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One of the highlights of the so-called scientific revolution was the crea-
tion of the infinitesimal calculus by Newton and Leibniz. The importance of
this invention is shown in part by the bitterest and fiercest priority dis-
pute the development of science has witnessed so far. The infinitesimal cal-
culus offers one of the rare instances where the inmediate impact of a new
tool and its foreseeable further achievements made even contemporary witnes-—
ses think and speak of a scientific revolution.

Thus Fontenelle in his ElSments de la géométrie de l'infini, which appea-

red in the year of Newton's death, 1727, described the several ways in which
Johann Bernculli, the Marquis de 1'HSpital, Varignon, and "all the great ma-
thematicians” carried the infinitesimal calculus forward "with giant steps".
The infinitesimal calculus introduced "a previously unhoped for level of sim-
plicity, and thus inaugurated an almost total revolution in mathematics.“1

No doubt Fontenelle voiced the feelings of his epoch. This holds in part
for the priority dispute, too, styled as a war between scientists, which had
been lost by Leibniz. Thus Fontenelle attributed to Newton the first discove-
ry of the infinitesimal calculus and to Leibniz only independent co-discove-
ry. Even if the comission of the Royal Society had in 1713 decided in favour
of Newton's claims it could not hinder the victory of the Leibnizian form of
the calculus in the 18th century, a victory which made English mathematics
appear hopelessly backward in the beginning of the 19th century when Charles
Babbage, John Peacock, and John Herschel entered Cambridge University. The
three translated Lacroix's famous French textbook on Differential and Inte-
gral Calculus into English and thereby acknowledged the superiority of Leib-
niz's differential notation over Newton's dot notation, which was still wide-
ly regarded as sacrosanct in Englandzv

What finally became clear with Charles Babbage's Reflections on the decli-
ne of science in England (London 1830), namely that there had been from the
very beginning two different forms of the calculus, one could have already

learned from Leibniz, who in letters to Johann Bernoulli had declared Newton's
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claims to be comparable to the fictive claim that Apollonius had invented the
new algebra of Vidte and Descartes-.

One of the key features of Leibniz' form of the calculus was the use of
special symbols and the algorithmic rules to which he had condensed it. In
contrast, Newton was not very keen on symbols and did not consider them to
be essential to his calculus of fluxions4.

As a philosopher Leibniz had reflected on the value of an appropiate sym-
bolism long before the discovery of the calculus. Tae development of the Leib-
nizian calculus by mathematicians like the Bernoullis, Euler, Lagrange, and
Laplace confirmed Leibniz' ideas and expectations.

In the following I will be concerned with the different roots of the algo-
rithmic thinking in mathematics that culminated in the calculus and in 18th
century analysis.

These roots include the word "algorithm" itself, the teaching methods for
elementary arithmetic, the role of symbols after the invention of printing
in the 15th century, the necessity to control the practise of craftsmen and
artisans by strict directions in the form of a sequence of instructions, Uni-
versalism as expressed by the belief in the existence of a method which allows
one to solve all the problems in a certain domain, the pedagogical functions
of scientific instruments like the proporticnal circle, and the belief in a
mechanical explanation of the Universe including the organic living world.

The predominance of symbolism, formalism and algorithms has to do with the
role given to intuition, to demonstration and explanation as we will see in
the systems of Descartes and Leibniz.

I will try to order these different and partly intertwined ideas. For this
I will first concentrate on the origins of "algorithm". Teh word stems from
the Latin version of the name Muhamad ibn Musa al-Khwarizmi, the author of
an arithmetic and an algebra in the first half of the 9th century. Al-Khwariz-
mi's arithmetic presented comprehensively the system of Indian numerals for
the first time. The oldest extant version of this arithmetic is a Latin trans-
lation of the 13th century which begins with the words: “"dixit algorizmi".

In the following centuries the original proper name changed into a term that
meant simply “arithmetic®.

By the beginning of the 16th century "algorithm" had acquired the connota-
tion of the fundamental operations of arithmetic. Special algorithms had been
developed for the domain of natural numbers, for fractions or (positive) ra-
tional numbers, and finally for the so-called cossic numbers5

Thus one arrived at a higher new arithmetic which was called algebra or
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Coss. In this algebra one solved linear and quadratic equations. In order to
solve an equation the reader had to learn an algorithm for the different ty-
pes of equations. These were distinguished because only positive coefficients
were allowed.

Theoretically one had to treat 27 different cases according as the given
coefficients could be positive, zero, or negative, which in the last case
meant that one had to switch sides in order to make the negative coefficients
positive. Despite tha fact that some of the 27 cases could be eliminated im-
mediately, it could be understood as a great success to reduce the number of
cases to be treated to eight as had been done by Christoff Rudolff. Further

progress was made when Michael Stifel in his Arithmetica integra subsumed un-

der one single rule all the eigth cases distinguished by Rudolff. The solu-
tion of the - as Stifel could claim now - one quadratic equation could be
found by the successive execution of five instructions. These five instruc-
tions in some way still reproduce the typical form of acoustic learning du-~
ring the 16th century. For this reason I will quotevit6:
"Fist begin with the coefficient of the unknown, halve £&; puf on
its place this half and Leave Lt on its place until you have finished.
Secondly square that half. Thirdly add on substract acconding £o Lts
signs the constant Zeam. Fourthly §ind the square root of Zhe sum
nespectively the difference. Fifthly add on substract according to
Zthe sign or acconding to your example."

As an additional crib to keep that rule in the form of a sequence of ins-
tructions in mind Stifel called it "AMASIAS", taking the first letters of the
separate instructions in their Latin form. The development of an appropiate
symbolism in order to represent a sequence of instructions like Stifel's ru-
le AMASIAS had to wait until the method of acoustical learning used for cen-
turies was given up in favour of visually appealing methcds which could alse
be used for autodidactic learning. Stifel and his predecessors had already
developed symbols for the unknown and its powers, for plus and minus, and
this process had been accelerated by printing. But the purely verbal formula~-
tion of the rule AMASIAS still shows the strong influence of the acoustical
method of learning by heart. Typical for the transition from an accustical
to a visual mode of perception in the low sciences is the adoption of the
"new" Indian method of calculation which replaced the old form using the aba-
cus. Both methods were taught in the form of algorithms, whereby calculating
with the abacus can be considered as a kind of mechanical algorithm. The ad-

vantage of the abacus is that no intermediate results have to be remembered.
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However the higher operations of multiplication and division become relative-
ly complicated in comparison to the written Indian-Arabic method.

The acceptability of the Indian method of calculation has to do with a se-
ries of factors out of which printing and the visualization of learning are
perhaps the most important.

Despite the many alternative methods of finding the "truth” developed du-
ring the Renaissance, there is one thing the different schools all.had in com-
mon - the hope for a method that would be simple and universally applicable.
The idea of an "ars inveniendi" which later dominated the thinking of Leibniz
had already been formulated in the Renaissance. The model for this "arxs inve-
niendi" was a geometrical one. Men sought a system that would not hinder cog-
nition and production7. People like Petrus Ramus postulated natural laws from
which instructions for actions and productions could be derived that took
their only justification from practical success. The same attitude, by the
way, can still be found in the 17th and 18th centuries when theologians and
philosophers like Nieuwentijt (1654-1718) and Berkeley (1685-1753) critici-
zed mathematics because of its inconsistent use of infinitesimals on the ba-
sis of the obvious success of analysis. This pragmatic attitude can also be
seen in the work of late 16th and early 17th-century mathematicians who had
abandoned the rigorous proof methods of the Greeks because these could only
be applied to results that were already known. Creative mathematicians were
much more interested in constructive methods that would lead to results. The
form in which these results were presented had tc be chosen according to the
capacities of those who were to apply them.

The capacities of the users of the tools offered by mathematicians and es~
pecially of the mathematical practitioners can be explored by looking at the
use of mathematical instruments. In accordance with the Renaissance search
for a simple and universal law, the instrument makers as a part of the group
of mathematical practitioners tried to develop mathematical instruments that
would cover as comprehensive a domain as possible. Most of the instruments
that were designed for multiple purposes acieved the sought-for multiplicity
of functions only by adding a large set of accessory parts. As a result the
instruments not only became expensivé and clumsy, but also very inhomogeneous
concerning the different applications. As a consequence of this, simplicity
of production and the ability ta solve all problems with a minimun of methods
ideally with a single method, were seen as criteria of superior quality.

The Italian Fabrizio Mordente invented between 1554 and 1567 an instrument

in the form of a circle with which he could practically master all of the
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£irst six books of the Euclidian Elements. This instrument was part of an e-
volution that ended with the proportional circle or sector. The loudest advo-
cate of the proportional circle was Galileo who claimed for his form of it
that it could be applied to the erftire domain of practical mathematics and
this with just one single method. The many descriptions of this instrument
that were published afterwards can be seen as algorithms, the steps of wich
had to be worked out mechanically in order to solve the problems poseds.

Another example where mathematical practice was transformed into an algo~-
rithm for those who had neither the desire nor the ability to understand the
mathematics behind it is offered by tha art of gaugin. Special gaugin rods
and instructions for their use were developed in order to find the volume of
a wine cask, normally by making only two measurements. The idea behind the
design of such a rod was to approximate the volume with a cylinder whose vo-
lume was given multiple of the standard measure for fluids used in that city
or region. In order to find this number tha gaugers would have had to perform
a multiplication. But that was avoided by means of special kinds of scales
plotted on the gaugin rods. In this way the gaugers from the 15th century on
had only to be led to a single number without any calculationg.

We have seen in the domains of lower and higher arithmetic, that is to say
cossic algebra and practical mathematics, that the algorithmic method of pro-
blem solving was justified mainly by the pedagigical aim of offering the u-
ser an invariable, reliable procedure for the solution of most or all of the
problems in his domain. Because of the limitedness and therefore comprehensi-
bility of the lower sciences it was by no means clear whether it would be pos-
sible by means of algorithmic methods to conquer new territory in higher ma-
thematics. The man who was most sceptical about algorithmics and their pos-
sibilities in higher mathematics was Descartes, and yet Descartes not only
pioneered in framing a mechanical explanation of the world but was also the
key figure of the new algebra who considerably improved the algebra of Viéte
by creating an appropiate symbolism. It should be added that Viéte himself
distinguished three parts in his algebra or new analysys which he christened
zetetical, poristical and exegetical analysis. It is the last part which con-
tains the algorithmic-formal rules for the transformation and solution of the
equations found by zetetical analysis’o.

The reason for Descartes' resistance to formal, algorithmic methods can
be found in the fact tha only a fraction of human activities can be explai-
ned mechanically. Decarted was prepared to give mechanical models for the

functions of sensual perception, the transmission of these perceptions to
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memory, and the control of physical movement by the brain or a part of it;
that is to say all these functions can be imitated by mechanical apparatuses.
Descartes even gives details of such automata and machines in the second
part of Le Monde, which was published porthumously11

In the Regulae ad directionem ingenii, especially in rule XII, the domain

which can be explained mechanicaly 'is contrasted with an exclusively intellec-
tual domain wich is responsible for the process of cognition. This domain is
dominated by a power that cannot be explained in mechanical termsiz. This in-
tellectual, spiritual power is described by Descartes as pure intellect, as
powers of imagination, as memory, or as sensation. Interestingly, there is

a corporeal memory whose function is to store sensual perceptions, which can
be explained by a machine, and a memory whose function is to recollect and
recognice.

This reservation of a non-mechanical domain for the intellectual capaci-
ties of the human being is one of the reasons why Descartes did not think
much of algorithms, which can be worked out by an automata.

The second and related reason is that algorithms do not fit into Descar-
tes' idea of the method for attaining cognition. This method consists of a
first part called intuition, which reduces the perceived impressions to evi-
dent alementary principles, and a second part which deduces all possible phe-
nomena from these principles. For this procedure Descartes offers rules that
serve as a help for decisions. This method is realized in what Descartes calls

Mathesis universalis, the way to perceive, to gain knowledge. But a human mind

that follows al algorithmic program is bound to remain in a restricted, 1li-
mited domain and lose the possibility of finding new results13. Because of
this, Descartes objected when Fermat presented his algorithmic methods for
finding exteme values of a function an for finding the tangent to a curve gi-
ven in algebraic form14.

For Descartes, the only thing that counted was individual intellectual ca-
pacity controled by a few evident basic principles. Therefore Descartes re-
frained from burdening memory with a mass of formal rules that rule out thin-
king. Instead, Descartes supported the idea of memory by demonstation which
connects the demonstrated result with the bhasic principles evident a priori.
This was the way in which Descartes had realized the program to algebraisize
geometry. By this method Descartes had solved the most central problem of
his Géométrie - to find the normal and the tangent to a point on any given
curve in very general terms by clarifying the geometrical facts and by showing

how to determine the center of the osculatory circle. When, shortly after the
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publication of this solution in the Géométrie, Descartes was confronted with
Fermat's algorithmic solution of the same problem, doubts immediatly arose
about the possibility of giving rules relevant for all problems in an as yet
undefined domain of validity. Descartes voiced his doubts in a letter to Fer-
mat in 1638.
"In fact it {4 Aimpossible to master all the cases that could be pro-
posed within the domain of a single nule i§ one reserves the night
2o change something at will, as 1 did in what T wrote, where 1 did
not restruuct myseld to the domain of any nule but only explained the
pruinediples of my procedure and gave some examples 40 that anyone
could apply it afterwarnds to the various casesthat can occuwrt accor~
ding to his abi,u,tg.”ls

Fermat, however, who felt free from any such considerations, had checked
the correctness of his two rules for the determination of extreme values and
of tangents. Therefore he thought he was perfectly justified when he claimed
universal validity for his two methods. Fermat had formulated them in keeping
with the algorithmical tendencies of the 16th century as a sequence of opera-
tions to be applied to the function describing the problem. What was new with
Fermat was not the claim for the universal validity of his methods, but the
fact that this claim was applied to an undefined domain. The single steps of
Fermat's rule for the determination of extreme values amounts to equating the
first derivative of a polynomial with zero. After the general formulation of
his rule, Fermat applied it to the problem of finding the maximum rectangle
for which the sum of the length and the breadth is a given line segment. Af-
ter finding the result that the maximum is achieved by halving the line seg-
ment to obtain a square, Fermat stated: "We can hardly expect a more general
method"16.

Fermat expressed himself even less modestly at the end of his second rule
for finding tangents. Here the amazed Descartes could read:

"This method neven fails and could be extended fo a number of beawti-
§ul problems; with its aid, we have found the centers of gravity of
§igures bounded by straight Lines and curves, as well as those of so-
Lids, and a number of othen results which we may ineat elsewhere £
we have time to do s0."7%

It is true that Descartes' reaction to Fermat's claims was determined as
much by personal feelings as by relevant objections. It is also true that Des-
cartes managed to find a counterexample for which Fermat's rule failed; but

neither Fermat nor Descartes had the means at their disposal to explain why
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this was so. For Descartes, of course, it sufficed to give a counterexample
in order to justify his dislike of universal c¢laims for an algorithmic rule.
For Fermat, on the other hand, it sufficed to circumvent the difficulty po-
sed by Descartes by reformulating the problem in a way that would allow the
application of his rule14. However, the majority of those who in reading Des-
cartes' Géométrie took an interest in the determination of tangents on cur-
ves found Fermat's rules, particularly his tangent rule, much more appealing
than Descartes' comparatively vague description of how to procede. Descartes
presupposed an understanding of what and why whereas with Fermat it was only
necessary to follow his precise instructions in order to find the required
result. Moreover, from a technical point of view Fermat's tangent rule was
simpler and more practical because there were fewer calculations and trans-
formations. No wonder then that in 17th century mathematics the algorithmic
style of presenting a method as exemplified by Fermat prevailed. Exactly the-
se virtues of simplicity and the dispensability of mathematical knowledge
were stressed in teh development following Fermat. Both of Fermat's rules
were extended to the domain of implicit functions of the form where an inte-
ger {?) function of two variables
flx,g} =z a,hx’“g with " =0,...,n
L

is equated to zero. This was done by Ian Hudde for the method of extreme va-
lues in van Schooten's famous Latin edition of Descartes' geometry in 1659
and by de Sluse for the tangent rule in an article in the Philosophical Tran-
sactions in 1673. De Sluse explicitely boasted that a boy without any mathe-
matical education, ggg{'ﬁyswuefpSs, could learn and successfully apply his
method without any effort of c:aZch.xla.ticn'\]7

The different algorithmic rules for the determination of extreme values
and tangents developed after Fermat constitute one part of the prehistory of
the infinitesimal calculus. Another root is the method of indivisibilia crea-
ted by Cavalieri. Cavalieri's method is based on the methods of determining
area and volume developed by Archimedes, Stevin and Kepler. Based on the prin-
ciple called after him, Cavalieri found one of the most fundamental results

for the future calculus, which we now state in the following form:

7 1 n+]
Jx dx = TFT X -

The impact of Cavalieri's work can best be seen in England in the person
of John wallis, who integrated the method of indivisibles into his Aritmeti-

ca infinitorum18.
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Before the invention of his calculus, Leibniz had first read all of the

Geometria indivisibilibus of Cavalieri19; and Newton owed the decisive me-

thods for his theory of series in large part to the inspirations he got from
the reading of John Wallis.

The most distinctive criteria of the calculus in Newton's and Leibniz' ti-
me which were stated explicitly by Leibniz and less clearly in Newton's va-
rious drafts are the following twozo:

1. Diferentiation and integration are inverse operatiocns.

2. Both methods for differentiation and integration have. to be expressed

in an appropiate algorithmic form.

Newton had found the basic principles of his calculus of fluxions in the
winter of 1665/66. However, the formation of Leibniz' calculus, which took
place during his stay in Paris from 1672 to 1676, is more interesting from
a formal point of view. Newton appears comparatively much more conservative
in following up as a mathematician the paths opened by Fermat and Cavalieri.

Leibniz, on the other hand, had thought of an epistemological program for

a new mathesis universalis, an ars inveniendi, long before he began to be in-

terested more profoundly in mathematics. He reportszl that he first hit on
this idea at the age of 18.

A draft of how to realize this program can already be found in his Disser-
tatio de arte combinatoria22 from the year 1666.

Here Leibniz proposes to break down all imaginable concepts into a small
number of simple, consistent elements and to find for these elements typical
aymbols which he calls ‘“characters". He is convinced that it is possible to
express all results known to be true immediatly in a generally intelligible
way and moreover to find new results simply by combining these "characters®.

This Leibnizian characteristica universalis is of special relevance for his

calculus. In a letter to olderabourng in 1675 Leibniz tries to explain this
symbolic language for his dreamed of ars inveniendi. It should secure a so-
1lid and visible truth in a so to speak mechanical way.

It is distinguished by preventing us from error even against our own will.
In a later lettexr to Oldembourg24 Leibniz claims that this symbolic language
goes on inside the human mind during the speaking process and thus enables
even the lesser intelligent to utter extraordinary sentences.

In saying this, Leibniz clarifies the contrast which distinguishes him
from Descartes. The Cartesian distinction between a mechanically explicable
domain and one that cannot be explained in this way is given up in the pro-

gram of Leibniz' ars inveniendi. With this in mind it seems very natural for
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Leibniz to bhe involved in the construction of the most effective four calcu-
lating machines of his time. Of course, this does not create a contradiction
with Descartes. The contradiction arises only with the attempt to construct
an essentially more complex machine with the aim of reproducing and replacing
all the functions of the human mind. This is exactly the idea behind Leibniz'
program, the realization of which, as has been said, would have made unneces-
sary Leibniz' own mind, in which for the last time all human knowledge of an
epoch was concentrated.

Leibniz' descriptions of his symbolic language in letters to Henry Olden-
bourg coincide with the creation of his infinitesimal calculus. In some way
the development of Leibniz® calculus can be understood as a test for his pro-

gram of a characteristica universalis.

In his investigations which culminated in the creation of the calculus,
leibniz tried according to the lines of his ars invenien@i to summarize the
available results concerning the determination of areas, centres of gravity,
etc. This is to say that he tried to clarify for himself as a student the re-
sults of his predecessors by creating a new symbolism which summed up their
achievements in a form better adapted to his way of thinking and which left
room for greater generalizations. I can only touch on the formation of this
special symbolism25

In the middle of a manuscript written in the fall of 1675 which was deci-
sive for the first version of his calculus, Leibniz changes from a terminolo-
gy stemming from Cavalieri to the modern integral sign, which he had derived
from the word summa, and to the little "d" for the differential operator,
which was meant as an abbreviation of differentia26.

In this manuscript Leibniz had already stated the simplest rules of the

integral calculus which he described by the word calculus summatorius in con-

trast to his calculus differentialis, Here one can observe the degree to which

Leibniz trusted in the wviability (?) of his symbolism. Leibniz wanted to know
if the operator d applied to the product xy would result in the product dx-dy
as he had assumed. The assumption shows impressively that Leibniz had rid him-
self completely from any geometrical idea in order to rely on purely formal
calculations. But one can also see Qhat Leibniz mearst when he claimed that

his characteristica universalis leads the mind by means of the symbolism,

that is to say, a way to right understanding that is perceptible to the sen-~
ses even if whk make mistakes. In a second attempt Leibniz used the reversibi-
lity of the integral and differential operators in order to show that by as-

suming
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dixy) = d{x].dly)
then .
J,dxdy= Jd(xg):xy=fdx [dy

which does not hold generally for sums. So Leibniz was forced to give up his
assumption that
dixy) = dx dy.
The analogous assumption for the quotient X had to be given up too, al-
though he was still not able to say what the meaning of d(xy) or d(%J was.
By the end of the year 1675 Leibniz had completed the main rules for the cal-

culus differentialis and with them to some degree the process of adopting the

results of his predecessors to this new symbolism. The calculus so far crea-
ted had to be elaborated to include infinitesimals as an example for the rea-
lization of Leibniz' ars inveniendi.

He alsc had to find out how to apply his differential calculus to the de-~
termination of tangents and he had to learn how to operate with series. It
took several more years before he achieved all this. In 1684 Leibniz published
the most important rules of his differential calculus in a very short paper
in the Acta Eruditorum. Here one can see that Leibniz was fully aware of the
algorithmic character if this calculus as well as of the consequences of it27

"Knowing thus the Algornithm {as T may say) of this caleulus, which

T call digferential caleulus, all othern differential equations can
be s0lved by a common methed. We can find maxima and minima as well
as tangents without the necessity of hemoving fractions, Luaticnals,
and othen restnictions, as had to be done acconding to the methods
that have been published hitherto. . . 1t 48 clean that our method
also covers transcendental cunves - those that cannot be neduced by
algebraic computation, on have no panticulan deghee - and thus holds
in a most genenal way without any particular and not always satisgac-
Lony assumpiions... And this £s only the beginning of a much more su-
bLime Geometry, pertaining fto even the most difficult and most beau-
Liful problems of applied mathematics, which without ourn differential
calewlus on something similar no one could attack with any such ease”.

R 28
Leibniz espressed similar views for his integral calculus two years later

The success of Leibniz' form of the calculus resulted in a purely formal
elaboration of infinitesimal methods. Thus Leibniz derived in analogy to the

binomial theorem for natural exponents a rule for higher differentials of
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products of several variables. This rule implies in the case of two variables:
n
dMxy) =ldx + dg)® = ¢ {:} d'x 4"y .
v=0
Leibniz had comunicated this rule to Johan I Bernoulli in a letter29 of 1695.
Obviously this induced Johan I Bernoulli to continue this formal procedu-
re inoan even more uninhibited fashion. Where Leibniz had introduced the sym-
bol d X, which leaves the function invariant because the operator works zero
times so to speak, so Bernoulli extended now the notion to negative exponents,
that is to say: d_n ] { 0
. ] .
In this way Bernoulli, by using an algorithm for division by a binomial,
hit on a special form of the Taylor series30
Despite an increasing number of critical veices, these impressive results
encouraged the mathematicians who followed Leibniz to stick fo formalism. No
wonder that Basel had become already, before Newton died, the centre of fur-
ther mathematical research in analysis. This was mainly due to the activi-
ties of Johan I Bernoulli, who passed on his insights and methods to the next
generation of the Bernoullis and to the young Leonhard Euler. Euler, whose
books on analysis became classics and were used as textbooks well into the
middle of the 19th century, transmitted this formal tradition of his teacher
Johan I Bernoulli. Euler's calculus of Zeros became famous and even notoricus.
Joseph Louis Lagrange, who followed Euler in the second half of the 18th cen-
tury as the leading mathematician in Europe, tried to free Analysis from the
metaphysics of infinitesimal quantities as used by Euler. He did this by re-
verting to formal algebraic methods but in vain. Even a growing awareness of
the necessity to lay better foundations for analysis did not prevent him from
joining the_club of Leibnizian formalists. This becomes crystal clear in the
following comment31:
"Though the prineiple of this analogy between positive powers and
digfernentials, negative powers and Lnteghals is not obuious by Lt-
self, yet T will use Lt in this papers since the conclusions one draws
grom Lt ane nevertheless exact, as we can convince owisefves agter-
wands £in order to discoven several general theorems conceaning the
differentiation and integhation of functions of several variables.
These are mostly new theorems which can be found by means of other
methods only with gheat défficulty”.

As Leibniz had used the analogy between the natural powers of a binomial
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and higher differentials of the same order, Lagrange so introduced Euler's
exponential function as a formal analogy of the Taylor series. This means

that the exponential function serves as an algorithm for the application of
Leibniz' differential operator in order to get the Taylor expansion of a func-
tion. Ia a similar way, Lagrange, using the Bernoulli analogy between diffe-
rentials of a negative order and integrals of the corresponding positive or-
der, derived what has become known as the Euler-MacLaurin summation formula3 .

With the aid of this formula it is possible to approximate the finite sum
of the discrete values of a function with the integral of the function. But
the Euler-MaclLaurin formula leads to a kind of series that was later caller
“asymptotic". The means of handling asymptotic series could be developed on-
ly when mathematicians ceased to rely blindly on formal algorithmic methcds.
One pioneer of this new mathematics was Cauchy who postulated new standards
of mathematical rogour and developed the method of counter examples which had
already seen advocated by Descartes in the 17th century. These postulates can
be understood in part as reactions against the universalism of the formal
style of 18th-century mathematics and especially against its last prominent
representative, Laplace. He took Lagrange's results as a starting point for
the creation of the theory of generating functions and made this the analyti-
cal tool for probability theory.

The decline of the very fertile formalistic era in the 18th century was
not entirely a result of a growing number of mathematical problems with di-
vergent o semidivergent series. I rate two other factors as more influential:
The formal methods had come to an end; the formal period had exhausted its
possibilities. This was clearly seen by lagrange himself who compared the ma-
the matics of his time with a nine that had been abandoned because it had be-
come unprofitable33.

The second factor has te do with the social justification for the develop-
ment of algorithmic rules. Algorithms had been created forst of all for tho-
se who did not need or were not able to understand the principles underlying
mathematical methods and results. The number of those who depend as mathema-
tical illiterated on a sequence of unexplained instructions decreased dras-
ticly as a consequence of the reforms of the educational system beginning with
teh French revolution. All of this contributed to a profound change in the
character of mathematics in the first decades of the 19th century.

As one of the key figures of this change and so as a witness to it, the

princeps mathematicorum himself, Gauss, could join Descartes' party (even

though he was unaware of it), when in 1843 he stated in a letter to his friend
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34
Schumacher
"In general .t holds fern all these new caleuluses that we can achie-
ve nothing with thein help that could not be achieved without them".

In contrast to Descartes, Gauss was ready to acknowledge the practical ad-

vantages of a calculus if its domain of validity is taken to be limited.
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