it 
becomes a popular tool to deal with hierarchy problems and 
calculation of related physical observables. For any 
Hamiltonian with one degree of freedom, a comparison 
Hamiltonian can be constructed such that the resulting system 
as a whole is supersymmetric [1, 2, 3, 4].  

The Hamiltonian hierarchy problems in supersymmetric 
quantum mechanics [SQM] lead to the addition of appropriate 
centrifugal barriers, and consequently, the higher partial wave 
potentials are generated fairly accurately in atomic physics. 

Naturally, question may arise whether this methodology is 
equally applicable for nuclear cases or not, as the nucleon-
nucleon potentials are highly state dependent. In the recent 
past, we have studied nucleon-nucleon scattering within the 
framework of SQM [5, 6, 7] for both energy-dependent and 
independent interactions and achieved fairly good agreement 
for higher partial wave phase shifts in the low and 
intermediate energy range.  

However, for high energy range ( 200LabE MeV≥ ) our 
phase shift values differ from those of standard data [8, 9].  

In our earlier publications [5, 6, 7], the (p-p) interactions 
are generated by simply adding electromagnetic potential to 
its corresponding nuclear part.  

Unlike our previous methods, here we shall generate p-
wave potential for the (p-p) system, from its s-wave part with 
the addition of an appropriate centrifugal barrier term, of 
which half of the contribution comes from electromagnetic 
part and other half from nuclear part.  

We also define another set of interactions by the addition 
of proper centrifugal term to its s-wave part, and study their 
effectiveness in computation of nucleon-nucleon phase shifts 
through the phase function method (PFM) [10]. 

In section II, we develop p-wave nuclear potential for (n-
p) and (p-p) systems through SQM. We shall demonstrate the 
usefulness of our constructed potentials in section III by 
computing the values of p-p and n-p scattering phase shifts by 
PFM. Finally, in section IV we put some concluding remarks.  

 
 

II. p-WAVE NUCLEAR HULTHEN POTENTIAL 
 
There exist experimental situations which involve scattering 
by additive interactions, some of which must for various 
physical reasons be treated exactly, whereas others may be 
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relatively small perturbation. A typical example of this kind is 
the scattering of particles under the combined influence of 
Coulomb and nuclear forces like proton-proton (p-p) 
scattering.  

In charged particle scattering the long range of the 
electromagnetic interaction (coulomb) is a source of special 
difficulties.  

It has been argued that pure Coulomb potential never 
really occurs in nature, and becomes somewhat screened at a 
certain distance. Thus, for p-p scattering the s-wave effective 
potential 0 ( )PV r  is written as: 
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is the s-wave Hulthen or screened Coulomb potential with 
atomic parameters .&0 aV  

In SQM, the supersymmetric partner 1H with potential 1V  
(p-wave potential) of the Hamiltonian 0H : 
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with its ground state eigen function )0(

0ψ , and energy eigen 

value )0(
0E  is given by [1, 3]: 
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The application of the above relations to the Hulthen potential 
are now in order. 

Since its appearance the Yamaguchi potential [11]: 
 

,),( )( sresrV +−= βλ                          (6) 
 

with λ , the strength and ,β  inverse range parameters 
becomes a popular tool in dynamical calculations.  

The bound state wave function for the Yamaguchi 
potential is identical to the wave function for the first bound 
state of the Hulthen potential with range 1( )β α −−  and depth 

2 2( )β α− −  [12]. 
A nuclear Hulthen potential with these parameters rewritten 
as: 
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with its ground state solution: 
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In view of Equations (5) and (7), the wave function in Eq. (8) 
leads to the supersymmetric partner potential: 
 

.
)(

)()()( 2

)(2

01 rr

r

NN ee
erVrV βα

βααβ
−−

+−

−
−

+=         (9) 

 
In equation (9) the second term simulates the effect of 
centrifugal barrier apart from a factor of 2. Similarly, for 
atomic Hulthen potential one has: 
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In view of above the p-wave potential for p-p scattering is 
defined as: 
 

.)()()( 111 rVrVrV NAP +=                     (11) 
 

The corresponding potential for n-p scattering designated as 
)(1 rV NP is obtained with 0)(0 =rV A  in Eq. (11) so that the 

centrifugal barrier term from atomic part of the potential 
comes into effect. The associated phase shifts with 
supersymmetry generated potentials for the (p-p) and (n-p) 
systems will be denoted by andP Nδ δ

 

 respectively. 
We also propose the following set of potentials by adding 

the centrifugal term to its s-wave part directly: 
 

201
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and 
 

)()()( 101 rVrVrV NBAPB += ,               (13) 
 

and study its impact on the scattering phase shifts.  
In the above the letter B in subscript denotes the potentials 

where the corresponding centrifugal barrier terms are added 
directly to the s-wave parts and the associated phase shifts will 
be designated as andPB NBδ δ

 

 for (p-p) and (n-p) systems 
respectively. 
 
 
III. RESULTS AND DISCUSSION 
 
The phase function method represents an efficient approach to 
evaluate the scattering phase shifts for quantum mechanical 
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problems involving local [10] and non local interactions [13, 
14].  

For a local potential the function ),( rk


δ , called the phase 
function, satisfy a first order non-linear differential equation 
given by: 
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with ˆ ( )j kr



 and ˆ ( )krη


, the Riccati Bessel functions. We 
shall follow the phase convention of Calogaro [10] with 
Hankel function of first kind, written as 

1ˆ ˆ( ) ( ) ( )h x x ij xη=− +
  

.  

The scattering phase shift )(k


δ  is obtained by solving the 
equation from origin to asymptotic region with the initial 
condition ( ,0) 0kδ =



. 

During the solution of the phase equation, ( , )k rδ


 is built 
up by the potential as one moves away from the origin and it 
reaches its asymptotic value as soon as one gets out of the 
range of the potential. Obviously, ( ) ( , )k Lim k rrδ δ= →∞

 

. 
In Figures 1, 2, 3 and 4, we portray the (p-p) and (n-p) 

potentials as a function of distance for 0&1=  partial waves 

with 35.237 fmλ −=− and 11.4054 fmβ −=  for 1s0 scattering 

and, 37.533 fmλ −=−  and 11.4054 fmβ −=  for 3s1 scattering 
[12].  

 
 

 
FIGURE 1.1s0 potential as a function of r. 

 
It is observed that in figures 2 and 4 repulsive cores develop 
in the generated potentials. These potentials, generated from 

their 1s0 and 3s1 parts, correspond to 1p1 and 3p1 states 
respectively. 
 
 

 
FIGURE 2. Constructed 1p1 potential as a function of r. 

 
 

 
FIGURE 3.3s1 potential as a function of r. 

 
 
The corresponding singlet and triplet state phase shifts have 
been computed using the PFM and plotted in Figures 5, 6, 7 
and 8, as a function of laboratory energy up to 300 MeV along 
with the values of Arndt et al. [8] and Gross-Stadler [9] for 
comparison.  

Note that the results for the pure nuclear phase shifts (n-p) 
have been obtained by turning off the atomic Hulthen 
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interaction 0 ( )AV r  in the associated numerical routine for 
generating (p-p) phase shifts.  

 

 
FIGURE 4. Constructed 3p1 potential as a function of r. 

 
 

In Figure 5, the 1s0 phase shifts 0Pδ and 0Nδ  for (p-p) and (n-
p) systems respectively, agree well with that of references [8, 
9], for 30LabE MeV≤ . Beyond 30 MeV the phase shifts 
differ significantly with energy. This is quite expected 
because 1s0 phase shifts change sign beyond 225 MeV, and a 
one term potential is not capable of producing such effect.  

Therefore, it is expected that our potential for 1p1 state 
developed from 1s0 part will be able to generate reasonable fit 
to phase shifts at least up to 30 MeV.  

 
 

 
FIGURE 5.1s0 phase shifts as a function of ELab. 

 
 

In Figure 6, the two sets of phase shift values 1NBδ  and 1Nδ  
along with the values of references 8 and 9 are displayed. All 
our phase shifts show correct trend for 1p1 pure nuclear phase 
shift but differ in their numerical values. 

Among the two sets of phase shift values namely 1NBδ  and 

1Nδ , 1Nδ  is more consistent than 1NBδ  up to 250 MeV.  
 
 

 
FIGURE 6. 1p1 phase shifts as a function of ELab. 

 
 

 
FIGURE-7. 3s1 phase shifts as a function of ELab. 
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However, beyond 250 MeV 1NBδ  compares well with the 

standard data [8, 9]. This is due to the fact that the 2r−  term  
plays a crucial role in the high energy range. Therefore, our 
supersymmetry generated 1p1 potential is more realistic in the 
low and intermediate energy scattering compared to the 
proposed one with direct addition of centrifugal barrier. 

In Figure 7, our phase shift values for 3s1 state with the 
parameters of Arnold and Mackellar [12] agree well with that 
of references 8 and 9 up to 25LabE MeV= .  

In Figure 8, looking closely into this figure we notice that 
the phase shifts 1 1 1 1, , andP N PB NBδ δ δ δ produce correct nature 
of (p-p) and (n-p) scattering phase shifts for 3p1 state. 

 
 

 
FIGURE 8.3p1 phase shifts as a function of ELab. 

 
 

Among these 1 1andP Nδ δ  are superior to their counter parts 

PB1δ  and NB1δ  and are quite capable for comparison with 

Arndt et al. [8] and Gross-Stadler [9], up to 250 .LabE MeV=  
Beyond 250 MeV, however, 1PBδ  and 1NBδ  are more 

consistent than their counter parts. It is worthwhile to mention 
that our higher partial wave potentials are generated from their 
ground states with the addition of repulsive centrifugal 
potentials which make the p-p interaction more repulsive than 
n-p one. 
 
 
IV. CONCLUSION 
 
From our observation it is reflected that our constructed 
potentials are quite capable of producing the nature of phase 
shifts of respective states, but differ in their numerical values. 

This is due to the fact that, unlike atomic cases, the nuclear 
potentials are highly state dependent and cannot be generated 
in a proper way from any known interaction. The higher 

partial wave potentials that are generated here belong to 
Eckart class of potentials; the second terms in them behave as 
centrifugal barrier.  

Our supersymmetry operation for developing p-wave 
interactions from its s-wave part corresponds to the removal 
of one bound state and thereby produces a shallow potential 
with repulsive core from a deep s-wave interaction. Both deep 
and shallow potentials have been using in nuclear physics 
calculations, particularly, in nucleus-nucleus interactions.  

The bound states of the shallow potentials are related to 
the actual physical states of the fused nucleus. Michel and 
Reidemeister [15], nicely explained that it is possible to 
construct phase equivalent shallow potentials for α + 16O deep 
potential through SQM. Baye [16] has also found a good 
agreement between α-α shallow potential of Ali and Bodmer 
[17] and the deep potential of Buck et al. [18].  

Our phase shift calculation, through SQM and PFM 
involves only two parameters, while those of Arndt et al. [8] 
and Gross-Stadler [9], are associated with 52 parameters and 
27 parameters interactions respectively.  

Therefore, by comparing our phase shifts with those of 
Arndt et al. [8] and Gross-Stadler [9], it can be concluded that 
this simpleminded combined approach of SQM and PFM to 
compute nucleon-nucleon scattering phase shifts, will be of 
quite interesting to a wide variety of physicists and graduate 
students. Also our method of computing the scattering phase 
shifts by the use of the variable phase method deserves serious 
attention. 
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