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Abstract
Modern portfolio theory accords symmetrical treatment to all deviations from expected

return, positive or negative. This assumption is vulnerable on both descriptive and behav-

ioral grounds. Many of the predictive flaws in contemporary finance stem from mathe-

matically elegant but empirically flawed Gaussian models. In reality, returns are skewed.

The presumption that returns and volatility are symmetrical also defies human behavior.

Losing hurts worse than winning feels good; investors do not react equally to upside gain

and downside loss. Moreover, correlation tightening during bear markets, not offset by

changes in correlation during bull markets, suggests that standard diversification strategies

may erode upside returns without providing adequate protection during times of stress.

This article outlines mathematical tools for calculating volatility, variance, covariance,

correlation, and beta, not merely across the entire spectrum of returns, but also on either

side of mean returns. It pays special attention to beta. Beta is a composite measure that

reflects changes in volatility and in correlation as returns move across either side of their

expected value. Beta’s separate components address the distinct managerial concerns

arising from loss aversion (or upside speculation) and from changes in correlation under

different market conditions. Bifurcating beta in financial space describes both

phenomena and anticipates the behavioral response to volatility and correlation in falling

markets — problems appropriately described as sinking, fast and slow. 
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Desplomes rápidos y lentos:

La bifurcación de la beta en el espacio
financiero y conductual 
Chen, James Ming

Resumen
La teoría moderna de carteras confiere un tratamiento simétrico a toda desviación del

rendimiento esperado, positiva o negativa. Este supuesto resulta vulnerable tanto em-

pírica como conductualmente. Muchas de las imperfecciones predictivas de las finanzas

modernas tienen su origen en el uso de modelos gaussianos que, aunque matemática-

mente elegantes, son empíricamente erróneos. En realidad, los rendimientos son asi-

métricos. Más aún, la presunción de simetría tanto en los rendimientos como en la

volatilidad contradice el comportamiento humano. El dolor que produce perder es su-

perior al placer que conlleva ganar: los inversionistas no reaccionan igual ante las ga-

nancias que ante las pérdidas. Más aún, la correlación elevada en la parte bajista del

mercado, no compensada por cambios en la correlación en los periodos alcistas, su-

giere que las estrategias estándar de diversificación erosionan los rendimientos positivos

sin proporcionar una protección adecuada en los periodos negativos.

Este artículo describe las herramientas matemáticas necesarias para calcular volatili-

dad, varianza, covarianza, correlación y beta, no solo a lo largo del espectro total de

retornos sino también a cada lado de su media. Se presta una especial atención a la

beta, una medida compuesta que refleja cambios en volatilidad y correlación cuando

los rendimientos varían por encima y por debajo del valor esperado. Los distintos com-

ponentes de la beta hacen referencia a las diferentes cuestiones que preocupan a los

inversionistas, que surgen de la aversión a las pérdidas (o de la especulación en mer-

cados alcistas) y de cambios en la correlación ante distintas condiciones de mercado.

La bifurcación de la beta en el espacio financiero describe ambos fenómenos y anticipa

la respuesta conductual a la volatilidad y la correlación en mercados bajistas –proble-

mas consecuentemente descritos como desplomes, rápidos y lentos–.

Palabras clave: 
Beta, riesgo de caída, volatilidad, correlación, asimetría, modelo de valoración del

precio de los activos financieros, CAPM, valoración de activos, momentos estadísti-

cos, finanzas conductuales.



� 1. Seduced by symmetry, smarter by half

The capital asset pricing model (CAPM) remains the dominant paradigm in financial risk

management — at least among practitioners, if not among scholars. Despite evidence

that beta is not positively related to returns on stock,1 to say nothing of beta’s failure to

account for macroeconomic2 and idiosyncratic3 factors affecting security prices and re-

turns, many investment professionals continue to rely on the CAPM.4 Even Eugene Fama,

beta’s leading nemesis, has conceded that “market professionals (and academics) still

think about risk in terms of market .”5 “It takes a better theory to kill an existing theory,”

and the financial profession has “yet to see [a] better theory.”6 The spectacle is almost

cartoonish:

In spite of the lack of empirical support, the CAPM is still the preferred model for

classroom use in … finance courses. In a way it reminds us of cartoon characters

like Wile E. Coyote who have the ability to come back to original shape after being

blown to pieces …. Maybe the CAPM survives because (a) the empirical support

for other asset-pricing models is no better, (b) the theory behind the CAPM has

an intuitive appeal that other models lack, and (c) the economic importance of

the empirical evidence against the CAPM … is ambiguous.7

The inconclusive attack on the capital asset pricing model also threatens the larger frame-

work of modern portfolio theory, a broader branch of mathematical finance from which

the CAPM is derived. In a 2012 issue of AESTIMATIO, the IEB International Journal of Finance,

Harry Markowitz staged a stirring defense of modern portfolio theory over more mathe-

matically comprehensive models, citing “economically significant difficulties in cost and conven-

ience”: “The only inputs required for a mean-variance analysis are the means, variances, and covariances

of the [relevant] securities or asset classes.”8 Modern portfolio theory, however, remains vul-

nerable in its symmetrical treatment of all deviations from expected return, positive or

negative. This assumption is vulnerable on both descriptive and behavioral grounds. Many

of the predictive flaws in contemporary finance stem from its reliance on the mathemat-
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1 See Eugene F. Fama & Kenneth R. French, The Cross-Section of Expected Stock Returns, 47 J. FIN. 427 (1992); see also Marc R. Reinganum, A New
Empirical Perspective on the CAPM, 16 FIN. & QUANT. ANALYSIS 439 (1981); Seha M. Tinic & Richard R. West, Risk and Return: January vs. the Rest of the
Year, 13 J. FIN. ECON. 561 (1983).

2 See Nai-Fu Chen, Richard Roll & Stephen A. Ross, Economic Forces and the Stock Market, 59 J. BUS. 383 (1986).
3 See Josef Lakonishok & Alan C. Shapiro, Stock Returns, Beta, Variance, and Size: An Empirical Analysis, 40 FIN. ANALYSTS J. 36 (1986).
4 See Haim Levy, The CAPM Is Alive and Well: A Review and Synthesis, 16 EUR. FIN. MGMT. 43 (2009).
5 Eugene F. Fama, Efficient Capital Markets: II, 46 J. FIN. 1575, 1593 (1991); accord Glenn N. Pettengill, Sridhar Sundaram & Ike Mathur, The Conditional

Relation Between Beta and Returns, 30 J. FIN. & QUANT. ANALYSIS 101, 102 (1995). As recently as 2001, more than two-thirds of financial practitioners

in the United States used the classical CAPM formulation of beta as their basic measure of systematic risk. See John R. Graham & Campbell R.

Harvey, The Theory and Practice of Corporate Finance: Evidence from the Field, 60 J. FIN. ECON. 187 (2001). A 2004 survey reported that 45% of

European financial practitioners relied on the CAPM. See Dirk Brounen, Abe DeJong & Kees G. Koedijk, Corporate Finance in Europe: Confronting
Theory with Practice, 33 FIN. MGMT. 71 (2004).

6 TIM KOLLER, MARC GOEDHART & DAVIDWESSELS, VALUAITON: MEASURING AND MANAGING THEVALUE OF COMPANIES 261 (5th ed. 2010).
7 Ravi Jagannathan & Zhenyu Wang, The Conditional CAPM and the Cross-Section of Expected Returns, 51 J. FIN. 3, 4 (1996) (footnote omitted).
8 Harry Markowitz, The “Great Confusion” Concerning MPT, 4 AESTIMATIO 8, 14 (2012). See generally Harry Markowitz, Mean-Variance Approximations to

Expected Utility, 234 EUR. J. OPERATIONAL RESEARCH 346 (2014); Harry M. Markowitz & Erik Van Dijk, Single-Period Mean-Variance Analysis in a Changing
World, 59 FIN. ANALYSTS J. 30 (2003).
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ically elegant but practically unrealistic construction of “beautifully Platonic models on

a Gaussian base.”9 Much of the edifice of contemporary mathematical finance — from

the capital asset pricing model to the Black-Scholes model of option pricing,10 Merton’s

distance-to-default model of credit risk,11 the original RiskMetrics specification of value-

at-risk,12 and the Gaussian copula13 — traces its origins to the Gaussian “normal” distri-

bution.14 In reality, returns are skewed15 and exhibit heavier than normal tails.16

The presumption that returns and volatility are symmetrical also defies intuitive and

quantitative understandings of human behavior. Investors do not regard excess gains

to be as troubling as failures to meet a targeted level of returns — if indeed they object

at all when returns exceed expectations.17 Most investors fear potential losses more than

they covet potential gains.18 Fear of future shortfalls and attendant disappointment

motivates precautionary savings.19 As the Supreme Court of the United States recog-

nized in 1936, decades before the rise of prospect theory, “[t]hreat of loss, not hope of

gain, is the essence of economic coercion.”20 In even simpler words drawn from the

lowest literary registers of the American South, “[l]osing hurts worse than winning feels

good.”21 Behavioral limits on investor rationality drive momentum in short-run stock

prices22 and persistent overreaction to market events over the long run.23

Asymmetry in financial returns raises a managerial concern distinct from volatility, 

variance, or any other measure of dispersion. Correlations among asset 

classes rise as markets decline.24 In unruly markets, the only thing that rises is 

9 NASSIM NICHOLASTALEB, THE BLACK SWAN: THE IMPACT OF THE HIGHLY IMPROBABLE 279 (2007).
10 See Fischer Black & Myron Scholes, The Pricing of Options and Corporate Liabilities, 81 J. POL. ECON. 637 (1973); Robert C. Merton, The Theory of

Rational Option Pricing, 4 BELL J. ECON. 141 (1973).
11 See Robert C. Merton, On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, 29 J. FIN. 449 (1974).
12 See JORGE MINA & JERRYYI XIAO. RETURN TO RISKMETRICS: THE EVOLUTION OF A STANDARD (2001); Jeremy Berkowitz & James O’Brien, How Accurate

Are Value-at-Risk Models at Commercial Banks?, 57 J. FIN. 1093 (2002).
13 See ROGER B. NELSEN, AN INTRODUCTION TO COPULAS (1999); David X. Liu, On Default Correlation: A Copula Function Approach, 9:4 J. FIXED INCOME 43

(2000).
14 See generally BENOIT B. MANDELBROT, THE (MIS)BEHAVIOR OF MARKETS: A FRACTALVIEW OF RISK, RUIN, AND REWARD (2004).
15 See, e.g., JOHN Y. CAMPBELL, ANDREW W. LO & A. CRAIG MACKINLAY, THE ECONOMETRICS OF FINANCIAL MARKETS 17, 81, 172, 498 (1997); Felipe M.

Aparicio & Javier Estrada, Empirical Distributions of Stock Returns: European Securities Markets, 1990-95, 7 EUR. J. FIN. 1 (2001); Geert Bekaert, Claude

Erb, Campbell R. Harvey & Tadas Viskanta, Distributional Characteristics of Emerging Market Returns and Asset Allocation, 24:2 J. PORTFOLIO MGMT. 102

(Winter 1998); Pornchai Chunhachinda, Krishnan Dandepani, Shahid Hamid & Arun J. Prakash, Portfolio Selection and Skewness: Evidence from Inter-
national Stock Markets, 21 J. BANKING & FIN. 143 (1997); Amado Peiró, Skewness in Financial Returns, 23 J. BANKING & FIN. 847 (1999).

16 See, e.g., Stanley J. Kon, Models of Stock Returns — A Comparison, 39 J. FINANCE 147 (1984); Harry M. Markowitz & Nilufer Usmen, The Likelihood of
Various Stock Market Return Distributions, Part 1: Principles of Inference, 13 J. RISK & UNCERTAINTY 207 (1996); Harry M. Markowitz & Nilufer Usmen,

The Likelihood of Various Stock Market Return Distributions, Part 2: Empirical Results, 13 J. RISK & UNCERTAINTY 221 (1996); Terence C. Mills, Modelling
Skewness and Kurtosis in the London Stock Exchange FT-SE Index Return Distributions, 44 STATISTICIAN 323 (1995).

17 See, e.g., Ralph O. Swalm, Utility Theory — Insights into Risk Taking, 44 HARV. BUS. REV. 123 (1966).
18 See, e.g., Daniel Kahneman & Amos Tversky, Prospect Theory: An Analysis of Decision under Risk, 47 ECONOMETRICA 263 (1979); Paul Slovic, Psychological

Study of Human Judgment: Implications for Investment Decision Making, 27 J. FIN. 779 (1972).
19 See Miles Kimball, Precautionary Saving in the Small and in the Large, 58 ECONOMETRICA 53 (1990).
20 United States v. Butler, 297 U.S. 1, 82 (1936).
21 LEWIS GRIZZARD, GETTIN’ IT ON: A DOWN-HOME TREASURY 72 (1990). Lewis Grizzard (1946-94) was a humor columnist for the Atlanta Journal-

Constitution.
22 See Mark M. Carhart, On Persistence in Mutual Fund Performance, 52 J. FIN. 57 (1997); Mark Grinblatt, Sheridan Titman & Russ Wermers, Momentum

Investment Strategies, Portfolio Performance, and Herding: A Study of Mutual Fund Behavior, 85 AM. ECON. REV. 1088 (1995); Narasimhan Jegadeesh &

Sheridan Titman, Returns to Buying Winners and Selling Losers: Implications for Market Efficiency, 48 J. FIN. 65 (1993).
23 SeeWerner F.M. DeBondt & Richard H. Thaler, Does the Stock Market Overreact?, 40 J. FIN. 557 (1985).
24 See, e.g., Rob Bauer, Roul Haerden & Roderick Molenaar, Asset Allocation in Stable and Unstable Times, 13:3 J. INVESTING 72 (Fall 2004); Malcolm P.

Baker & Jeffrey Wurgler, Comovement and Predictable Relations Between Bonds and the Cross-Section of Stocks, 2 REV. ASSET PRICING STUD. 57 (2012).



correlation.25 Or, in a play on the words of a more elegant Southern writer, everything

that crashes must converge.26 Even under ideal conditions, risk reduction through

portfolio diversification poses a formidable challenge. Long-term positive correlation

between stocks and bonds undermines the effectiveness of diversification.27 Increases

in correlation during bear markets, not matched by corresponding increases in cor-

relation during bull markets, suggest that standard diversification strategies may

erode upside returns without providing adequate protection during times of stress.28

Ironically, rising correlations in falling markets imperil the very portfolios that are de-

signed to weather variability in normal markets.29

This article propounds a comprehensive set of mathematical tools for calculating

volatility, variance, covariance, correlation, the coefficient of determination (or r-
squared), and beta, not merely across the entire spectrum of returns, but also on

either side of the asset-specific or market-wide mean (or, for that matter, any other

benchmark). Full elaboration of partial second moments in the distribution of re-

turns facilitates the calculation of overall, upside, and downside variants of the

measures most often used to evaluate portfolio risk. The relationship between risk

measures on either side of the relevant benchmark can be described in simple math-

ematical terms.

The development of single-sided risk measures does more than supplement the stan-

dard toolkit of portfolio theory, a craft already under pressure to predict asset prices

and to anticipate (if not entirely neutralize) investor psychology. Devising distinct

measures of upside and downside volatility, covariance, and correlation facilitates

the testing of hypotheses reflecting market and behavioral factors that may change

when returns cross above or below critical thresholds. Complete mathematical spec-

ification ensures that these measures are both theoretically consilient and empiri-

cally computable. Risk measures with clear physical interpretations provide readily

understandable, easily quantifiable, and statistically verifiable support or contra-

diction for intuitions about risk management and portfolio design.

To name just one possibility, the explicit specification of upside volatility, covari-

ance, and correlation would support research into the risks that lurk when returns

exceed investor expectations. A considerable literature examines downside risk. This

128 A E S T I M AT I O

Si
n
ki

n
g,

 f
as

t 
an

d
 s

lo
w

: B
ifu

rc
at

in
g 

b
et

a 
in

 f
in

an
ci

al
 a

n
d
 b

eh
av

io
ra

l 
sp

ac
e
. C

he
n, 

J.M
.

A
E
ST

IM
A

T
IO

, T
H

E
IE

B
IN

T
E
R

N
A

T
IO

N
A

L
JO

U
R

N
A

L
O

F
FI

N
A

N
C

E
, 2

0
1
5
. 1

1: 
1
2
4
-2

0
1

25 See, e.g., John Drzik, Richard J. Herring & Francis X. Diebold, The New Role of Risk Management: Rebuilding the Model, Knowledge@Wharton,

http://knowledge.wharton.upenn.edu/article.cfm?articleid=2268 (June 24, 2009).
26 Cf. FLANNERY O’CONNOR, EVERYTHINGTHAT RISES MUST CONVERGE (1965).
27 See John Y. Campbell & John Ammer, What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns, 48 J. FIN. 3

(1993); cf. Robert Dubois, Asset Price Trend Theory: Reframing Portfolio Theory from the Ground Up, 16:3 J. WEALTH MGMT. 11, 12-13 , (Winter 2013)

(distinguishing between “risk moderation” through the reduction of “both positive and negative variance” and “risk containment” through “limit[s]

[on] negative portfolio variance,” such as “loss-contingent exits”).
28 See François Longin & Bruno Solnik, Extreme Correlation of International Equity Markets, 56 J. FIN. 649, 650-51, 669-70 (2001).
29 See MARTIN L. LEIBOWITZ, ANTHONY BOVA & P. BRETT HAMMOND, THE ENDOWMENT MODEL OF INVESTING: RETURN, RISK, AND DIVERSIFICATION 235, 265

(2010).



article’s method for decomposing the elements of upside and downside risk, how-

ever, should be sufficiently supple to address the financial variant of what Ten-

nessee Williams called “the catastrophe of success”:30 how investors and

institutions shred their investment plans in the presence (or even the mere antici-

pation) of upside gain.

Other uses for properly measured upside volatility abound. For instance, one source

promotes upside semideviation as a measure of active portfolio managers’ performance

that, unlike the information ratio, does not punish performance exceeding a benchmark

rate of return.31 Another source encourages portfolio managers to combine stocks with

relatively low downside beta (to temper exposure to declining markets) and stocks with

relatively high upside beta (to capture potential gains in rising markets).32

Of particular interest is beta.33 Within the conventional formulation of the capital

asset pricing model, beta supplies the basic measure of investment risk: “Stocks with

betas greater than one are more volatile than the market and are known as aggressive

stocks. In contrast, stocks with betas less than one are less volatile … and are known

as defensive stocks.”34 Even in 2015, beta as a measure of systematic risk “remains

the most explanatory element of the risk premium in most asset pricing models.”35

According to historians and philosophers of science, “the eminence of a scientist”

can be measured “by the length of time that he holds up progress in his field.”36 By

that standard, beta’s dead hand still grips mathematical finance. For all of oppro-

brium and disqualifying evidence adduced against “standard deviation and its varia-

tions” (including beta) as measures of risk “in … non-normal distributions,” “relatively

little effort has been made” to devise “a better risk measure that might resolve … dis-

pute[s]” over the vitality of the CAPM.37 Even today, “the concept of beta risk” ar-

guably remains “the single most important contribution of academic researchers to

the financial community.”38
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30 SeeTennessee Williams, The Catastrophe of Success, in N.Y. TIMES, Nov. 30, 1947, reprinted in TENNESSEE WILLIAMS, THE GLASS MENAGERIE 99 (Robert

Bray introd., 1999).
31 See Frank A. Sortino, Robert van der Meer & Auke Plantinga, The Dutch Triangle, J. PORTFOLIO MGMT., Fall 1999, at 50. “The information ratio is the

ratio of the expected annual residual return to the annual volatility of the residual return.” RICHARD C. GRINOLD & RONALD N. KAHN, ACTIVE

PORTFOLIO MANAGEMENT: A QUANTITATIVE APPROACH FOR PRODUCING SUPERIOR RETURNS AND CONTROLLING RISK 5 (2d ed. 1999). In other words,

the information ratio is expected active return divided by tracking error, where active return is the difference between realized returns and

benchmark return, and tracking error is the standard deviation of the active return. See generally id. at 109-46.
32 See James Chong, Shaun Pfeiffer & G. Michael Phillips, Can Dual Beta Filtering Improve Investor Performance?, 10 J. PERSONAL FIN. 63, 74 (2010).
33 See generally, e.g., Seth Klarman & Joseph Williams, Beta, 5 J. FIN. ECON. 117 (1991); Jay Shanken, On the Estimation of Beta Pricing Models, 5 REV. FIN.

STUD. 1 (1992).
34 WILLIAM F. SHARPE, GORDON J. ALEXANDER & JEFFREYW. BAILEY, INVESTMENTS 183 (6th ed. 1998).
35 M.A. Bellelah, M.O. Bellelah, H. Ben Ameur & R. Ben Hafsia, Does the Equity Premium Puzzle Persisist During Financial Crisis?  The Case of the French

Equity Market, Research in Int'l Bus. & Fin. (preprint proof posted 4 March 2015, at page 14). Available at http://dx.doi.org/10.1016/j.ribaf.2015.02.018 
36 J.E. LOVELOCK, GAIA: A NEW LOOK AT LIFE ON EARTH 70 (1979); see also EDWARD O. WILSON, CONSILIENCE: THE UNITY OF KNOWLEDGE 182-83 (1998)

(“[P]rogress in a scientific discipline can be measured by how quickly its founders are forgotten.”); cf. A.N. WHITEHEAD, THE AIMS OF EDUCATION

AND OTHER ESSAYS 162 (1929) (“A science which hesitates to forget its founders is lost.”).
37 Guy Kaplanski, Traditional Beta, Downside Risk Beta and Market Risk Premiums, 44 Q. REV. ECON. & FIN. 636, 637 (2004).
38 Louis K.C. Chan & Josef Lakonishok, Are Reports of Beta’s Death Premature?, 19:4 J. PORTFOLIO MGMT. 51, 51 (Summer 1993); see also Jagannathan

& Wang, supra note 7, at 4 (“The CAPM is widely viewed as one of the two or three major contributions of academic research to financial

managers during the postwar era.”).



Considerable scholarship has responded to Fama and French’s declaration in 1992

that “the relation between and average return … is weak, perhaps nonexistent.”39

One line of scholarship, which now dominates financial literature, pursues the small

size and book-to-market ratio factors that Fama and French identified as the most

significant deviations from the conventional CAPM.40 Another line of scholarship,

however, has sought to rehabilitate beta by emphasizing single-sided beta as an im-

provement on the standard measure that Fama and French discredited.41 This arti-

cle seeks to extend that mission. If indeed “there is a conditional relationship

between beta and returns,” especially if single-sided beta provides “a good indicator

of how stocks react in periods of down market[s],” then “beta may still have a useful

role to play.”42

“[E]ven if beta is less efficient than alternative measures of systematic risk or is … in-

complete,” it may still “be justified as a measure of risk.”43 This relatively modest goal

nevertheless demands rigorous work. Rejecting “the mean variance CAPM” in favor

of a more “satisfactory description of market equilibrium poses what statistical sci-

ence calls type I and type II errors.44 On one hand, “the persistence of [pricing] anom-

alies over time” in beta45 and the conventional CAPM “may be related to the

possibility that useless factors appear to be priced.” On the other hand, “pricing

anomalies” may be “due to omitted factors.46 Even Eugene Fama and Kenneth French

concede that it remains entirely “possible that the apparent empirical failures of the

CAPM are due to bad proxies for the market portfolio,” so that “the true market is

mean-variance efficient,” even if “the proxies used in empirical tests are not.”47

To put the point bluntly: “A systematic relationship” of some sort “must exist between

beta and [cross-sectional] returns for beta to be a useful measure of risk.”48 Beta’s

scientific salvation may lie in the calculation and evaluation of its upside and down-

side components. More precisely, mathematical finance should calculate single-sided

beta based on whether returns on a security, an asset class, a portfolio, or a market

benchmark have fallen short of, matched, or exceeded mean return (or, for that mat-

ter, any other target rate). So measured, this methodological warhorse may unearth
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39 Fama & French, supra note 1, at 464.
40 See, e.g., Kent Daniel & Sheridan Titman, Evidence on the Characteristics of Cross-Sectional Variation in Stock Returns, 52 J. FIN. 1 (1997); Eugene Fama

& Kenneth R. French, Size and Book-to-Market Factors in Earnings and Returns, 50 J. FIN. 131 (1995).
41 See, e.g., Fischer Black, Beta and Return, 20:1 J. PORTFOLIO MGMT. 8 (Fall 1993); Chan & Lakonishok, supra note 38; Kevin Grundy & Burton G.

Malkiel, Reports of Beta’s Death Have Been Greatly Exaggerated, 22:3 J. PORTFOLIO MGMT. 36 (Spring 1996).
42 Jonathan Fletcher, An Examination of the Cross-Sectional Relationship of Beta and Return: UK Evidence, 49 J. ECON. & BUS. 211, 220 (1997).
43 Pettengill, Sundaram & Mathur, supra note 5, at 102.
44 Giovanni Barone Adesi, Patrick Gagliardini & Giovanni Urga, Testing Asset Pricing Models with Coskewness, 22 J. BUS. & ECON. STAT. 474, 474 (2004).

On type I and type II errors, see generally ROXY PECK & JAY L. DEVORE, STATISTICS: THE EXPLORATION AND ANALYSIS OF DATA 464-65 (2011); DAVID

SHESKIN, HANDBOOK OF PARAMETRIC AND NONPARAMETRIC STATISTICAL PROCEDURES 54 (2004).
45 Barone Adesi, Galiardini & Urga, supra note 44, at 474.
46 Id.
47 Eugene F. Fama & Kenneth R. French, The CAPM Is Wanted Dead or Alive, 51 J. FIN. 1947, 1956 (1996); accord Kaplanski, supra note 37, at 637.
48 Pettengill, Sundaram & Mathur, supra note 5, at 105.



previously unrecognized insights into volatility and correlation toward either extreme

of the distribution of returns.49

As correlated relative volatility, beta contains two components. Beta is a composite

measure that reports both the ratio of asset-specific to market-wide volatility and the

correlation between that asset and the market as a whole. The computation of beta,

varying according to market conditions, permits the evaluation of beta, in its con-

ventional CAPM formulation, as distinct components that reflect changes in volatility

and in correlation as returns move across either side of their expected value. These

components address, respectively, the distinct managerial concerns arising from loss

aversion (or upside speculation) and from changes in correlation under different mar-

ket conditions. Breaking beta down into upside and downside components, and fur-

ther into components reflecting changes in volatility versus correlation with broader

market conditions, enables us to better quantify the behavioral and systematic aspects

of dynamic markets. This dichotomy reflects what Daniel Kahneman describes as the

two modes of human thought, the “fast” heuristics of human behavior and the “slow”

processing of rational evidence.50 In the context of downside risk, single-sided beta

most fully describes financial sinking, fast and slow.

This article concludes with an anticipatory glance at skewness and coskewness in

financial returns. After all, “semivariance combines into one measure the informa-

tion provided by two statistics, variance and skewness, thus making it possible to

use a one-factor model.”51 The question is whether a one-factor model relying on

semivariance or any of its derivatives, including single-sided beta, should give way

on grounds of accuracy and validity to more complex measurements. One strain

within the literature contends that skewness and coskewness outperform downside

beta in reflecting the cross-section of financial returns. At a minimum, however,

single-sided beta and other measures derived from partial second moments of fi-

nancial distributions are compatible with methodologies emphasizing higher-order

moments. Indeed, full elaboration of single-sided beta represents a vital step in re-

establishing the CAPM on a four-moment basis. Before abandoning the two-mo-

ment model that has sustained portfolio management for decades, we should

extract all of the information that remains embedded within the second moment.

Through this article’s modest, easily implemented improvements in the measure-

ment of volatility, covariance, and correlation, that information can sharpen the

mathematical interpretation of financial returns.
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49 Nurjannah, Don U.A. Galadegera & Robert Brooks, Conditional Relation Between Systematic Risk and Returns in the Conventional and Downside Frame-
works: Evidence from the Indonesian Market, 3 J. EMERGING MKT. FIN. 271, 274 (2012).

50 See generally DANIEL KAHNEMAN, THINKING, FAST AND SLOW 19-105 (2011).
51 Javier Estrada, Systematic Risk in Emerging Markets: The D-CAPM, 3 EMERGING MKTS. REV. 365, 366 (2002).



� 2. Diving to be deeper:52

a history of downside risk measures

The danger in assuming symmetry in the distribution of returns is neither new nor

mysterious. Many of the architects of modern portfolio theory nevertheless adopted

this statistical shortcut in grudging acceptance of that era’s computational limita-

tions.53 Harry Markowitz’s theoretical call “for calculating the covariances of every

security” initially posed a “monumental” barrier to practical implementation: under

the constraints on computing power during the 1960s, “[c]alculating a single port-

folio could eat up tens of thousands of dollars in computer time.”54 As William Sharpe

noted in 1964: “Under certain conditions the [mean-variance analysis] can be shown

to lead to unsatisfactory predictions of [investor] behavior. Markowitz suggests that

a model based on the semivariance would be preferable; in light of the formidable

computational problems, however, he bases his analysis on the mean and the stan-

dard deviation.”55 Other economists confirmed the feasibility and theoretical superi-

ority of Markowitz’s unimplemented semivariance measure.56 Business leaders agreed:

A 1969 survey revealing an “emphasis on downside risk” by executives in diverse in-

dustries “indicate[d] that their concept of risk [was] better described by semi-variance

than by ordinary variance.”57 Institutional investors have likewise indicated that their

definition of risk hinges not on raw variability in returns, but on avoidance of loss.58

Traditional, two-tailed measurements of risk-adjusted performance, particularly the

Sharpe ratio,59 give dangerous guidance during bear markets because they implicitly

assume that returns are normally distributed and because they effectively treat upside

and downside volatility as equal constituents of risk.60 Roy’s safety-first criterion, an-

nounced in 1952, consciously sought to minimize the probability that an investor

would realize actual returns (Ra) below some minimally acceptable baseline (Rb).61
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52 Cf. SINÉAD LOHAN, Diving to Be Deeper, on NO MERMAID (1998).
53 See, e.g., Fred D. Arditti, Risk and the Required Return in Equity, 22 J. FIN. 19 (1967) (analyzing the relationship between expected return and

skewnewss in the distribution of returns); Merton H. Miller & Myron S. Scholes, Rates of Return with Relation to Risk: A Reexamination of Some
Recent Findings, in STUDIES IN THETHEORY OF CAPITAL MARKETS 47 (Michael C. Jensen ed., 1972) (subjecting one capital asset pricing model to testing

in response to asymmetry in the distribution of returns).
54 JUSTIN FOX, THE MYTH OF THE RATIONAL MARKET: A HISTORY OF RISK, REWARD, AND DELUSION ONWALL STREET 86 (2009).
55 William F. Sharpe, Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk, 19 J. FIN. 425, 428 n.8 (1964). Markowitz considered

five alternatives to variance as a measure of risk: expected value of loss, the probability of loss, expected absolute deviation, maximum expected

loss, and semivariance. See HARRY M. MARKOWITZ, PORTFOLIO SELECTION 188-94, 287-97 (1959); James C.T. Mao, Models of Capital Budgeting: E-V Vs.
E-S, 4 J. FIN. & QUANT. ANALYSIS 657 (1970).

56 See James P. Quirk & Rubin Saposnik, Admissibility and Measurable Utility Functions, 29 REV. ECON. STUD. 140 (1962). Markowitz eventually implemented

a version of mean-semivariance optimization in 1993. See Harry Markowitz, Peter Todd, Ganlin Xu & Yuji Yamane, Computation of Mean–Semivariance
Efficient Sets by the Critical Line Algorithm, 45 ANNALS OPER. RESEARCH 307 (1993).

57 James C.T. Mao, Survey of Capital Budgeting: Theory and Practice, 25 J. FIN. 349, 354 (1970).
58 See Philip L. Cooley, A Multidimensional Analysis of Institutional Investor Perception of Risk, 32 J. FIN. 67 (1977).
59 SeeWilliam F. Sharpe, Mutual Fund Performance, 39 J. BUS. 119, 123 (1966) (proposing a measure of “reward to variability” that treated standard

deviation as its measure of risk); William F. Sharpe, Adjusting for Risk in Portfolio Performance Measurement. 1:2 J. PORTFOLIO MGMT. 29 (Winter 1975)

(same).
60 See James S. Ang & Jess H. Chua, Composite Measures for the Evaluation of Investing Performance, 14 J. FIN. & QUANT. ANALYSIS 361 (1979); Robert C.

Klemkosky, The Bias in Composite Performance Measures, 8 J. FIN. & QUANT. ANALYSIS 505 (1973); Hendrik Scholz, Refinements to the Sharpe Ratio:
Comparing Alternatives for Bear Markets, 7 J. ASSET MGMT. 347 (2007).

61 See Arthur D. Roy, Safety First and the Holding of Assets, 20 ECONOMETRICA 431 (1952).



Formally, a portfolio manager should minimize P(Ra < Rb). Roy’s safety-first criterion

very modestly substitutes the minimally acceptable baseline for the risk-free rate of

the Sharpe ratio. It directs a manager to maximize  E–d , where E is the expected

return and d represents “some disastrous level of return.”62

Markowitz has described Roy’s safety-first criterion as one of the “two papers pub-

lished in 1952” that opened the “era of modern portfolio theory.”63 William Baumol

later demonstrated that Roy’s criterion could be satisfied by minimizing E−k .64 The

quantity E−k , which exploits ordinary definitions of mean, standard deviation, and

standard score (x = +z ), was alleged to be “a more reasonable measure of risk than

itself.”65 Consistent with modern portfolio theory’s focus on events near the mean,

Markowitz and Baumol conditioned their reconciliation of Roy’s safety-first criterion

with the assumption that k would be pegged at “2 or 3.”66

In retrospect, Roy’s safety-first criterion and its emphasis on avoidance of cata-

strophic loss foreshadowed later economists’ concern with minimizing downside risk.

Roy identified a distinction noted in early literature on mathematical finance and

subsequently highlighted by behavioral economics: whereas small-scale financial de-

cisions may seek “some target rate of return,” larger commitments “involve[] the dan-

ger of insolvency.”67 “Most investors perceive a low probability of a large loss to be

far more risky than a high probability of a small loss, even when the expected losses

are the same.”68 Although this perception does represent a departure from perfect

rationality and the economic assumptions underlying the efficient capital markets

hypothesis, it is more realistic to model financial markets with awareness of this nearly

universal human heuristic.

The measures of semivariance, semideviation, semicovariance, semicodeviation, and

single-sided beta of specific interest to this article may be traced to a 1974 article by

William Hogan and James Warren.69 Hogan and Warren offered a downside risk

measure whose point of reference was the risk-free return. Formally, they defined

downside covariance between an asset and the market as a whole as the expected

value of the difference between the return on an asset and the risk-free rate, times the
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62 HARRY M. MARKOWITZ, MEAN-VARIANCE ANALYSIS IN PORTFOLIO CHOICE AND CAPITAL MARKETS 37 (1987).
63 Id. The other paper was Harry M. Markowitz, Foundations of Portfolio Theory, 46 J. FIN. 469, 469-70 (1991). Other sources trace the origins of

portfolio selection to Helen Makower & Jacob Marschak, Assets, Prices and Monetary Theory, 5 ECONOMICA 261 (1938) and Jacob Marschak, Money
and the Theory of Assets, 6 ECONOMETRICA 311 (1938). See FOX, supra note 54, at 347.

64 SeeWilliam J. Baumol, An Expected Gain-Confidence Limit Criterion for Portfolio Selection, 10 MGMT. SCI. 174 (1963).
65 MARKOWITZ, MEAN-VARIANCE ANALYSIS, supra note 62, at 38.
66 Id.
67 Mao, supra note 57, at 354.
68 Leslie A. Balzer, Investment Risk: A Unified Approach to Upside and Downside Returns, in MANAGING DOWNSIDE RISK IN FINANCIAL MARKETS: THEORY,

PRACTICE AND IMPLEMENTATION 103, 115 (Frank A. Sortino & Stephen E. Satchell eds., 2001).
69 William W. Hogan & James M. Warren, Toward the Development of an Equilibrium Capital-Market Model Based on Semivariance, 9 J. FIN. & QUANT.

ANALYSIS 1 (1974).



difference between the return on the market portfolio and the risk-free rate, conditioned

on the failure of the market-wide return to meet the risk-free return:70

–  (a,m)= (xa – xf ) · (xm – xf |xm < xf )

where is the expectation operator. In more operationally comprehensible terms,
this second term of this definition may be rendered in terms of a minimum operator:

–  (a,m)= (xa – xf )·min(xm – xf , 0)

Three years later, in 1977, Vijay Bawa and Eric Lindenberg developed a generalized
mean-lower partial moment framework that treated both the conventional capital
asset pricing model and Hogan and Warren’s variant as special cases.71 Bawa and
Lindenberg’s formulation retained a distinctive trait of Hogan and Warren’s risk meas-
ure — the assumption that returns on an asset in excess of the risk-free rate affirmatively
reduce risk when market-wide returns fall below the risk-free rate: xa > xf xm < xf .72

In 1989, W.V. Harlow and Ramesh Rao generalized Bawa and Lindenberg’s mean-lower

partial moment framework even further.73 Their approach subsumed Hogan and Warren,

Bawa and Lindenberg, and conventional CAPM.74 Harlow and Rao greatly enhanced the

flexibility of one-sided risk measures.75 Among other things, they embedded their measure

of conditional variance within a generalized framework calculating risk according to mean

lower partial moments.76 Of immediate interest is Harlow and Rao’s embrace of the mean

market-wide return, rather than the risk-free rate, as the baseline for measuring risk:77

–  (a,m)= (xa – a )·(xm – m | xm < m)

In 2002, Javier Estrada performed the final step in specifying conditional covariance
on the downside of expected return as the product of two conditional shortfalls: that
of returns on an asset relative to its mean, as well as the shortfall of the market-wide
portfolio relative to expected market-wide returns:78

–  (a,m)= (xa – a | xa< a)·(xm – m | xm < m)

134 A E S T I M AT I O

Si
n
ki

n
g,

 f
as

t 
an

d
 s

lo
w

: B
ifu

rc
at

in
g 

b
et

a 
in

 f
in

an
ci

al
 a

n
d
 b

eh
av

io
ra

l 
sp

ac
e
. C

he
n, 

J.M
.

A
E
ST

IM
A

T
IO

, T
H

E
IE

B
IN

T
E
R

N
A

T
IO

N
A

L
JO

U
R

N
A

L
O

F
FI

N
A

N
C

E
, 2

0
1
5
. 1

1: 
1
2
4
-2

0
1

70 See id. at 5 & n.2.
71 SeeVijay S. Bawa & Eric B. Lindenberg, Capital Market Equilibrium in a Mean-Lower Partial Moment Framework, 5 J. FIN. ECON. 189, 191, 198 (1977).
72 See id. at 197; Hogan & Warren, supra note 69, at 10; cf. Estrada, Systematic Risk in Emerging Markets, supra note 51, at 370.
73 SeeW.V. Harlow & Ramesh K.S. Rao, Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence, 24 J. FIN. & QUANT.

ANALYSIS 285 (1989).
74 See id. at 291 (demonstrating how a second-order mean-lower partial moment model assuming normally distributed returns and adopting the

risk-free rate as the target return yields the conventional capital asset pricing model).
75 See David Nawrocki, A Brief History of Downside Risk Measures, 8 J. INVESTING 9, (1999) (characterizing Harlow and Rao’s breakthrough as catapulting

work on semivariance from “silent black and white film” to “wide screen Technicolor film with digital surround sound”).
76 See Harlow & Rao, supra note 73, at 286-92. On lower partial moments, compare Vijay S. Bawa, Optimal Rules for Ordering Uncertain Prospects, 2 J.

FIN. ECON. 95 (1975) with Peter C. Fishburn, Mean-Risk Analysis with Risk Associated with Below-Target Returns, 67 AM. ECON. REV. 116 (1977). See gen-
erally BRUCE J. FEIBEL, INVESTMENT PERFORMANCE MEASUREMENT 155-64 (2003); Stephen E. Satchell, Lower Partial-Moment Capital Asset Pricing Models:
A Re-Examination, in MANAGING DOWNSIDE RISK IN FINANCIAL MARKETS, supra note 68, at 156.

77 Compare Harlow & Rao, supra note 73, at 286 with Estrada, Systematic Risk in Emerging Markets, supra note 51, at 369. 
78 See Estrada, Systematic Risk in Emerging Markets, supra note 51, at 368.



Alone among the measures described here, Estrada’s definition of downside covari-

ance satisfies the reflexive property that characterizes ordinary variance: the covari-

ance of returns on a specific asset and market-wide returns is equal to the covariance

of market-wide returns and returns on the specific asset.79 In other words, Estrada

alone treats covariance between an asset or portfolio under study and the market-

wide benchmark as equivalent to covariance between the benchmark and the subject

of study: cov  (a,m)=cov  (a,m). Other specifications of semicovariance create the “prob-

lematic” suggestion “that covariance between securities i and j is different from” co-

variance “between securities j and i.”80

� 3. Both sides now:81

the full financial toolkit of partial second moments

3.1. Traditional CAPM specifications of volatility, variance, covariance, correlation,
and beta

I begin with a brief recitation of traditional specifications of volatility, variance, co-

variance, and beta — the statistics that form the basis of the CAPM and related

branches of mathematical finance.82 Mean, variance, and standard deviation are for-

mally defined in terms of mathematical moments. The nth moment of a distribution

f (x) about the value is defined as:83

n =–∞
∞∫(x– )n f (x)dx

If is defined as , the mean or the first raw moment, then the second moment of

f (x) about is the second central moment, or the variance ( 2):

’1 =
–∞
∞∫x1 f (x)dx =

2 =
–∞
∞∫(x– )2  f (x)dx = 2
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79 See id. at 369-70 & n.2; Javier Estrada, Mean-Semivariance Behavior: Downside Risk and Capital Asset Pricing, 16 INT’L REV. ECON. & FIN. 169, 174

(2007); Hsin-Jung Tsai, Ming-Chi Chen & Chih-Yuan Yang, A Time-Varying Perspective on the CAPM and Downside Betas, 29 INT’L REV. ECON. &

FIN. 440, 441 (2014).
80 Don U.A. Galagedera, An Alternative Perspective on the Relationship Between Downside Beta and CAPM Beta, 8 EMERGING MKTS. REV. 4, 7 (2007).

For fuller mathematical elaboration of Estrada’s measure alongside those of Bawa & Lindenberg, supra note 71, and Harlow & Rao, supra
note 73, see Galagedera, supra, at 6-7, 17-19.

81 Cf. JONI MITCHELL, Both Sides Now, on CLOUDS (1969).
82 See, e.g., Fischer Black, Capital Market Equilibrium with Restricted Borrowing, 45 J. BUS. 444 (1972); Fischer Black, Michael C. Jensen & Myron S.

Scholes, The Capital Asset Pricing Model: Some Empirical Tests, in STUDIES IN THE THEORY OF CAPITAL MARKETS, supra note 53, at 79; John Lintner,

Security Prices, Risk and Maximal Gains from Diversification, 20 J. FIN. 587 (1965); John Lintner, The Valuation of Risk Assets and the Selection of
Risky Investments in Stock Portfolios and Capital Budgets, 73 REV. ECON. & STATS. 13 (1965); Jan Mossin, Equilibrium in a Capital Asset Market, 34

ECONOMETRICA 768 (1966); William F. Sharpe, Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk, 19 J. FIN. 425 (1964);

Jack L. Treynor, Toward a Theory of Market Value of Risky Assets, in ASSET PRICING AND PORTFOLIO PERFORMANCE: MODELS, STRATEGY AND PER-

FORMANCE METRICS 15 (Robert A. Korajczyk ed., 1999). See generally Eugene F. Fama & Kenneth R. French, The Capital Asset Pricing Model:
Theory and Evidence, 18:3 J. ECON. PERSPS. 25 (Summer 2004).

83 See generally WILLIAM H. PRESS, BRIAN P. FLANNERY, SAUL A. TEUKOLSKY & WILLIAM T. VETTERLING, NUMERICAL RECIPES IN FORTRAN 77: THE ART OF

SCIENTIFIC COMPUTING 604-09 (2d ed. 1992) (“§ 14.1: Moments of a Distribution: Mean, Variance, Skewness, and So Forth.”).



Standard deviation, or financial volatility, is defined as the positive square root of

variance:

= 2 =
–∞
∞∫(x– )2  f (x)dx

Since portfolios are typically constructed with multiple assets or asset classes, it is

useful to speak of covariance between returns on an asset (class) and market-wide

returns:

  (a,m)= cov(a,m)=E[(xa – a)(xm – m)]= (xa – a)(xm – m)

where a indicates the asset (class), m indicates the market as a whole, xp indicates re-

turns on either the asset-specific or the market-wide portfolio (p {a,m}), and p indi-

cates mean returns on either portfolio. For compactness in notation, I shall henceforth

use angle brackets, , to express the expectation operator, or mean:

f (x) =E[ f (x)]= f (x)

The variance of a single distribution can be understood as a special case of covariance,

where the two variables are identical:

  (p,p)= 2
p =cov(p,p)= (xp – p)(xp– p) = (xp – p)2

In like fashion, we can restate our definition of volatility as the square root of variance:

  p = (xp – p)2

Normalizing covariance according to the product of asset-specific and market-wide

volatility yields the correlation between those returns:

cov(a,m)      (xa – b)(xm – m)
  a   m (xa – b)2 (xm – m)2

Squaring correlation yields the coefficient of determination, more popularly known

as R2, or r-squared:

(xa – b)(xm – m) 2

(xa – b)2 (xm – m)2

The product of (1) the ratio of asset-specific volatility to market-wide volatility and

(2) the correlation between returns on that asset and market-wide returns is the beta

of that asset:
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(a,m)=            =

r2 = (a,m)2 =



a                      a    cov(a,m)   cov(a,m)   (xa – a)(xm – m)
m                   m        a m

2
m (xm – m)2

When beta is broken down into these components, it is readily understood as corre-

lated relative volatility.84

For discrete distributions, all of the foregoing measures can be easily computed:

p =   1n
n

i=1
(xp,i – p)2

2
p = 1n

n

i=1
(xp,i – p)2

cov(a,m)= 1n
n

i=1
(xa ,i – a)(xm,i – m)

(a,m)=

=

r2=

a= =

3.2. Deriving semideviation and semivariance from upper and 
lower partial moments

The upper and lower partial second moments of financial distributions enable the cal-

culation of conditional, one-sided versions of deviation, variance, covariance, correla-

tion, and beta. I rely on the downside risk framework devised by Javier Estrada.85

Specifically, I adopt Estrada’s organizational logic, if not his precise notation.86 Among

other advantages, Estrada’s mathematically cogent retention of the symmetry of covari-
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84 See LIEBOWITZ, BOVA & HAMMOND, supra note 29, at 14 (defining beta as “the correlation between the asset (or portfolio return and the market

return, multiplied by the ratio of their volatilities”); MICHAEL B. MILLER, MATHEMATICS AND STATISTICS FOR FINANCIAL RISK MANAGEMENT 198, 213,

292 (2d ed. 2014) (defining beta as the product of correlation between the returns on two assets and the ratio of their volatilities); SHANNON

P. PRATT & ROGER J. GRABOWSKI, COST OF CAPITAL: APPLICATIONS AND EXAMPLES 305-06 (4th ed. 2010).
85 See Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 172; Estrada, Systematic Risk in Emerging Markets, supra note 51, at 368-69.
86 See Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 171; Estrada, Systematic Risk in Emerging Markets, supra note 51, at 367.
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[
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i=1
(xa ,i – a)(xm,i – m)
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n

i=1
(xm,i – m)2

n

i=1
(xm,i – m)2



ance between specific assets and the market-wide portfolio, cov(a,m)= cov(a,m), enables

the application of trigonometric shortcuts that will be outlined in part IV of this paper.

I hasten to note, however, that other specifications of semivariance may also be adapted

to the approach I outline below. Despite its theoretical advantages, Estrada’s approach

has not unequivocally outperformed its rivals. Indeed, several studies have found stronger

empirical support for specifications proposed by Estrada’s rivals than for Estrada’s

model.87 Absent conclusive evidence that the contributions of Hogan and Warren, Bawa

and Lindenberg, and Harlow and Rao have been superseded, we should retain these al-

ternative formulations. Among other things, we may elect to set the target rate of return

at the risk-free rate, thereby exploiting a source of flexibility inherent in Harlow and Rao’s

approach and restoring an explicit element of Hogan and Warren’s approach.

Specifying semivariance and semideviation carries the added benefit of generalizing

conventional CAPM and reducing that model into a special case of mean-semivari-

ance analysis.88 At a minimum, projections based on semivariance and semideviation

can do no worse than those based on conventional CAPM as a special case.89

I have taken pains to extract upside as well as downside risk measures from the upper

and lower partial moments. Much of the literature on downside risk omits this step.90

As we will see, upside semideviation can be analytically derived from the computation

of downside semideviation alongside standard deviation, and vice versa, as long one

takes care to retain the symmetry of covariance between specific assets and the mar-

ket-wide portfolio. But full elaboration of upside as well as downside risk measures

is so straightforward, and so potentially useful for testing hypotheses such as the ex-

istence and magnitude of an upside risk premium (or discount) or the behavior of in-

vestors during rising as well as falling markets, that I have made the marginal effort

to specify the full arsenal of measures based on semideviation and semivariance.

We begin with the general definition of partial moments about the value :91

+
n =–

∞∫(x– )n f (x)dx 

–
n =–∞∫( – x)n f (x)dx
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87 See Galagedera, An Alternative Perspective, supra note 80, at 16 (concluding that beta as defined by Bawa & Lindenberg, supra note 71, “appears

to be a better measure of systematic risk” when “securities have abnormal returns” and that beta as defined by Harlow & Rao, supra note

73, “is more suitable as a measure of systematic risk” in “markets whose returns distributions have high kurtosis”); Tsai, Chen & Yang, supra
note 79, at 446 (suggesting that definitions of beta based on Hogan & Warren, supra note 69, and Harlow & Rao, supra note 73, “had more

explanatory power for the expected stock market compared with … other” definitions of beta).
88 See Estrada, Systematic Risk in Emerging Markets, supra note 51, at 366; Bawa & Lindenberg, supra note 71, at 191, 198.
89 See Javier Estrada, Mean-Semivariance Behaviour: An Alternative Behavioural Model, 3 J. EMERGING MKT. FIN. 231, 242 (2004) (validating this an-

alytical observation through empirical data).
90 One salient exception is Andrew Ang, Joseph Chen & Yuhang Xing, 19 REV. FIN. STUD. 1191, 1199-1200 (2006) (introducing “two additional

measures” beyond regular, unconditional beta: relative upside beta and relative downside beta).
91 See Fishburn, supra note 76, at 116. Partial moments are Lebesgue-Stieltjes integrals. See generally Paul R. Halmos, Measure Theory §§ 15.9,

18.11, 25.4, at 67, 80, 106 (2d ed. 2013).



As before, we set at mean returns for the portfolio in question, whether asset-specific

or market-wide: = p. We therefore speak again of central moments.

Translating partial upper and lower moments into upside and downside semideviation

and semivariance parallels the elaboration of the central second moment of the distri-

bution of returns into ordinary measures of volatility, variance, covariance, correlation,

and beta. The primary difference lies in the use of conditional calculations. The condi-

tional variance, or skedasticity, of variable y given a certain value of x =  is defined as:

var(y |x =  )= (y– y |x =  )2| x = 

In any of their manifestations, semivariance and semideviation merely represent spe-

cial cases of conditional variance.

We define upside and downside covariance between two portfolios, p and q, as con-

ditional functions:

+(p,q)=cov(p,q |xp > p, xq > q)

–(p,q)=cov(p,q |xp < p, xq < q)

In the case of downside covariance, risk increases only when both portfolios fail to

meet their mean returns: xp < p, xq < q .92 Downside covariance as a measure of risk

increases only when asset-specific returns fall below their mean and returns on the

market as a whole falls below the market-wide mean. This is perhaps the most signif-

icant difference between Javier Estrada’s specification of semivariance and earlier ef-

forts to measure downside risk.93

On the other hand, it may be easier to understand — and certainly easier to compute

— these semicovariances in terms of expected values:

+(p,q)= max[(xp – p),0]·max[(xq – q),0]

–(p,q)= min[(xp – p),0]·min[(xq – q),0]

Upside or downside semivariance within a single portfolio is merely a special case of

the corresponding form of semicovariance:

2
p,+=var(p |xp > p) = max[(xp – p),0]2

2
p,–=var(p |xp < p) = min[(xp – p),0]2
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92 See Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 173; Estrada, Systematic Risk in Emerging Markets, supra note 51, at 

369-70.
93 See Estrada, Systematic Risk in Emerging Markets, supra note 51, at 369-70 & n.2.



Taking the square root of these values immediately yields upside and downside semi-

deviation:

p,+= var(p |xp > p) = max[(xp – p),0]2

p,–= var(p |xp < p) = min[(xp – p),0]2

Upside and downside semicovariance between asset-specific and market-wide port-

folios is another special case of general semicovariance:

+=(a,m)= cov(a,m |xa> a, xm> m) = max[(xa – a),0]·max[(xm – m),0]
–=(a,m)= cov(a,m |xa< a, xm< m) = min[(xa – a),0]·min[(xm – m),0]

Dividing each form of semicovariance among asset-specific and market-wide portfo-

lios by the product of the corresponding form of semideviation produces upside and

downside semicorrelation:

+(a,m) cov+(a,m)
a,+ m,+ a,+ m,+

max[(xa – a),0]·max[(xm – m),0]
max[(xa – a),0]2 · max[(xm – m),0]2

–(a,m) cov–(a,m)
a,– m,– a,– m,–

min[(xa – a),0]·min[(xm – m),0]
min[(xa – a),0]2 · min[(xm – m),0]2

Squaring these values produces the coefficient of determination, or r-squared, above

and below the mean return:

max[(xa – a),0] ·max[(xm – m),0] 2

max[(xa – a),0]2 · max[(xm – m),0]2

min[(xa – a),0]·min[(xm – m),0] 2

min[(xa – a),0]2 · min[(xm – m),0]2

And multiplying upside and downside semicorrelation by the ratio of upside 

or downside semideviation for the asset-specific portfolio to upside or downside

semideviation for the entire market, as appropriate, produces upside and downside

beta:
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+(a,m)=            =

–(a,m)=            =

+(a,m)=

–(a,m)=

r 2
+ = +(a,m)2 =

r 2
– = –(a,m)2 =



a,+ a,+ +(a,m) cov+(a,m)
m,+ m,+ a,+ m,+

2
m,+

max[(xa – a),0]·max[(xm – m),0]
max[(xm – m),0]2

a,– a,– –(a,m) cov–(a,m)
m,– m,– a,– m,–

2
m,–

min[(xa – a),0]·min[(xm – m),0]
min[(xm – m),0]2

Each of these one-sided, conditional measures can be computed for discrete distri-

butions. On the upside:

p,+=   1n
n

i=1
max[(xp,i – p),0]2

2
p,+= 1n

n

i=1
max[(xp,i – p),0]2

cov+(a,m)= 1
n

n

i=1
max[(xa,i – a),0]· max[(xm,i – m),0]

n

i=1
max[(xa,i – a),0]· max[(xm,i – m),0]

n

i=1
max[(xa,i – a),0]2 n

i=1
max[(xm,i – m),0]2

n

i=1
max[(xa,i – a),0]· max[(xm,i – m),0]

n

i=1
max[(xa,i – a),0]2 n

i=1
max[(xm,i – m),0]2

n

i=1
max[(xa,i – a),0]· max[(xm,i – m),0]

n

i=1
max[(xm,i – m),0]2

And the downside:

p,–=   1n
n

i=1
min[(xp,i – p),0]2

2
p,–= 1n

n

i=1
min[(xp,i – p),0]2
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+=       +(a,m)=     ·           =

+=

–=    –(a,m)=      ·           =

–=

+(a,m)=

r 2
+ = +(a,m)=

a,+=

[                                      ]
2



cov–(a,m)= 1
n

n

i=1
min[(xa,i – a),0]· min[(xm,i – m),0]

n

i=1
min[(xa,i – a),0]· min[(xm,i – m),0]

n

i=1
min[(xa,i – a),0]2 n

i=1
min[(xm,i – m),0]2

n

i=1
min[(xa,i – a),0]· min[(xm,i – m),0]

n

i=1
min[(xa,i – a),0]2 n

i=1
min[(xm,i – m),0]2

n

i=1
min[(xa,i – a),0]· min[(xm,i – m),0]

n

i=1
min[(xm,i – m),0]2

� 4. Pythagorean extensions of second-moment measures

4.1. Off center: triangulating deviation about a target not equal to the mean

Thus far I have spoken exclusively of mean and variance as, respectively, the first and

second central moments of the distribution of returns. But those values are merely spe-

cial cases of moments about a value . We can extend Part III’s quantitative apparatus

by relaxing the assumption that = . The generalization of this model is surprisingly

easy and elegant. It also connects this elaboration of mean-variance analysis to a dif-

ferent set of mathematical tools: the Pythagorean theorem and trigonometry.

In certain circumstances, we may wish to set a benchmark return, or “target semi-

variance,”94 at some quantity other than mean return.95 Such a benchmark, also

known as target return or minimum acceptable return, is “customized to the investor’s

tolerance for periodic losses” and “can be different than the mean return.”96 We can

designate the difference between and as  . To wit: = – and = – . The

general definition of moments of a statistical distribution about yields formulas

for the first and second moments about = – :

= – ; = –
2= (x– )2 = (x– – )2

2= x2–2 x+ 2+ 2 –2 x+2
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94 Robert Libby & Peter C. Fishburn, Behavioral Models of Risk Taking in Business Decisions, 15 J. ACCOUNTING RESEARCH 272, 277 (1977); accord
Harlow & Rao, supra note 73, at 292.

95 See, e.g., Bawa & Lindenberg, supra note 71, at 192 n.3 (acknowledging that portfolio optimization according to semivariance “can be solved

for any fixed point”); Harlow & Rao, supra note 73, at 286 (devising a “generalized Mean-Lower Partial Moment” model “consistent with

any prespecified target rate of return” (emphasis in original)); id. at 287 (obtaining portfolio equilibrium “for arbitrary ” as part of “a gen-

eralized … asset pricing framework” making use of mean-lower partial lower moments to any order n).
96 FEIBEL, supra note 76, at 160.

–(a,m)=

r 2
– = –(a,m)=

a,–=

[                                      ]
2



This seemingly unruly series is easily reevaluated:

2= (x 2 –2 x+ 2) –2 (x– )+ 2

The foregoing rearrangement may be more intuitively understood if we see this rela-

tionship:

2= (x– )2 = (x– – )2 = [(x– )– ]2

[(x– )– ]2 = (x– )2 –2 (x– )+ 2

The expectation operator, , allows us to compress even further:

2= 2
– = (x– )2–2 (x– )+ 2 = (x– )2 – 2 (x– ) + 2

Since the expectation of the middle term, 2 (x– ) , equals zero, we can simplify the

entire expression:

2
– = (x– )2 – 2 (x– ) + 2 = (x– )2 + ( – )2

And ultimately:

2
– = (x– )2 + ( – )2 = 2+ 2

A final exercise in rearrangement reveals the formula for the deviation of the distribu-

tion about = – , which is merely the square root of variance about that value

about = – :

– = 2+ 2

The relationship between standard variance and variance about a value = – ,

which in turn has been defined by reference to as the first central moment, is gov-

erned by the Pythagorean theorem. Having expressed mean, variance, and deviation

relative to = – , it becomes a simple (if somewhat tedious) exercise to define co-

variance, correlation, the coefficient of determination, and beta for that benchmark.

The separation of each of these measures into upside and downside components is

comparably straightforward. That exercise does more than extend the two-moment

model for assessing portfolio risk to any benchmark besides mean return. The rela-

tionship between standard variance or deviation, on one hand, and these second-

moment measures’ upside and downside components, lends itself to evaluation in

Pythagorean and trigonometric terms. I now turn to that subject.
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4.2. Triangulating semivariance and semideviation

Among the many statistics generated by the complete specification of single-sided beta,

upside and downside semideviation may be the simplest and easiest to deploy. In par-

ticular, downside semideviation, which “defines risks as volatility below [a market]

benchmark,” can be “articulated … into a very simple asset pricing model.”97 Substi-

tuting “standard semideviation … for standard deviation to measure portfolio risk” re-

tains “the fundamental structure of the capital asset-pricing model.”98 Similarly, in his

adaptation of the Sharpe ratio,99 Frank Sortino focuses on the ratio of reward (defined

by returns exceeding some minimal acceptable benchmark) to downside risk, as ex-

pressed through target semideviation: 
xa–

a,–
.100 For good reason, all risk measurements

represent a variation on the theme first struck by William Sharpe’s original and still

iconic transformation of standard scoring into a gauge of financial performance.101

To facilitate the proper use of semideviation as a risk measure, I will now elaborate

the mathematical relationship between upside semideviation, downside semidevia-

tion, and standard deviation. Sources within the literature on single-sided risk some-

times err in describing this relationship as one of simple arithmetic, as though “the

lower semideviation” were equal to “half the standard deviation” in a purely symmet-

rical distribution of returns.102 Proper mathematical evaluation of semivariance and

semideviation contradicts this assertion. Rather, upside and downside semideviation

are related to standard deviation according to the Pythagorean theorem.

Recall the general definitions of upside and downside semicovariance between two

portfolios, p and q:

+(p,q)=cov(p,q |xp > p, xq > q)
–(p,q)=cov(p,q |xp < p, xq < q)

It should be evident from this definition that upside and downside covariance are

straightforwardly additive. In other words, overall covariance is the sum of upside and

downside covariance:
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97 Javier Estrada, The Cost of Equity of Internet Stocks: A Downside Risk Approach, 10 EUR. J. FIN. 239, 241 (2004).
98 Hogan & Warren, supra note 69, at 10; accord James Chong & G. Michael Philips, Measuring Risk for Cost of Capital: The Downside Beta Approach,

4 J. CORP. TREAS. MGMT. 344, 347 (2012); see also Bawa & Lindenberg, supra note 71, at 197 (noting that a “mean-lower partial moment

framework … is identical in form to the traditional Capital Asset Pricing Model obtained in the mean-variance (MV) framework,” with the

substitution of conditional beta for beta across the full spectrum of returns).
99 See William F. Sharpe, Mutual Fund Performance, 39 J. BUS. 119, 123 (1966); William F. Sharpe, Adjusting for Risk in Portfolio Performance Meas-

urement. 1:2 J. PORTFOLIO MGMT. 29 (Winter 1975).
100 See Frank A. Sortino & Robert van der Meer, Downside Risk, 17:4 J. PORTFOLIO MGMT. 27, 27-31 (Summer 1991).
101 See Li Chen, Simai He & Shuzhong Zhang, When All Risk-Adjusted Performance Measures Are the Same: In Praise of the Sharpe Ratio, 11 QUANT.

FIN. 1439 (2011).
102 E.g., Chong & Phillips, supra note 98, at 347. Other sources take pains to specify that it is semivariance rather than semideviation that is

straightforwardly additive. See, e.g., Estrada, An Alternative Behavioural Model, supra note 89, at 231, 237; Estrada, Downside Risk and Capital
Asset Pricing, supra note 79, at 177 n.4.



cov(p,q)= (p,q)= +(p,q)+ –(p,q)

Since the variance of a single distribution is merely a special case of covariance, where

both variables are the same, the same additive relationship holds for upside and

downside semivariance:

cov(p,p)= 2
p = 2

p,+= 2
p,–

Volatility in any of its guises is the positive square root of the corresponding form of

variance. This insight confirms what should be evident from the foregoing equation:

The relationship between upside and downside semideviation is exactly that of the legs

of a right triangle to the hypotenuse under the Pythagorean theorem. The sum of the

squares of the upside and downside semideviation is equal to the square of standard

deviation, or overall variance.

The same relationship can also be revealed through decomposition of variance as the

second central moment of the distribution of returns:

2=
–∞
∞∫(x– )2 f (x)dx 

2=
–∞∫( –x)2 f (x) dx+ ∞∫(x– )2 f (x) dx

= 
–∞∫( –x)2 f (x) dx+ ∞∫(x– )2 f (x) dx

Or more simply:

= 2
– + 2

+

The applicability of the Pythagorean theorem to semideviation subjects one-sided

measures of volatility to the entire apparatus of trigonometry. This property proves

extremely useful for evaluating asymmetrical financial returns. In recognition of Frank

Sortino’s success in promoting the use of downside semideviation as a risk measure,103

many popular financial news sources report the so-called Sortino ratio alongside tra-

ditional modern portfolio theory measures such as mean return ( ), standard devia-

tion ( ), beta ( ), the Sharpe ratio, and R2 (the coefficient of determination derived

by squaring the correlation between the returns of an individual asset or an asset class

and the returns on a benchmark portfolio). Whereas the Sharpe ratio is that of excess

over mean return to standard deviation, the Sortino ratio is that of excess over mean
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103 See, e.g., Frank A. Sortino, From Alpha to Omega, MANAGING DOWNSIDE RISK IN FINANCIAL MARKETS, supra note 68, at 3; Sortino & van der

Meer, supra note 100; Sortino, van der Meer & Plantinga, supra note 31. Others have also endorsed the use of downside semideviation as

a risk measure. See, e.g., James Clash, Focus on the Downside, FORBES, Feb. 12, 1999, at 162-63; Estrada, Cost of Equity in Internet Stocks, supra
note 97, at 241.



return to downside semideviation. Although Morningstar does not report downside

semideviation separately, – is easily recovered from the interaction of the Sortino

ratio with other traditional measures of portfolio risk and performance:

Sharpe =  x – ;    Sortino =  x –
–

– = ·  Sortino
Sharpe

Even where financial news sources neglect to report upside volatility, that value awaits

extraction by analytical means from any report that includes downside semideviation.

Modest rearrangement, combined with the Pythagorean relationship of upside to

downside semideviation, reveals a method for recovering upside semideviation from

standard deviation and the Sharpe and Sortino ratios:

+ = ·   1– (Sortino
Sharpe)

2

The trigonometric manifestation of the Pythagorean theorem makes it possible, and

arguably more desirable on strictly aesthetic grounds, to recover upside semideviation

by treating either the arcsine or the arccosine of the ratio of the Sharpe to the Sortino

ratio as an angle in radians:

sin2 + cos2 = 1

+ = · sin cos–1(Sortino
Sharpe)

Even more generally, the relationship between upside ( +) and downside ( –) semi-

deviation may be evaluated in any number of ways. To the extent that financial returns

are negatively skewed,104 we may expect downside semideviation to exceed its upside

counterpart.

A simple stylized example illustrates the point in easily grasped graphic terms. Imagine

a negatively skewed distribution in which downside semideviation exceeds upside

semideviation by a ratio of 4 to 3:

–=  43 +

Under the Pythagorean theorem, standard deviation would exceed downside semi-

deviation by a ratio of 5 to 4 and upside semideviation by a ratio of 5 to 3:
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104 See generally sources cited supra note 15.



= 2
– + 2

+

=  54 –

=  53 +

As this graphic shows,105 we may arrange upside and downside semideviation as the

legs of a right triangle whose hypotenuse represents overall volatility.

On the foregoing assumptions, the ratio of upside to downside semideviation pro-

vides a crude gauge of asymmetry in volatility: +/ – . To like effect, we could divide

the ratio of the standard deviation to downside semideviation by  2 , which is the 

expected ratio of standard deviation to either downside or upside semideviation 

where volatility on either side of expected return is perfectly symmetrical:
– 2 . 

This value reflects the assumption that perfectly symmetrical volatility would generate

a standard deviation (hypotenuse) that is  2 times as large as either the upside or the

downside semideviation. This follows from the trigonometric properties of an isosce-

les right triangle:

cos(–4 )=–12 ; sec(–4 )= 2

Finally, the Pythagorean relationship between standard deviation and upside and down-

side semideviation enables us to express asymmetry in volatility according to angular

terms. The angle that is formed by the downside semideviation and the standard devi-

ation, , can be derived from the ratio between semideviation and standard deviation:

cos =––

= cos–1(––)
Equivalently, in terms making use of upside semideviation:

= sin–1(–+) = tan–1(–+
–)

Comparing to the hypothetical angle formed by perfectly symmetrical measures of

semideviation on either side of expected return gives us a final way to express asym-

metrical volatility:
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105 Angela Caulley provided the graphic illustration of the Pythagorean interpretation of the relationship of standard deviation to upside and

downside semideviation.

– +



–4
=–4 ·cos–1(––)

The following table summarizes these prospective measures of asymmetry in volatility

in this stylized example:

Formula                                               Description                                                                   Value in this example

                                                        Ratio of upside to downside semideviation     3/4  = 0.75

                                                        Ratio of standard deviation to downside 
                                                        semideviation, relative to sec( /4)                    –

5
4  2

≈ 0.8839

                                                        Ratio of the semideviation angle, relative       
                                                        to cos–1(1/ 2)= /4

� 5. Bifurcating beta: 
relative volatility versus correlation tightening

5.1. Two faces of single-sided beta: sinking, fast and slow

Beta remains a popular albeit theoretically besieged risk measure. Measuring beta on ei-

ther side of a target return offers the tantalizing prospect of rehabilitating this venerable

risk measure within contemporary mathematical finance. Even Don Galagedera, a skep-

tic of the value of beta in any form, concedes that “the association between the CAPM

beta and the downside beta depends on the standard deviation, skeweness and kurtosis

of the market portfolio distribution” — in short, “that the choice of downside risk meas-

ure … depend[s] on the distributive characteristics of the market being investigated.”106

Beta as a composite measure reports both relative volatility across asset classes and

correlation between those classes.107 Single-sided beta specifically reflects skewness as

well as dispersion in returns.108 Consequently, single-sided beta is especially useful for

assessing risk in asset classes whose returns deviate significantly from symmetry and

other normal, Gaussian attributes.109 Emerging markets, embryonic industries, and
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106 Galagedera, An Alternative Perspective, supra note 80, at 13.
107 See sources cited supra note 84.
108 See Estrada, Systematic Risk in Emerging Markets, supra note 51, at 366; Campbell R. Harvey, John C. Liechty, Merrill W. Liechty & Peter Müller,

Portfolio Selection with Higher Moments, 10 QUANT. FIN. 469, 469 (2010) (describing the “us[e] [of] negative semi-variance in place of variance”

as a “three moment optimization method[]”).
109 See Lakshman Alles & Louis Murray, Rewards for Downside Risk in Asian Markets, 37 J. BANKING & FIN. 2501, 2501 (2013) (“[T]here is evidence

that asset returns [in emerging markets] exhibit very high volatility and are not normally distributed”); Estrada, The Cost of Equity of Internet
Stocks, supra note 97, at 240 (emphasizing downside risk as the proper measure for the cost of equity in speculative securities, such as early

Internet stocks); Don U.A. Galagedera & Robert D. Brooks, Is Co-Skewness a Better Measure of Risk in the Downside Than Downside Beta?, 17 J.

MULTINAT’L FIN. MGMT. 214, 216 (2007); Campbell R. Harvey, Predictable Risk and Returns in Emerging Markets, 8 REV. FIN. STUD. 773, 779-80

(1995) (rejecting the null hypothesis of normal markets based on measures of skewness and excess kurtosis in 14 of 20 emerging markets

and concluding that “returns in … emerging markets depart from the normal distribution”). See generally Bekaert et al., supra note 15; Babak

Eftekhari & Stephen E. Satchell, International Investors’ Exposure to Risk in Emerging Markets, 22 J. FIN. RESEARCH 83 (1999).

–4
=–4 ·cos–1(––)

+/ –

– 2

–4 cos–1( 4
5 )≈0.8193



micro-capitalized companies, among other categories, all fit this profile,110 as do

commodity markets (especially for nonrenewable sources of energy).111

These are the markets where single-sided beta has made its mark as a risk measure.

For example, Javier Estrada has found that downside betas in emerging markets ex-

ceeded their corresponding CAPM betas by roughly 50 percent, a gap that implied

an annual increase of 300 to 640 basis points in the cost of capital in emerging

markets.112 “These differential returns are simply too large … to ignore.”113 Along

similar lines, a survey of daily returns on the Russell 3000 index from 1985 through

2012 found a “positive and very significant risk premium on the downside ,” worth

“6.6% per year.”114

Although Don Galagedera has suggested that downside beta’s predictive power may

be confined to emerging markets,115 other sources lend at least qualified support for

downside beta as a risk measure in developed markets,116 including those of Great

Britain,117 France,118 and Japan.119 One study of the American market concludes that

consideration of downside risk in portfolio design would counsel a lower stock allo-

cation.120 This finding is consistent with the provocative suggestion that downside
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110 See Soonsung Hwang & Christian S. Pedersen, Asymmetrical Risk Measures When Modelling Emerging Markets Equities: Evidence for Regional and
Timing Effects, 5 EMERGING MKTS. REV. 109 (2004).

111 See José María Montero, Gema Fernández-Avilés & María-Carmen García, Estimation of Asymmetrical Stochastic Volatility Models: Application to
Daily Average Prices of Energy Products, 78 INT’L STAT. REV. 330, 330-32 (2010). In Bilski v. Kappos, 561 U.S. 593, (2010), the Supreme Court of

the United States invalidated a patent asserting a claim over a process for hedging against losses in energy commodities. On the economic

impact of irreversible investments in energy, see generally Ben S. Bernanke, Irreversibility, Uncertainty, and Cyclical Investment, 97 Q.J. ECON. 85

(1983); Robert S. Pindyck, Irreversibility, Uncertainty and Investment, 29 J. ECON. LIT. 1110 (1991).
112 See Estrada, Systematic Risk in Emerging Markets, supra note 51, at 374.
113 Id. at 375; accord Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 184.
114 Peter Xu & Rich Pettit, No-Arbitrage Conditions and Expected Returns When Assets Have Different ’s in Up and Down Markets, 15 J. ASSET MGMT.

62, 69 (2014); see also id. at 67 (justifying this study’s use of the Russell 3000 “because it excludes the smallest and most illiquid names that

may skew the results); cf. Nurjannah, Galagedera & Brooks, supra note 49, at 274 (conceding that “increasing global investment flows into In-

donesia provide a formidable challenge to equity evaluation due to considerable variation in market conditions and movement”). See generally
Elroy Dimson, Risk Measurement When Shares Are Subject to Infrequent Trading, 7 J. FIN. ECON. 197 (1977).

115 See Don U.A. Galagedera, Economic Significance of Downside Risk in Developed and Emerging Markets, 16 APPLIED ECON. LETTERS 1627, 1632

(2009) (concluding that conventional “CAPM beta clearly outperforms downside beta and downside co-skewness” in developed markets);

Don U.A. Galagedera, Relationship Between Systematic Risk Measured in the Second-Order and Third-Order Co-Moments in the Downside Framework,

3 APPLIED FIN. ECON. LETTERS 147, 152 (2007) (concluding that “variation in the difference between systematic risk measures in terms of co-

semi-skewness and co-semi-variance is larger in emerging markets than in developed markets”). See generally Campbell R. Harvey, Predictable
Risk and Returns in Emerging Markets, 8 REV. FIN. STUD. 773 (1995).

116 SeeTsai, Chen & Yang, supra note 79, at 447 (finding that downside betas as specified by Hogan & Warren, supra note 69, and Harlow & Rao,

supra note 73, “outperform[ed] …other betas in explaining the expected stock market returns” in 23 developed countries).
117 See Fletcher, supra note 42, at 220 (concluding that “there is a conditional relationship between beta and return in UK stock markets” and

that “[b]eta seems to be a good indicator of how stocks react in periods of down market months”); David Morelli, Beta, Size, Book-to-Market
Equity and Returns: A Study Based on UK Data, 17 J. MULTINAT’L FIN. MGMT. 257, 265 (2007) (finding “a statistically significant positive relationship”

between conditional beta and “realised returns … during up markets and a negative relationship during down markets”); cf. Christian S. Ped-

ersen & Soosung Hwang, Does Downside Beta Matter in Asset Pricing?, 17 APPLIED FIN. ECON. 961, 974 (2007) (concluding that CAPM explains

50 to 80% of variations in equity prices, leaving 15 to 15% for a lower partial moment version of the CAPM, but ultimately “not … enough

to construct a downside risk factor”).
118 See Nikolaos Artavanis, Goerge Diacogiannis & John Mylonakis, The D-CAPM: The Case of Great Britain and France, 2 INT’L J. ECON. & FIN. 25, 33

(2010) (concluding that “downside risk measures are better in explaining mean returns” in Great Britain “than the standard deviation and

beta,” but only for individual securities and not for portfolios, and concluding from French portfolio results that “downside beta is equivalent

or better than the traditional beta in terms of explanatory power when beta and the downside beta are jointly considered”).
119 See Jiro Hodoshima, Xavier Garza-Gómez & Michio Kunimura, Cross-Sectional Regression Analysis of Return and Beta in Japan, 52 J. ECON. & BUS.

515, 532 (2000) (concluding that “the conditional relationship” between beta and positive or negative excess returns “is in general better fit

in the down market than in the up market”).
120 See Henk Grootveld & Winfried Hallerbach, Variance vs Downside Risk: Is There Really That Much Difference?, 114 EUR. J. OPERATIONAL RESEARCH

304, 315 (1999).



risk aversion may be sufficiently large not merely to account for the maintenance of

fixed-income positions to offset the greater downside exposure of value stocks,121 but

also “to explain why a substantial fraction of investable wealth is invested in fixed in-

come instruments, despite the sizeable equity premium.”122

Single-sided beta, particularly its downside variant, embodies two distinct aspects of

market risk. As Javier Estrada has observed:

First, …, investors do not dislike volatility per se; they only dislike downside
volatility. Investors do not shy away from stocks that exhibit large and frequent
jumps above the mean; they shy away from stocks that exhibit large and fre-
quent jumps below the mean.…

Second, aversion to the downside is consistent with both the theory and find-
ings in the literature of behavioral finance. It is clearly consistent … with the
S-shaped utility function of prospect theory ….

Finally, the superiority of downside beta may be related to the contagion effect
in financial markets.… [I]n the traditional [mean-variance] framework, the ap-
propriate measure of risk is beta when markets are integrated, and standard
deviation when markets are segmented. The superiority of the downside beta
may then be explained by the fact that markets are more integrated on the
downside than on the upside due to the contagion effect ….123

These insights put a methodological premium on the separate calculation and evalua-

tion of beta’s upside and downside components. Even more intriguingly, further analysis

of upside and downside beta uncovers distinct elements of these single-sided measures.

Emphasizing beta on the downside of mean returns reveals the distinct financial signif-

icance of beta’s volatility and correlation components. Downside volatility, especially if

it increases to a greater degree within a specific asset or asset class relative to the market

as a whole, threatens to inflict the very sort of loss that humans fear most: losing ground

relative to a fixed reference point. Humans subjectively measure their welfare in relative
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121 See Guido Baltussen, Thierry Post & Pim Van Vliet, Downside Risk Aversion, Fixed Income Exposure, and the Value Premium Puzzle, 36 J. BANKING &

FIN. 3382 (2012). But cf. Ralitsa Petkova & Lu Zhang, Is Value Riskier Than Growth?, 78 J. FIN. ECON. 187, 200 (2005) (concluding that a time-

varying risk measure based on the difference between value betas and growth betas does point “in the right direction,” but ultimately “is far

too small to explain the observed magnitude of the value premium within the conditional CAPM”).
122 Baltussen, Post & Van Vliet, supra note 121. See generally Nicholas Barberis & Ming Huang, Mental Accounting, Loss Aversion, and Individual Stock

Returns, 56 J. FIN. 1247 (2001); Nicholas Barberis, Ming Huang & Tano Santos, Prospect Theory and Asset Prices, 116 Q.J. ECON. 1 (2001); Bellelah,

Bellelah, Ameur & Hafsia, supra note 35; Shlomo Benartzi & Richard H. Thaler, Myopic Loss Aversion and the Equity Premium Puzzle, 110 Q.J.

ECON. 73 (1995); Arjan B. Berkelaar, Roy Kouwenberg & Thierry Post, Optimal Portfolio Choice Under Loss Aversion, 86 REV. ECON. & STAT. 973

(2005); Narayana R. Kocherlakota, The Equity Premium: It’s Still a Puzzle, 34 J. ECON. LIT. 42 (1996); N. Gregory Mankiw & Stephen P. Zeldes, The
Consumption of Stockholders and Nonstockholders, 29 J. FIN. ECON. 97 (1991); Rajnish Mehra & Edward C. Prescott, The Equity Premium: A Puzzle,

15 J. MONETARY ECON. 145 (1985); Rajnish Mehra & Edward C. Prescott, The Equity Premium Puzzle in Retrospect, in HANDBOOK OF THE ECONOMICS

OF FINANCE 889 (George M. Constantinides, Milton Harris & René M. Stulz eds., 2003).
123 Estrada, Downside Risk and Capital Asset Pricing, supra note 86, at 183; Estrada, Systematic Risk in Emerging Markets, supra note 51, at 375-76. The

same passage appears in both articles; I have omitted Estrada’s footnote crediting Mark Kritzer for the observation regarding contagion.



rather than absolute terms.124 The choice of market-wide benchmarks is not merely ra-

tional, but deeply intuitive and naturally appealing.

Tightening correlation during market downturns creates a different, even insidious

sort of peril. Correlations across asset classes, relatively stable under ordinary market

conditions, tighten under stress.125 The very portfolios that are diversified to withstand

volatility “might suffer greater damage” as correlations rise during “period[s] of severe

market turmoil.”126

Volatility per se poses a direct threat to financial expectations. By contrast, correlation

tightening undermines diversification strategies adopted for the specific purpose of

taming volatility. Unlike the instinctive and immediate fear of loss associated with

volatility, comprehending the “surprising” or even “paradoxical” impact of correlation

tightening on portfolio management requires “further reflection.”127 The contrast

evokes Daniel Kahneman’s distinction between the “fast” heuristics of human instinct

and the “slow,” deliberate processing of rational data.128 Loss aversion is fast, even

instantaneous. Comprehending the indirect, insidious threat from correlation tight-

ening takes greater effort and more time.

Having identified two sources of concern with sinking markets, one fast and the other

slow, I will now specify the distinctive components of single-sided beta that measure

changes in relative volatility and in correlation among assets as returns fall on either

side of their expected value.

5.2. Identifying distinct parameters that indicate relative volatility and 
correlation tightening

Careful parsing of the ratio between ordinary beta and single-sided beta reveals two

distinct parameters, each addressing the distinct emotional and rational responses

to sinking, fast and slow. Recall the basic definition of beta as “correlated relative

volatility”:129

a a cov(a,m) cov(a,m)
m m a m

2
m
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124 See, e.g., Gary Charness, David Masclet & Marie Claire Villeval, The Dark Side of Competition for Status, 60 MGMT. SCI. 38 (2014); Simon Dato &

Petra Kieken, Gender Differences in Competition and Sabotage, 100 J. ECON. BEHAV. & ORG. 64 (2014); Thomas Dohmen, Armin Falk, Klaus Fless-

bach, Uwe Sunde & Bernd Weber, Relative Versus Absolute Income, Joy of Winning, and Gender: Brain Imaging Evidence 95 J. PUB. ECON. 279 (2011);

Camellia M. Kuhnen & Agnieszka Tymula, Feedback, Self-Esteem, and Performance in Organizations, 58 MGMT. SCI. 94 (2012); Mark Sheskin, Paul

Bloom & Karen Wynn, Anti-Equality: Social Comparison in Young Children, 130 COGNITION 152 (2014).
125 See Malcolm P. Baker & Jeffrey Wurgler, Comovement and Predictable Relations Between Bonds and the Cross-Section of Stocks, 2 REV. ASSET PRICING

STUD. 57 (2012).
126 LIEBOWITZ, BOVA & HAMMOND, supra note 29, at 265.
127 Id.
128 See generally KAHNEMAN, supra note 50, at 19-105.
129 See sources cited supra note 84.

a=    (a,m)=     ·            =



Beta is a composite measure that combines two components. First, relative volatility is

the ratio of asset-specific volatility to market-wide volatility: a/ m . Second, beta reflects

the correlation between an asset or asset class and the market as a whole: (a, m).

In comparing single-sided beta to its ordinary counterpart, let us focus on the down-

side variant — that is, beta contingent on the failure of the individual asset and the

market-wide portfolio to meet their respective expected returns. Downside beta con-

tains the same components as its general counterpart — beta as specified within the

conventional capital asset pricing model. The key difference is that downside beta,

unlike CAPM beta, relies entirely on partial moments, semideviation, and single-sided

variants of correlation and covariance:130

a,– a,– cov–(a,m) cov–(a,m)
m,– m,– a,– m,–

2
m,–

With good reason, financial analysts often assume that beta increases when returns

fall below their mean. “Periods of high volatility … tend to coincide with downward

market movements.”131 Calculating downside beta alongside CAPM beta gives us a

crude but very intuitive measure of “stress beta” — specifically, the ratio of downside

beta to CAPM beta: a,–/ a . But even this ratio contains further information, which

awaits extraction by the simplest of mathematical expedients.

Recall that semivariance is a composite measure reporting elements of volatility along-

side skewness.132 Beta likewise combines two financially meaningful statistics: corre-

lation and relative volatility. “High downside beta can be produced by high downside

correlation … or by high downside volatility.”133 Further dividing beta into its upside

and downside components, and then comparing each side to the general value of

beta, achieves (as it were) yet another feat of financial meiosis. The goal is to separate

the volatility-based component of beta from its correlation-based component and

to isolate each component within its own “haploid” measure.134 Just as the genetic

makeup of a child reflects distinct contributions from each parent, beta as a measure

of systematic risk communicates information about volatility as well as correlation.
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130 See Ang, Chen & Xing, supra note 90, at 1227 (defining downside beta as                     ).
131 Andrew Ang, Robert J. Hodrick, Yuhang Xing & Xiaoyan Zhang, The Cross-Section of Volatility and Expected Returns, 61 J. FIN. 259, 260 (2006). See

generally John Y. Campbell & Ludger Hentschel, No News Is Good News: An Asymmetrical Model of Changing Volatility in Stock Returns, 31 J. FIN.

ECON. 28122 (1992); Kenneth R. French, G. William Schwert & Robert F. Stambaugh, Expected Stock Returns and Volatility, 19 J. FIN. ECON. 3

(1987).
132 See sources cited supra note 108.
133 Ang, Chen & Xing, supra note 90, at 1228.
134 For introductions to meiosis and ploidy, biological concepts that arise rarely, if at all, in the language or logic of finance, see Harris Bernstein

& Carol Bernstein, Evolutionary Origin of Recombination During Meiosis, 60 BIOSCIENCE 498 (2010); Laura Wegener Parfrey, Daniel J.G. Lahr &

Laura A. Katz, The Dynamic Nature of Eukaryotic Genomes, 25 MOLECULAR BIOL. & EVOL. 787 (2008); J.M. deWet, Origins of Polyploids, 13 BASIC LIFE

SCIS. 3 (1979). In meiosis, a cell divides itself into two parts, each containing half of its chromosomes. Ploidy refers to the number of sets of

chromosomes within a cell. A healthy haploid cell, usually a gamete (egg or sperm), contains a single copy of each chromosome. The typical

somatic cell of a diploid species (such as humans) contains two complete haploid sets of chromosomes.

a .–=    –(a,m)=     ·              =

–= –
a,–

m,–



A simple mathematical expedient enables us to distinguish changes in relative volatility

from changes in correlation as markets move across critical boundaries such as mean

return.135 Dividing downside beta by CAPM beta reveals the extent to which changes

in beta, contingent upon declines in asset-specific returns and/or declines in market-

wide returns, have hinged on changes in asset-specific volatility relative to the whole

market, as opposed to correlation tightening:

a,–/ a =

=( · )( )
The first of these factors in the full equation, relative asset volatility on the downside di-

vided by relative asset volatility under all conditions, describes a parameter that measures

the change in relative volatility on either side of the target return (presumably but not

necessarily the mean return). Let us designate this parameter as v, as in volatility:136

v=          ·

The second factor, the ratio of downside correlation to overall correlation, describes

changes in correlation as returns fall below an asset-specific and/or market-wide

mean. Because correlations are expected to tighten in falling markets, let us designate

this ratio as c, our correlation tightening parameter:137

c =         

Multiplying the product of both parameters, vc, reveals the ratio of downside to

CAPM beta:

=( · )( )=vc

Equivalently, multiplying CAPM beta by vc reveals downside beta:

a,– =vc a
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135 See Andrew Ang & Joseph Chen, Asymmetric Correlations of Equity Portfolios, 63 J. FIN. ECON. 443, 444 (2002); Longin & Solnik, supra note 28, at

650-51.
136 In naming this variable, I chose v over s, the Roman alphabet’s analogue of sigma ( ), in order to avoid confusion with the statistical convention

of designating estimated or sample values with Roman letters and true but unknown population values with Greek letters.
137 Again, despite the intuitive appeal of r , the Roman alphabet’s analogue of rho ( ), as the name for this variable, I chose the first letter of the

English word correlation in order to avoid confusion with the notational conventions of statistics.
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Even better, identifying v and c isolates distinct relative volatility and correlation tight-

ening parameters on either side of mean returns. Although other sources have iden-

tified these factors as a mathematical matter,138 this article proposes the use of these

parameters to test hypotheses about changes in volatility and correlation under dif-

ferent market conditions.

The foregoing evaluation of downside beta according to relative volatility parameter

v and correlation tightening parameter c can be performed with equal ease on the

upside. In the interest of notational completeness and consistency, we should label

the downside versions of these parameters as v– and c–, reserving v+ and c+ for evalu-

ating market behavior on the upside. Thus:

a,– =v– c– a

a,+ =v+ c+ a

5.3. Relative volatility and the beta quotient

v±, the relative volatility component of single-sided beta, proceeds from the seemingly

uncontroversial premise that “stocks … have different sensitivities to innovations in

market volatility.”139 The history underlying this insight, however, is anything but

placid. The science of portfolio management has long disputed the proper interpre-

tation of relative volatility. In 1985, Robert Camp and Arthur Eubank advocated the

displacement of beta by a direct measure of idiosyncratic risk.140 For portfolios whose

correlation as measured by R 2 is less than or equal to 0.85, the presence of “substan-

tial amounts of unsystematic or diversifiable risk,” Camp and Eubank recommended

the ratio of market-wide beta to the correlation between an individual portfolio and

the market at large as a more direct measure of the “total variation of return … relative

to overall market variation”:141

a =

Although Camp and Eubank called this ratio the “beta quotient,” this ratio of two

standard deviations is just as readily — and perhaps more understandably — called

“relative volatility” or the “volatility ratio.”142 Mathematically, the beta quotient is
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138 See LIEBOWITZ, BOVA & HAMMOND, supra note 29, at 263, 267-69 (identifying a value called “stress beta” that is equal to “the original beta mul-

tiplied by” a quantity equivalent to v–c–); Ang & Chen, supra note 135, at 461 (identifying “the ratio of upside portfolio volatility to market

volatility” and its downside counterpart); Harvey, supra note 109, at 809 (“The correlation is related to beta by the ratio of .of the world and

country standard deviations”).
139 Ang, Hodrick, Xing & Zhang, supra note 131, at 260.
140 See Robert C. Camp & Arthur A. Eubank, Jr., The Beta Quotient: A New Measure of Portfolio Risk, 7:4 J. PORTFOLIO MGMT. 53 (Summer 1981).
141 Id. at 54. In terms of correlation, an R2 value of 0.85 corresponds to ≈ 0.922.
142 Chris Tofallis, Investment Volatility: A Critique of Standard Beta Estimation and a Simple Way Forward, 187 EUR. J. OPER. RESEARCH 1358, 1361 (2008).

m
(a,m)



equivalent to the ratio of the volatility of an individual asset or asset class, relative to

overall market volatility:143

a = = · sgn[ (a,m)]

The beta quotient therefore dissolves into the ratio of “the volatility of an investment’s

rate of return [to] the volatility of the market’s rates of return,” times the sign of the

correlation between the investment and the market.144 

At least for nondiversified portfolios,145 Camp and Eubank argued that the beta quo-

tient (or volatility ratio) should supplant beta as the gauge of the “return performance

of a portfolio … since it is bearing diversifiable risk in addition to its systematic or

non-diversifiable risk.”146 More recently, Chris Tofallis has advocated the use of the

volatility ratio. Concerned that “low beta could actually represent a high relative

volatility that is being masked by a low correlation,” Tofallis urges direct reliance on

relative volatility rather than a “formula for standard beta [that] confounds … relative

volatility and correlation.”147 Finally, Peter Butler and Keith Pinkerton, building on

Aswath Damodaran’s treatment of beta as a component of a company’s cost of eq-

uity,148 aggressively tout the volatility ratio under the name “total beta.”149

Although the practitioner literature has forcefully rebutted Butler and Pinkerton’s

evident disregard for diversification,150 these authors’ emphasis on the valuation of

individual assets highlights the value of the v parameter and its isolation of changes

in relative volatility. Ironically, the utility of this measure lies not in its purported

measure of “total” risk, but rather in narrowing the focus of financial analysis on

idiosyncratic or company-specific factors. At a minimum, such a focus may illumi-

nate two heretofore obscure corners of mathematical finance: the low-volatility

anomaly and the precise relationship between moment-based models of financial

risk (including the CAPM and the single-sided approaches highlighted here), on

one hand, and the size, value, and momentum factors stressed in work by Eugene

Fama and Kenneth French.
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143 Id. at 1363.
144 Id. at 1361; see also id. at 1363.
145 Cf. Camp & Eubank, supra note 140, at 54 (conceding that “the use of beta to measure [the] risk” of a “well-diversified” portfolio “is appropriate

and adequate”).
146 Id. at 56.
147 Tofallis, supra note 142, at 1361.
148 See generally ASWATH DAMODARAN, INVESTMENT VALUATION: TOOLS AND TECHNIQUES FOR DETERMINING THE VALUE OF ANY ASSET 183-206 (3d ed.

2012).
149 See, e.g., Peter Butler & Keith Pinkerton, Company Specific Risk – A Different Paradigm: A New Benchmark, 25:1 BUS. VALUATION REV. 22 (Spring

2006); Peter Butler & Keith Pinkerton, There is a New “Beta” in Town, and It’s Not Called Total Beta for Nothing!, 15:3 BUS. VALUATION UPDATE 7, 10

(March 2009). The notion of “total beta” is drawn from Camp and Eubank’s assertion that the beta quotient measures “total risk,” defined as

“both systematic and unsystematic risk,” as “contained in investment portfolios.” Camp & Eubank, supra note 140, at 56.
150 See, e.g., Larry Kasper, Fallacies of the Butler-Pinkerton Model and the Diversification Argument, VALUE EXAMINER, Jan.-Feb. 2010, at 8; cf. Tony van

Zijk, Beta Loss, Beta Quotient: Comment, 11:4 J. PORTFOLIO MGMT. 75 (Summer 1985).

m
(a,m)

a

m



The relative volatility component of single-sided beta is akin to the book-to-market

equity ratio, which defines what is now known as the “value” factor in Fama and

French’s three-factor asset pricing model. “[B]ook-to-market equity captures the rel-

ative corporate distress factor and is thus a risk variable that needs to be compen-

sated.”151 If v (especially v–, its downside variant) measures some aspect of corporate

distress and the risk premium commanded by investors willing to commit capital to

undervalued, distressed firms, then this component of downside beta may explain

the superior performance of low-beta portfolios.152

Such an explanation would address one of the most spectacular failures of traditional

financial models relying upon raw volatility and traditional beta as measures of risk.

The entire point of an efficient capital market is to reward the assumption of risk with

returns. A “contemporaneous relationship between factor loadings and risk premia

is the foundation of a cross-sectional risk-return relationship, and has been exploited

from the earliest tests of the CAPM.”153 Ceteris paribus, risky assets have high returns.

Safe assets don’t. “This simple empirical proposition has been hard to support on

the basis of the history of U.S. stock returns.”154 Indeed, the “most widely used meas-

ures of risk point rather strongly in the wrong direction.”155 For instance, in a survey

of stock returns from 1926 to 1971, Robert Haugen and James Heins concluded:

“over the long run, stock portfolios with lesser variance in monthly returns have ex-

perienced greater average returns than their ‘riskier’ counterparts.”156

More recent studies confirm the presence of a low-volatility anomaly. Stocks exhibiting

the highest levels of volatility have “abysmally low average returns.”157 The inversion of

returns on low- versus high-volatility stocks has been confirmed across numerous histor-

ical periods and in markets around the world.158 “That low beta is high alpha is a robust

historical pattern.”159 The presence of returns as low as negative 0.02% per month in the

quintile of stocks exhibiting the highest levels of volatility is not merely “a puzzle.”160
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151 Morelli, supra note 213, at 267. See generally K.C. Chan & Nai-Fu Chen, Structural and Return Characteristics of Small and Large Firms, 46 J. FIN.

1467 (1991).
152 See Malcolm Baker, Brendan Bradley & Jeffrey Wurgler, Benchmarks as Limits to Arbitrage: Understanding the Low-Volatility Anomaly, 67:1 FIN.

ANALYSTS J. 40, 46 (Jan./Feb. 2011).
153 Ang, Chen & Xing, supra note 90, at 1193.
154 Baker, Bradley & Wurgler, supra note 152, at 40.
155 Id. (emphasis in original).
156 Robert A. Haugen & A. James Heins, Risk and the Rate of Return on Financial Assets: Some Old Wine in New Bottles, 10 J. FIN. & QUANT. ANALYSIS

775, 782 (1975) (emphasis added).
157 Ang, Hodrick, Xing & Zhang, supra note 131, at 296; accord Baker, Bradley & Wurgler, supra note 152, at 43; see also Andrew Ang, Robert J. Ho-

drick, Yuhang Xing & Xiaoyan Zhang, High Idiosyncratic Volatility and Low Returns: International and Further U.S. Evidence, 91 J. FIN. ECON. 1 (2009).
158 See, e.g., David C. Blitz & Pim van Vliet, The Volatility Effect: Lower Risk Without Lower Return, 34:1 J. PORTFOLIO MGMT. 102 (Fall 2007); Roger

Clarke, Harindra de Silva & Steven Thorley, Minimum-Variance Portfolios in the U.S. Equity Market, 33:1 J. PORTFOLIO MGMT. 10 (Fall 2006); Andrea

Frazzini & Lasse Heje Pedersen, Betting Against Beta, 111 J. FIN. ECON. 1 (2014); Robert A. Haugen & Nardin L. Baker, The Efficient Market Inef-
ficiency of Capitalization-Weighted Stock Portfolios, 17:3 J. PORTFOLIO MGMT. 35 (Spring 1991); cf. Estrada & Serra, supra note 167, at 267 (finding,

“counterintuitively,” that “low risk portfolios” in emerging markets “outperform … high-risk portfolios over 20 years,” at least “when portfolios

are rebalanced every 10 years”).
159 Baker, Bradley & Wurgler, supra note 152, at 43.
160 Ang, Hodrick, Xing & Zhang, supra note 131, at 297.



Abysmal returns in the most volatile quantile are the natural and predictable consequence

of “a statistically significant negative price of risk of approximately –1% per annum”

charged against “innovations in aggregate volatility.”161 Because it so strikingly “challenges

the basic notion of a risk-return tradeoff,” the “long-term outperformance of low-risk

portfolios” is quite possibly “the greatest anomaly in finance.”162

More generally, v and v– may reveal the relationship of single-sided beta (or at least

its relative volatility component) to Fama and French’s three-factor model,163 espe-

cially since the book-to-market ratio (value) and size (small-cap) are thought to cor-

relate to higher volatility relative to the market as a whole.164 A similar connection

may link single-sided risk measures to momentum in market returns.165 In due course,

this article will address the extent to which “the extended Fama-French factors fully

capture downside risk concerns.”166 For the moment, it suffices to organize competing

models into three “families” of risk measures: (1) “the traditional family” of measures

drawn from the conventional CAPM and modern portfolio theory, such as uncondi-

tional standard deviation and beta; (2) the “factor family” typified by Fama and

French’s emphasis on size and value; and (3) a “downside risk family” based on single-

sided statistical moments and their derivations.167

5.4. Correlation tightening

Relative volatility (and, by extension, of the v parameter in this article’s evaluation of

single-sided beta) focuses in laser-like fashion on changes in return on a single asset,

against the backdrop of the overall market. This power comes at a price: disregarding

the c parameter and the information that it conveys regarding correlation. The most

compelling reason to consider risk factors beyond relative volatility subsists in the fact

that no owner of a financial asset can be an island, when markets operate as compre-

hensive, interactive ecosystems of prospective buyers and sellers.168 Taking account of

the correlation component of beta ensures that the “[r]isk of an investment and its fair

market value” are “based on the risks (and pricing) perceived by” the entire “pool of

likely buyers,” and not just “the diversification or nondiversification of the current
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161 Id. at 260 (emphasis added); see also id. (“If the price of aggregate volatility is negative, stocks with large, positive sensitivity should have low

average returns.”).
162 Baker, Bradley & Wurgler, supra note 152, at 43.
163 See sources cited supra note 40.
164 See Chong & Phillips, supra note 98, at 351 (acknowledging that the connections between single-sided beta and the Fama-French three-factor

model remain largely unexplored).
165 See sources cited supra note 22.
166 Alles & Murray, supra note 109, at 2508 (finding “no evidence” that Fama and French’s factors fully capture — and therefore wholly supersede

— downside risk concerns embodied in single-sided measures of volatility and correlation).
167 Javier Estrada & Ana Paula Serra, Risk and Return in Emerging Markets: Family Matters, 15 J. MULTINAT’L FIN. MGMT. 257, 259 (2004) (emphases in

original).
168 Cf. JOHN DONNE, Meditation 17, in DEVOTIONS UPON EMERGING OCCASIONS (1623) (“No man is an island, entire of itself; every man is a piece of

the continent …. [T]herefore never send to know for whom the bell tolls; it tolls for thee.”) (available at https://en.wikisource.org/wiki/Med-

itation_XVII).



owner.”169 The burden of tracking changes in correlation on either side of mean return

therefore falls upon the c parameter in this article’s analysis of single-sided beta.

It is one thing to emphasize the beta quotient or relative volatility. It is treacherous,

however, to ignore correlation. As I have just argued, changes in relative volatility on

either side of mean return, as measured by the v parameter, may reveal useful infor-

mation about the undervaluation of individual assets. Relative volatility animates

deeper connections between single-sided beta the three-factor model of Fama and

French most often credited with deprecating the conventional capital asset pricing

model and its conception of beta. But we should not ignore information on correla-

tion, which after all lies at the heart of portfolio design and addresses risk manage-

ment concerns distinct from those raised by volatility. Correlations between equities

in a wide range of developed stock markets are known to be much higher in downside

markets than in normal markets.170 Indeed, those “increase[s] in conditional correla-

tion” do not appear to flow from “[h]igh volatility per se (i.e., large absolute returns),”

but rather seem to be “mainly affected by the market trend.”171

Moreover, as with the derivation of upside semivariance and semideviation from its

downside counterpart, information on correlation is readily extracted from explo-

rations of volatility. The same mathematical maneuver that isolates relative volatility

simultaneously reports correlation tightening. Having extracted relative volatility pa-

rameter v (in its upside or downside incarnations, or both) from beta on either side

of mean return, we should also put correlation tightening parameter c to work.

An episode in economic history counsels us to fully exploit insights into changes in

correlation under different market conditions.172 Just as the cotton boll comprises

both fiber and seed, beta combines relative volatility with correlation. Preindustrial

cotton cultivation emphasized retrieval of raw fiber. The seed was considered a nui-

sance. Though cottonseed in excess of planting needs had value as fertilizer, animal

feed, and a source of oil, the developed economies of the nineteenth century wavered

between treating cottonseed as an alternative to increasingly expensive animal fats

(including whale oil) and severely regulating it because its utility as an additive to lard

or olive oil undermined markets for these commodities and threatened to deceive

consumers. But twentieth-century food science converted cottonseed into edible
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169 PRATT & GRABOWSKI, supra note 84, at 307 (criticizing the “total beta” technique advocated by Butler and Pinkerton in sources cited supra
note 149). The notion of fair market value involves a market transaction between hypothetical, even idealized, buyers and sellers. See United

States v. Cartwright, 411 U.S. 546, 551 (1973); Estate of Bright v. United States, 658 F.2d 999, 1005-06 (5th Cir. 1981); PRATT & GRABOWSKI,

supra note 84, at 307 n.30.
170 SeeAng & Chen, supra note 135, at 444 (“on the downside, portfolios [in the United States] are much more likely to move together with the

market”); Longin & Solnik, supra note 28 (mature equity markets).
171 Longin & Solnik, supra note 28, at 650.
172 See generally Richard O’Brien, Lynn A. Jones, C. Clay King, Phillip J. Wakelyn & Peter J. Wan, Cottonseed Oil, in 2 BAILEY’S EDIBLE OIL AND FAT PROD-

UCTS: EDIBLE OILS 173 (Fereidoon Shahidi ed., 6th ed. 2005); H.C. Nixon, The Rise of the American Cottonseed Oil Industry, 38 J. POL. ECON. 73

(1930). The information in this paragraph is derived from these sources.



shortening and cooking oil (best known in the United States under the brand names

Crisco and Wesson). The once-useless byproduct became a formidable, profitable

commodity in its own right. That cottonseed has been eclipsed by other oilseeds, es-

pecially soybeans and corn, in no way diminishes this parable. Having isolated infor-

mation on correlation in the process of “filtering” beta for information on changes

in relative volatility, we should not discard the information we have simultaneously

obtained on changes in correlation.

A simple comparison between developed and emerging markets illustrates the differ-

ence between volatility and correlation as indicators of investment risk. Almost indis-

putably, “[e]merging markets have higher average returns and volatility than

developed markets.”173 Conventional mean-variance optimization compares returns

from emerging markets with their volatility to assess the value of the tradeoff of higher

volatility for higher return. At sufficiently high levels of volatility, an investor may not

find it worthwhile to venture the risk from exposure to emerging markets. But “low

correlations between emerging markets and developed markets” point with little am-

biguity in the direction of “portfolio investment opportunities.”174 Consequently, the

“inclusion of emerging market assets in a mean-variance efficient portfolio will sig-

nificantly reduce portfolio volatility and increase expected returns.”175

This is not to suggest that correlation tightening is uniquely confined to emerging mar-

kets. Quite the contrary. “[T]he Normal distribution … consistently underestimates the

probability of (positive or negative) large returns. Therefore, booms and crashes in Eu-

ropean [and other developed] markets are much more likely to occur than a Normal

distribution would predict.”176 In their canonical study of correlation under extreme

conditions in developed markets in France, Germany, the United Kingdom, and the

United States, François Longin and Bruno Solnik discovered that “conditional correla-

tion” among these markets “strongly increases,” but only “in bear markets.”177 By con-

trast, “conditional correlation does not seem to increase in bull markets.”178

Although Longin and Solnik refrained from drawing firm normative conclusions,

their “empirical distinction between bear and bull markets has potential implica-

tions for asset allocation and portfolio construction.”179 One such implication af-
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173 Harvey, supra note 109, at 780.
174 Id. at 781; see also Vihang R. Erruzna, Emerging Markets: New Opportunity for Improving Global Portfolio Performance, 39:5 FIN. ANALYSTS J. 51

(Sept./Oct. 1983).
175 Harvey, supra note 109, at 811.
176 Aparicio & Estrada, supra note 15, at 15-16. See generally, e.g., Joseph Chen, Harrison Hong & Jeremy Stein, Forecasting Crashes: Trading Volume,

Past Returns, and Conditional Skewness in Stock Prices, 61 J. FIN. ECON. 345 (2001); Eugene F. Fama, The Behavior of Stock Market Prices, 38 J. BUS.

34 (1965); Peiró, supra note 15; Michael A. Simkowitz & William L. Beedles, Diversification in a Three-Moment World, 13 J. FIN. & QUANT. ANALYSIS

927 (1978); J. Clay Singleton & John Wingender, Skewness Persistence in Common Stock Returns, 21 J. FIN. & QUANT. ANALYSIS 335 (1986).
177 Longin & Solnik, supra note 28, at 650.
178 Id. at 651.
179 Id.



fects the impact of asymmetric correlation on extremely negative returns in other-

wise weakly related markets. Where “the correlation structure of large returns is

asymmetric,” such that “[c]orrelation tends to decrease with the absolute size of

the threshold for positive returns … but tends to increase for negative returns,” it

necessarily follows that “the probability of having large losses simultaneously on

two markets is much larger than would be suggested under the assumption of mul-

tivariate normality.”180 And actual evidence of differences in correlation on either

side of mean returns reinforces the supposition that “[c]orrelation asymmetries are

far greater for extreme downward moves.”181 Andrew Ang and Joseph Chen have

found a swing exceeding 3 percentage points (from 8.48 to 11.61 percent) between

(1) observed correlations between narrower, asset-class-based portfolios and the

broader market, relative to correlations implied by a normal distribution of returns,

and (2) “the average difference” between the same correlations “[c]onditional on

just downside moves.”182

Effective diversification depends on low or even negative correlation between assets.

Idiosyncratic risk, the phenomenon that propels both raw volatility and volatility

relative to a broader benchmark, is the very reason for diversification.183 Inasmuch

as “changes in market volatility … represent[] a deterioration in investment oppor-

tunities,” investors as “[r]isk-averse agents [will] demand stocks that hedge against

that risk.”184 For this reason, it is not return or volatility alone, but also correlation,

that informs portfolio construction and asset allocation. If “[c]orrelations condi-

tional on ‘downside’ movements” exceed “correlations implied by a normal distri-

bution,” or even correlations under other market conditions, such that “all stocks

tend to fall together as the market falls, the value of diversification may be over-

stated” to the extent of the failure to “tak[e] the increase in downside correlations

into account.”185

Because they undermine diversification, portfolio theory’s standard response to idio-

syncratic risk, changes in correlation under stressed market conditions inject a distinct

and dangerous sort of risk in its own right, wholly apart from volatility. Correlation

tightening can disrupt managerial strategies that assume lower levels of correlation

among asset classes, or even negative correlation so that certain holdings can hedge

against declines in others.
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180 Id. at 669-70.
181 Ang & Chen, supra note 135, at 469.
182 Id.
183 See generally John Y. Campbell, Martin Lettau, Burton G. Malkiel & Yexiao Xu, Have Individual Stocks Become More Volatile? An Empirical Exploration

of Idiosyncratic Risk, 56 J. FIN. 1 (2001).
184 Ang, Hodrick, Xing & Zhang, supra note 131, at 260. See generally John Y. Campbell, Intertemporal Asset Pricing Without Consumption Data, 83 AM.

ECON. REV. 487 (1993); Joseph Y. Campbell, Understanding Risk and Return, 104 J. POL. ECON. 298 (1996).
185 Ang & Chen, supra note 135, at 444 (reporting an 11.6% increase in downside correlation); see also id. at 450 (showing graphically the economic

cost of ignoring or miscalculating downside correlation).



In principle, this interest in diversification may, on its own, justify investments in high-

volatility assets whose returns lag behind those of the broader universe of tradable in-

struments. A high-volatility component of a broader portfolio may lower risk by

“provid[ing] insurance against bad events,” especially by delivering returns during sharp

downturns.186 Stocks “with high upside potential relative to downside risk tend[] to pay

off more when an investor’s wealth is already high.”187 Such stocks “are not as desirable

as stocks that pay off when the market decreases.”188 If “assets with high sensitivities to

market volatility risk” do indeed “provide hedges against market downside risk,” then

“higher demand for assets with high systematic volatility loadings” should “increase[]

their price and lower[] their average return.”189 It is worth remembering that upside

beta is the product of upside correlation and the ratio of upside asset-specific volatility

to upside market-wide volatility; downside beta is similarly defined:190

+ = +(a,m)

– = –(a,m)

This relationship reminds us that “an asset [that] tends to move downward in a de-

clining market more than it moves upward in a rising market … is an unattractive

asset to hold, because it tends to have very low payoffs precisely when the wealth of

investors is so low.”191

Actual evidence, however, sometimes points in the opposite direction. Once again,

we confront the confounding effects of the low-volatility anomaly. High-volatility

portfolios perform at their worst “in precisely those periods when an insurance pay-

ment would have been most welcome, such as the downturns of 1973-74 and 2000-

2002, the crash of 1987, and the financial crisis that began in the fall of 2008.”192

Rising correlation in stressed markets, the very phenomenon that tightening param-

eter c– measures, poses an even greater threat to portfolios consciously designed to

weather ordinary volatility.193

Poor performance by high-beta portfolios has been confirmed in studies of the ten

months with the sharpest downward market movements in the six decades after 1932194
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186 Baker, Bradley & Wurgler, supra note 152, at 43.
187 See Ang & Chen, supra note 90, at 1199.
188 Id.
189 Ang, Hodrick, Xing & Zhang, supra note 131, at 260. See generally Gurdip Bakshi & Nikunj Kapadia, Delta-Hedged Gains and the Negative Market

Volatility Risk Premium, 16 REV. FIN. STUD. 527 (2003).
190 See Ang & Chen, supra note 135, at 461.
191 Ang, Chen & Xing, supra note 90, at 1191.
192 Baker, Bradley & Wurgler, supra note 152, at 43.
193 See LEIBOWITZ, BOVA & HAMMOND, supra note 29, at 235, 265.
194 See Chan & Lakonishok, supra note 38.

a,+

m,+

a,–

m,–



and of all periods of market distress, defined as declines in the Standard & Poor’s

500 index exceeding 10 percent, in the quarter century preceding Fama and French’s

attack on beta.195 Replicating work on single-sided beta, especially the 1995 study by

Pettengill, Sundaram, and Mathur,196 Malcolm Baker, Brendan Bradley, and Jeffrey

Wurgler in 2011 not only found “the low-beta anomaly” across diverse market con-

ditions, but also detected a meaningful difference between up and down markets.197

Although “the low-beta anomaly” persists in all market environments” on “a capital

asset pricing model … market-adjusted basis,” it differs on either side of mean returns:

“high-beta stocks earned higher (lower) total returns than did low-beta stocks in up

(down) markets.”198

Further evaluation of beta according to its discrete components suggests that it is

correlation tightening rather than downside volatility that drives the low-volatility

anomaly. In a 2006 study by Andrew Ang, Joseph Chen, and Yuhang Xing, control-

ling for downside correlation showed that “stocks with high [downside] volatility,

or –, tend to have low returns, which is exactly opposite to the high –, high average

return effect” predicted by standard portfolio theory.199 These, after all, are the

stocks with the highest levels of volatility and correspondingly “abysmal[]” re-

turns.200 But holding downside volatility constant so that increases in downside

beta are driven by downside correlation creates an average 5% annualized difference

in returns on a month after month basis “between the tenth and first decile port-

folios, sorted on past” downside correlation.201 At a minimum, an answer to beta’s

true significance begins with the bifurcation of beta on either side of mean return.

If the upside risk premium fails to offset the negative risk premium on downside

beta, as one might expect in negatively skewed markets, these results may explain,

at least in part, the mechanics of the low-volatility anomaly.

The low-volatility anomaly has an unusual twist in banking, one that might be

called the “curse of quality.” Populating the trading book with lower-volatility,

higher-quality investments does not necessarily lower a bank’s market risk. Indeed,

cautious investing, though seemingly prudent from the perspective of an individual

bank, may exacerbate the systemic risk borne by the banking industry as a whole.

This paradox sheds highlights the importance of correlation and changes in corre-

lation — wholly apart from considerations of volatility — in risk management. Assets
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195 See Grundy & Malkiel, supra note 41.
196 See Pettengill, Sundaram & Mathur, supra note 5.
197 Baker, Bradley & Wurgler, supra note 152, at 43.
198 Id.; cf. R. Burr Porter, Semivariance and Stochastic Dominance: A Comparison, 64 AM. ECON. REV. 260 (1974) (finding that portfolios with below-

target semivariance showed statistic dominance over their benchmark, but that porfolios with below-mean semivariance did not).
199 Ang, Chen & Xing, supra note 90, at 1228.
200 See sources cited supra note 157.
201 Ang, Chen & Xing, supra note 90, at 1228 n.15.



chosen specifically because they are less volatile under ordinary market conditions

may face unique threats in when markets come under downward pressure. Systemic

risk in banking, in short, arises at least in part from correlation tightening. The

most highly rated assets, which effectively lower capital adequacy requirements,

may expose banks to greater risk when markets come under stress, since the risk

that inheres in highly rated assets is not the idiosyncratic, diversifiable risk associ-

ated with more speculative instruments.202 Stress-driven changes in correlation

among asset classes and ineffectual flights to quality thus signal the elevation of

systemic risk in global finance.203

Paradoxically, financial regulation may exacerbate the risk of simultaneous decline

across markets that would otherwise be geographically and economically diverse.204

A coordinated financial system heeding the same rules is likelier to suffer from rising

correlation across asset classes and from levels of systemic risk transcending the

menace to any individual institution. By “promot[ing] coordination” within finan-

cial markets, uniformity in regulatory safeguards against market risk “can erode

management tools premised on randomness and independent action and alter the

dynamics that make risk management effective.”205

5.5. Downside risk, upside reward

The relationship between beta and returns is ultimately a function of market con-

ditions. At least during rising markets, “[b]eta should have a positive relationship

with investor returns.”206 By contrast, a “negative relationship is likely during down-

turns, as shares with greater exposure … offer poorer returns,” and “investors ac-

cepting high downside beta … suffer relatively greater losses.”207 As a result, “high

beta portfolios incur lower returns during down markets than low beta portfo-

lios.”208 “Investors who are sensitive to downside losses, relative to upside gains,

require a premium for holding assets that covary strongly with the market when the

market declines.”209 Accordingly, “the cross-section of stock returns [should] re-

flect[] a premium for bearing downside risk.”210 
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202 See MARKUS BRUNNERMEIER ET AL., THE FUNDAMENTAL PRINCIPLES OF FINANCIAL REGULATION 8 (2009) (Geneva Reports on the World Economy,

No. 11); Malcolm P. Baker & Jeffrey Wurgler, Do Strict Capital Requirements Raise the Cost of Capital? Bank Regulation, Capital Structure and the
Low Risk Anomaly, 105 AM. ECON. REV. 315 (2015).

203 See Zeyu Zheng, Boris Podobnik, Ling Feng & Baowen Li, Changes in Cross-Correlations as an Indicator for Systemic Risk, 2 SCI. REPORTS 888 (2012).
204 See Ian Ayres & Joshua Mitts, Anti-Herding Regulation, 5 HARV. BUS. L. REV. 1 (2015); Felix B. Chang, The Systemic Risk Paradox: Banks and Clearing-

houses Under Regulation, 2014 COLUM. BUS. L. REV. 747.
205 Charles K. Whitehead, Destructive Coordination, 96 CORNELL L. REV. 323, 347 (2011). See generally id. at 346-52.
206 Alles & Murray, supra note 109, at 2504.
207 Id.
208 Pettengill, Sundaram & Mathur, supra note 5, at 110.
209 Ang, Chen & Xing, supra note 90, at 1192.
210 Id.



This “negative relation” between beta and returns when markets are down “pro-

vide[s] strong evidence that investors are paid for holding beta risk.”211 The “greater

losses” borne by “investors accepting high downside beta” are precisely the sort of

“risk exposure” that investors find “unattractive” and for which they demand “ex-

cess returns.”212 Put even more simply, “beta risk is rewarded in up markets for

losses incurred in down markets.”213 “When upturn and downturn periods are com-

bined, the overall relationship” between beta and returns “should [ultimately] de-

pend on whether there are greater numbers of upturn or downturn periods.”214

Although “investors clearly demand higher returns for stocks with larger downside

’s,” it is less clear whether a “negative risk premium on the upside indicates that

investors are willing to accept lower returns for stocks with higher upside ’s.”215

This evidence is consistent with the behavioral insight that investors tend to be risk-

averse toward losses, but risk-seeking vis-à-vis gains.216 The real trouble with the con-

ventional capital asset pricing model’s symmetrical version of beta lies in the

typically negative skew of financial distributions: the presence “of a large number

of negative market excess return periods” stretches the odds “against finding a sys-

tematic relationship” through “an unconditional positive correlation between beta

and realized returns.”217 

Emerging markets are typically treated as the canonical example of markets with neg-

atively skewed returns.218 Variation among emerging markets arises from their failure

to be fully integrated with global finance, due to “market liquidity, political risk,” and

other “[f]actors such as taxes.”219 These haphazard factors and mechanics have mud-

dled the quest for “a model to beat” in emerging markets, comparable to the “role

played by the CAPM” in developed markets.220 Risk variables as diverse as size, value,

momentum, and single-sided and conventional measures of volatility and beta have

“an impact on returns which varies from country to country.”221 
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211 Pettengill, Sundaram & Mathur, supra note 5, at 115.
212 Alles & Murray, supra note 109, at 2504.
213 Morelli, supra note 117, at 265.
214 Alles & Murray, supra note 109, at 2504.
215 Xu & Pettit, supra note 114, at 69.
216 See, e.g., Haim Levy & Moshe Levy, Prospect Theory and Mean-Variance Analysis, 17 REV. FIN. STUD. 1015 (2004); Moshe Levy & Haim Levy, Prospect

Theory: Much Ado About Nothing?, 48 MGMT. SCI. 1334 (2002); Richard H. Thaler & Eric J. Johnson, Gambling with the House Money and Trying to
Break Event: The Effects of Prior Outcomes on Risky Choice, 36 MGMT. SCI. 643 (1990).

217 Pettengill, Sundaram & Mathur, supra note 5, at 105.
218 See, e.g., C.J. Adcock & K. Shutes, An Analysis of Skewness and Skewness Persistence in Three Emerging Markets, 6 EMERGING MKTS. REV. 396 (2005)

(reporting significant skewness in daily returns on stocks in Kenya, Poland, and the Czech Republic); Hwang & Pedersen, supra note 110.
219 Harvey, supra note 109, at 787; see also id. at 801 (concluding that local information materially affects returns in emerging markets, while most

of the variation in developed markets is “driven by global information variables” rather than “local information”); Geert Bekaert & Campbell

R. Harvey, Emerging Equity Market Volatility, 43 J. FIN. ECON. 27 (1997); Geert Bekaert & Campbell R. Harvey, Time-Varying World-Market Integration,

50 J. FIN. 403 (1995). On the impact of foreign exchange markets on stock prices, especially in emerging markets, see Geert Bekaert &

Robert J. Hodrick, Characterizing Predictable Components in Excess Returns on Equity and Foreign Exchange Markets, 47 J. FIN. 467 (1992); Richard

Roll, Industrial Structure and the Comparative Behavior of International Stock Market Indexes, 47 J. FIN. 3 (1992). On the impact of foreign speculators,

see Geert Bekaert & Campbell R. Harvey, Foreign Speculators and Emerging Equity Markets, 55 J. FIN. 565 (2000).
220 Estrada & Serra, supra note 167, at 268.
221 Id.



Evidence from emerging markets not only confirms the value of downside beta as

a risk measure, but also suggests that it is correlation tightening that drives nearly

all of the difference between downside beta and its conventional counterpart. In

an illustrative 2002 study, Javier Estrada found that “average downside beta” in

emerging markets was “50% larger than average beta.”222 In other words, “emerging

markets exhibit[ed] more downside volatility than relative volatility.”223 The follow-

ing table reports the summary statistics for Estrada’s original survey of emerging

markets from January 1988 through December 2001,224 combined with a parallel

survey of developed markets over the same 1988-2001 period (which Estrada pub-

lished in 2007):225
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222 Estrada, Systematic Risk in Emerging Markets, supra note 51, at 374.
223 Id.
224 See id. at 378 (table A1)
225 See Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 175-76 (exhibit 1).

Summary statistics P – – – 2 v– c– v–c–
Developed countries

Australia 0.86 5.63 0.57 0.77 3.94 0.70 0.89 0.24 0.94 1.23 1.15

Austria 0.54 6.92 0.38 0.63 4.81 0.63 0.98 0.67 0.93 1.66 1.55

Belgium 1.05 4.94 0.58 0.69 3.44 0.70 0.78 1.46 0.93 1.21 1.13

Canada 0.83 5.15 0.72 0.89 3.86 0.79 0.98 -3.28 1.00 1.10 1.10

Denmark 1.17 5.37 0.59 0.76 3.81 0.72 0.89 0.13 0.95 1.22 1.16

Finland 1.65 9.74 0.55 1.29 6.66 0.67 1.43 0.95 0.92 1.22 1.12

France 1.13 5.66 0.69 0.94 4.01 0.79 1.02 0.12 0.95 1.14 1.09

Germany 1.00 6.04 0.65 0.95 4.46 0.79 1.14 -1.57 0.99 1.22 1.20

Greece 1.55 11.34 0.27 0.72 6.67 0.60 1.28 8.63 0.79 2.22 1.75

Hong Kong 1.44 8.45 0.59 1.19 5.80 0.67 1.26 1.37 0.92 1.14 1.05

Ireland 0.99 5.69 0.66 0.90 3.98 0.75 0.96 0.53 0.94 1.14 1.07

Italy 0.72 7.06 0.52 0.88 4.79 0.67 1.04 1.41 0.91 1.29 1.17

Japan -0.01 7.06 0.76 1.29 4.71 0.80 1.21 2.14 0.89 1.05 0.94

Netherlands 1.18 4.50 0.76 0.82 3.42 0.82 0.90 -3.20 1.02 1.08 1.10

New Zealand 0.35 7.08 0.49 0.84 4.86 0.68 1.06 1.59 0.92 1.39 1.28

Norway 0.88 6.74 0.59 0.95 4.93 0.71 1.13 -2.22 0.98 1.20 1.18

Portugal 0.43 6.66 0.46 0.74 4.42 0.60 0.86 3.20 0.89 1.30 1.16

Singapore 0.94 8.55 0.64 1.32 6.06 0.73 1.42 0.45 0.95 1.14 1.08

Spain 0.96 6.36 0.70 1.07 4.48 0.83 1.19 -0.33 0.94 1.19 1.12

Sweden 1.39 7.37 0.72 1.27 5.33 0.81 1.40 -1.29 0.97 1.13 1.09

Switzerland 1.17 5.14 0.66 0.81 3.63 0.77 0.90 -0.25 0.95 1.17 1.10

United Kingdom 0.89 4.69 0.77 0.87 3.21 0.80 0.83 1.43 0.92 1.04 0.95

United States 1.22 4.09 0.81 0.79 3.04 0.88 0.86 -2.23 1.00 1.09 1.08



I have added columns reporting parameters v– and c– as defined in this article, which

respectively describe changes in relative volatility and in correlation as returns fall

below their mean. Closer examination of these parameters, and of their product, 

v–c–, reveals that nearly all changes in downside beta relative to conventional CAPM

beta are attributable to c, the correlation tightening parameter. v–c–, it bears remem-

bering, is the ratio of downside beta to conventional beta, or –/ . For the developed

markets in Estrada’s surveys, the correlation between c– and v–c– is 0.965; for emerging

markets, the correlation increases to 0.992. The corresponding values of R2 for 

developed and emerging markets, respectively, are 0.932 and 0.983. By contrast, cor-

relation between v–c– and v , the relative volatility parameter, is actually negative for
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Summary statistics P – – – 2 v– c– v–c–
Emerging markets

Argentina 2.96 18.19 0.15 0.66 10.17 0.56 1.82 10.78 0.75 3.73 2.80

Brazil 2.91 17.37 0.35 1.44 11.55 0.58 2.16 2.51 0.89 1.66 1.48

Chile 1.74 7.56 0.32 0.57 5.27 0.56 0.95 -0.42 0.93 1.75 1.64

China -0.72 12.72 0.37 1.13 7.92 0.54 1.39 4.27 0.83 1.46 1.22

Colombia 0.29 9.68 0.14 0.32 6.55 0.38 0.81 1.41 0.91 2.71 2.46

Czech Republic 0.24 9.28 0.30 0.66 6.59 0.69 1.29 0.23 0.95 2.30 2.19

Egypt 0.46 8.69 0.25 0.53 5.18 0.61 0.90 4.94 0.80 2.44 1.95

Hungary 1.68 11.84 0.54 1.53 8.17 0.82 1.91 0.94 0.93 1.52 1.40

India 0.42 8.88 0.26 0.54 6.04 0.56 1.10 1.09 0.91 2.15 1.96

Indonesia 1.26 17.08 0.24 0.97 9.88 0.50 1.60 10.38 0.78 2.08 1.62

Israel 0.76 7.13 0.37 0.63 5.42 0.49 0.87 -2.01 1.02 1.32 1.35

Jordan 0.16 4.45 0.11 0.11 3.11 0.32 0.32 -0.80 0.94 2.91 2.73

Korea 0.93 12.56 0.41 1.25 7.68 0.54 1.34 6.83 0.82 1.32 1.08

Malaysia 0.95 10.09 0.42 1.02 6.87 0.60 1.33 3.16 0.91 1.43 1.30

Mexico 2.40 10.41 0.45 1.12 7.67 0.60 1.47 -2.23 0.99 1.33 1.32

Morocco 0.70 4.95 -0.10 -0.12 3.35 0.41 0.39 1.62 0.91 -4.10 -3.72

Pakistan -0.02 12.08 0.17 0.49 7.91 0.39 1.00 1.96 0.88 2.29 2.01

Peru 0.97 9.47 0.33 0.74 6.55 0.56 1.19 0.76 0.93 1.70 1.57

Philippines 0.71 10.36 0.44 1.10 6.94 0.63 1.40 2.78 0.90 1.43 1.29

Poland 2.59 17.86 0.39 1.66 10.03 0.62 2.02 11.00 0.75 1.59 1.20

Russia 3.59 22.22 0.50 2.69 15.27 0.65 2.85 0.56 0.92 1.30 1.20

South Africa 0.78 8.20 0.56 1.10 6.02 0.68 1.33 -1.90 0.98 1.21 1.20

Sri Lanka 0.10 10.44 0.24 0.61 6.67 0.51 1.11 4.16 0.86 2.13 1.82

Taiwan 1.27 12.47 0.29 0.87 8.19 0.57 1.49 2.44 0.88 1.97 1.73

Thailand 0.72 12.73 0.46 1.41 8.80 0.62 1.75 1.25 0.93 1.35 1.25

Turkey 2.34 18.90 0.23 1.04 11.86 0.56 2.13 4.47 0.84 2.43 2.05

Venezuela 1.33 14.65 0.24 0.85 10.18 0.44 1.46 -0.23 0.93 1.83 1.71

World averages 0.78 4.17 1.00 1.00 3.11 1.00 1.00 -2.14 1.00 1.00 1.00



both types of markets and close to zero for emerging markets: = –0.504 for devel-

oped markets and –0.115 for emerging markets; R2 = 0.254 for developed markets

and and 0.013 for emerging markets.

It is also noteworthy that Estrada calculated standardized skewness for all markets

in his surveys. Contrary to the usual characterization of emerging markets, most of

the emerging markets in Estrada’s 2002 and 2007 studies were positively skewed.226

Using the trigonometric techniques described in section IV.B., I computed implied

upside volatility for all markets in Estrada’s surveys. The R 2 statistic, or the coefficient

of determination, for standardized skewness vis-à-vis the ratio of upside to downside

volatility was 0.974 for developed markets and 0.936 for emerging markets. I derived

R2 from the ordinary correlation between the upside-downside volatility ratio and

standardized skewness, which reported even more impressive values of = 0.987 for

developed markets and = 0.968 for emerging markets.

The strength of downside beta’s “explanatory power” in Estrada’s 2007 survey, where

this risk measurement “clearly outperform[ed] beta (and the other risk variables),”

prompted Estrada to conclude that downside beta should “replace beta as the single

explanatory variable of the cross section of stock returns.”227 Through an admittedly

cursory meta-analysis, I have attempted to add a little nuance. I have shown that the

explanatory power of downside beta resides predominantly in its correlation tighten-

ing component, or c. For its part, the v parameter bears a very close kinship to skew-

ness. Specifically, v+, the upside relative volatility parameter, is almost perfectly

correlated to standardized skewness, while v–, its downside counterpart, exhibits val-

ues for close to –1 for both developed and emerging markets.

� 6. Time-varying beta: 
autocorrelation and autoregressive time series

This article thus far has focused on bifurcating beta in financial space — that is, on

either side of mean rates of return or some other target. It has analyzed beta in recog-

nition of two distinct but related departures from the conventions of modern port-

folio theory, the capital asset pricing model, and the efficient capital markets

hypothesis. Financial markets are both abnormal and irrational. They are abnormal

in the sense that they violate the central limit theorem and other properties of the

normal, Gaussian distribution. Furthermore, real investors respond to such abnor-

malities in ways that deviate from the neoclassical assumption of perfect rationality
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226 See Estrada, Systematic Risk in Emerging Markets, supra note 51, at 378; Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 175-76.
227 Estrada, Downside Risk and Capital Asset Pricing, supra note 79, at 177.



and dispassionate maximization of individual or institutional welfare. Whether human

behavior causes market abnormalities or vice versa lies well beyond our ken. It suffices

to note that market abnormality and human irrationality travel together — that they

are strongly correlated, even we cannot demonstrate a causal link.

As suggested by its subtitle, “Bifurcating Beta in Financial and Behavioral Space,” this

article consciously confines itself to the spatial dimensions of mathematical finance.

It does so at the implicit expense of elaborating the temporal dimensions. Although

a comprehensive analysis of beta (much less other aspects of capital asset pricing or

portfolio theory) as a time series lies beyond the scope of this article, a brief interlude

on time-varying beta is warranted.

This article has examined single-sided beta and its components without regard to se-

rial correlation in beta or any other time-varying financial data. Until recently, most

of the studies applying single-sided beta have taken no account of autocorrelation.

Such studies have implicitly assumed that “investors in a hypothetical model-economy

… live for only one period.”228 In a “real world [where] investors live for many periods,”

however, it is not “particularly reasonable” to assume that “betas … remain constant

over time,” instead of varying in response to changes in “financial leverage” or to

“technological or taste shocks.”229

Since 2009, at least three studies have combined time-varying conditional het-

eroskedastic models with the calculation of downside beta.230 A fourth study, using

the older, iterative model of Eugene Fama and James MacBeth231 to evaluate time-

varying beta in Pakistani equities, tentatively “advocate[d] the replacement of variance

by downside risk as a suitable risk measure in a single asset pricing model.”232 Con-

temporaneously, Taufiq Choudhry and Ranadeva Jayasekera have examined poten-

tially asymmetric changes to beta in response to good and bad news.233

These articles emphasize asymmetry within the extensive literature on the so-called con-

ditional capital asset pricing model, a modification of the CAPM that suspends the as-
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228 Jagannathan & Wang, supra note 7, at 4.
229 Id. at 4-5. See generally Frank J. Fabozzi & Jack Clark Francis, Beta as a Random Coefficient, 13 J. FIN. & QUANT. ANALYSIS 101 (1978); George J.

Alexander & P. George Benson, More on Beta as a Random Coefficient, 17 J. FIN. & QUANT. ANALYSIS 27 (1982).
230 See Chong, Pfeiffer & Phillips, supra note 32, at 75; Don U.A. Galagedera & Asmah M. Mohd Jaapar, Modeling Time-Varying Downside Risk, 7 IUP

J. FIN. ECON. 36 (2009); Tsai, Chen & Yang, supra note 79, at 442.
231 See Eugene F. Fama & James MacBeth, Risk, Return and Equilibrium: Empirical Tests, 13 J. POL. ECON. 607 (1973).
232 Mohammad Tahir, Qaiser Abbas, Shahid Mehmmod Sargana, Usman Ayub & Syed Kashif Saeed, An Investigation of Beta and Downside Beta Based

CAPM — Case Study of Karachi Stock Exchange, 85 AM. J. SCI. RESEARCH 118, 128 (2011).
233 Taufiq Choudhry & Ranadeva Jayasekera, Comparison of Efficiency Characteristics Between the Banking Sectors of US and UK During the Global Fi-

nancial Crisis of 2007-2011, 25 INT’L REV. FIN. ANALYSIS 106, 108-11 (2012); accordTaufiq Choudhry & Ranadeva Jayasekera, Level of Efficiency in
the UK Equity Market: Empirical Study of the Effects of the Global Financial Crisis, 44 REV. QUANT. FIN. ACCOUNTING 213, 219-20 (2015); Taufiq

Choudhry & Ranadeva Jayasekera, Market Efficiency During the Global Financial Crisis: Empirical Evidence from European Banks, 49 J. INT’L MONEY

& FIN. 299, 301-03 (2014). These articles extend earlier work by Choudhry on time-varying beta. See, e.g., Taufiq Choudhry, Lin Lu & Ke Peng,

Time-Varying Beta and the Asian Financial Crisis: Evidence from the Asian Industrial Sectors, 22 JAPAN & WORLD ECON. 228 (2010); Taufiq Choudhry,

Time-Varying Beta and the Asian Financial Crisis: Investigating the Malaysian and Taiwanese Firms, 13 PAC. BASIN FIN. J. 93 (2005).



sumption of static, stable beta and explicitly models time-varying beta according to its

lagged values. The conditional CAPM, which traces its origins to a 1991 article by James

Bodurtha, Jr., and Nelson Mark,234 nearly coincided with Fama and French’s celebrated

attack on undermined the empirical underpinnings of conventional CAPM. In a trivial

sense, finding that “betas remain constant over time” would “collapse[]” the conditional

model back into “the familiar static CAPM.”235 On the other hand, if beta responds asym-

metrically to positive and negative innovations, then a tractable explanation of beta’s

variability — not only across financial space but also as a predictable function of time —

may restore some measure of validity to the efficient capital markets hypothesis.236 Such

a feat may also rehabilitate the rest of the CAPM, including beta as a measure of risk.237

Literature on single-sided beta and on time-varying beta ultimately shares the same

mission: to test whether a more sophisticated understanding of covariances and cor-

relations can better predict investor behavior and asset prices. Since the time series

models that have been used to measure time-varying beta would warrant full speci-

fication and exacting application in their own right, I shall leave complete exploration

of that subject for another time. In this article, I will make do a few observations on

the harmonization of single-sided beta with time-varying beta.

Beta undoubtedly varies over time. “[M]any stocks’ betas move randomly through

time rather than remain stable.”238 A 2001 study found that the correlation between

current beta and beta from the previous year was 0.34.239 In every instance, the ques-

tion is whether beta exhibits serial correlation and, if so, whether a simpler autore-

gressive model or a conditionally heteroskedastic model supplies the appropriate

technique for measuring conditional, time-varying beta. Tempting though it may be

simply to assume autocorrelation within beta, we should proceed with a formal spec-

ification and application of the data’s autocorrelation function.

Beta in any of its incarnations (including upside or downside beta, ±), may be rendered

as a time series, {rt}.240 This time series “is weakly stationary if both the mean of rt and the

covariance between rt and rt–l are time invariant, where l is an arbitrary integer.”241 Even

more formally, time series {rt} is weakly stationary if both of these conditions are true:242
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234 James N. Bodurtha, Jr. & Nelson C. Mark, Testing the CAPM with Time-Varying Risks and Returns, 46 J. FIN. 1485 (1991); see also Tim Bollerslev,

Robert F. Engle & Jeffrey M. Wooldridge, A Capital Asset Pricing Model with Time-Varying Covariances, 96 J. POL. ECON. 116 (1988).
235 Jagannathan & Wu, supra note 7, at 6.
236 See Ray Ball & S.P. Kothari, Nonstationary Expected Returns: Implications for Tests of Market Efficiency and Serial Correlation in Returns, 25 J. FIN.

ECON. 51 (1989); K.C. Chan, On the Contrarian Investment Strategy, 61 J. BUS. 147 (1988); Young-Hye Cho & Robert F. Engle, Time-Varying Betas
and Asymmetric Effects of News: Empirical Analysis of Blue Chip Stocks, National Bureau of Economic Research Working Paper No. 7330 (Sept.

1999) (available at http://www.nber.org/papers/w7330).
237 See Choudhry & Jayasekera, Comparison of Efficiency Characteristics, supra note 237, at 106.
238 Fabozzi & Francis, supra note 229, at 101.
239 MARK HIRSCHEY, INVESTMENTS: THEORY AND APPLICATIONS 541 (2000).
240 See RUEY S. TSAY, ANALYSIS OF FINANCIAL TIME SERIES § 2.1, at 30 (3d ed. 2010).
241 Id. (emphasis in original).
242 Id.



1. rt = , where is a constant

2. cov(rt, rt–l) = l ; 0 = var(rt) — i.e., the “lag-l autocovariance of rt” 

depends “only on on l”

Weak stationarity, if established, “enables one to make inference concerning future

observations.”243 In particular, one “version of the capital asset pricing model

(CAPM) theory is that the return {rt} of an asset is not predictable and should have

no autocorrelations.”244 Accordingly, checking for zero autocorrelations provides a

test of “the efficient market assumption.”245 On the other hand, if {rt} “has a sta-

tistically significant lag-l autocorrelation,” then “the lagged return rt–l might be use-

ful in predicting rt . ”246

Serial correlation in returns differ by market, sometimes dramatically. “[F]irst-order

serial correlation coefficients are higher for … emerging markets” than for developed

markets.247 Many emerging markets “have serial correlation that is much higher than

one would expect based on knowledge of the serial correlation in developed mar-

kets.”248 Whereas “first-order serial correlation averages less than 1 percent” for cer-

tain developed markets, Campbell Harvey in 1995 found serial correlation coefficients

ranging from 10 or 20% to an “astonishing” 49% “first-order autocorrelation in

Colombia.”249 These differences are sufficiently large so as to connect serial correla-

tion in emerging market returns to the preeminence of local information over global

market dynamics.250

Volatility clustering therefore appears to prevail in many (if not necessarily all) finan-

cial markets.251 “High volatility begets high volatility,”252 and sharp deviations from

expected returns are disproportionately likely to be followed by comparably sharp

deviations.253 Serially correlated returns should be expected to exhibit greater variance

and greater kurtosis.254 Moreover, “[a]symmetry in volatility may also imply asymme-

try in time-varying betas.”255
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243 Id.
244 Id. § 2.2, at 34.
245 Id.
246 Id. § 2.4, at 37.
247 Harvey, Predictable Risk and Returns, supra note 109, at 779.
248 Id. at 780.
249 Id. at 779. 
250 See id. at 801. 
251 Clustering is a common scientific phenomenon. Among the first disciplines to observe and describe clustering was hydrology. See generally

Harold Edwin Hurst, Long Term Storage Capacities of Reservoirs, 116 TRANSACTIONS AM. SOC’Y CIVIL ENG’RS 776 (1951); Demetris Koutsoyiannis,

The Hurst Phenomenon and Fractional Gaussian Noise Made Easy, 47 HYDROLOGICAL SCIS. 573 (2002).
252 MILLER, supra note 84, at 231.
253 See, e.g., TSAY, supra note 240, §§ 3.4, 3.5, at 116, 132 (describing how conditional heteroskedastic time series models address volatility clustering

in financial returns).
254 See Robert C. Blattberg & Nicholas J. Gonedes, A Comparison of the Stable and Student Distributions as Statistical Models for Stock Pries, 47 J. BUS.

244, 275-76 (1974); Fama, The Behavior of Stock Market Prices, supra note 176.
255 Choudhry & Jayasekera, Comparison of Efficiency Characteristics, supra note 237, at 108.



In principle, however, “stock volatility … is not directly obervable.”256 The “unobserv-

ability of volatility makes it difficult to evaluate the forecasting performance” of models

purporting to describe and predict this phenomenon.257 Conventional time series mod-

els in finance include the autoregressive (AR), autoregressive conditional heteroskedas-

ticity (ARCH), and generalized autoregressive conditional heteroskedasticity (GARCH)

models. The AR(1) model, or the “autoregressive (AR) model of order 1,” represents a

“simple model that makes use of [the] predictive power” of the lagged return:

rt = 0+ 1rt–1+at

“where {at} is assumed to be a white noise series with mean zero and variance 2
a .”258

An alternative specification of AR(1) expresses returns as the “weighted average of

[the] mean and its lagged value”:259

= 1 – 1

= 0 = 0
1– 1

rt = +(1– )rt–1+at

The celebrated “random walk” model in finance “is a special case of the AR(1) model,

where [ 0] is 0 and [ 1] is equal to 1.”260

For its part, ARCH assumes “that (a) the shock at of an asset return is serially uncorre-

lated but dependent, and (b) the dependence of at can be described by a simple quad-

ratic function of its lagged values.”261 ARCH(n) therefore takes the following form:262

at = t t
2
t = 0 + 1

2
t–1 +… + n

2
t–n

First-order ARCH, or ARCH(1), implies that “the unconditional mean of at remains

zero” and that “the unconditional variance of at” is equal to:263

var(at) = 0 + 1 a2
t–1
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256 TSAY, supra note 240, § 3.1, at 110.
257 Id.
258 Id. § 2.4, at 37.
259 MILLER, supra note 84, at 220.
260 Id. at 218; cf. Choudhry & Jayasekera, Comparison of Efficiency Characteristics, supra note 237, at 109 & n.20 (declining to assign a “zero order

[to] AR,” which would “give[] … beta extreme volatility implying complete stochastic behaviour analogous to a random walk,” on the grounds

that treating beta as a random walk “does not seem to be a realistic model” for beta as “a time-varying process”).
261 TSAY, supra note 240, § 3.4, at 115. See generally Robert F. Engle, Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of

United Kingdom Inflation, 50 ECONOMETRICA 987 (1982); Tim Bollerslev, Ray Y. Chou & Kenneth F. Kroner, ARCH Modeling in Finance, 52 J. ECONO-

METRICS 52 (1992).
262 See TSAY, supra note 240, § 3.4, at 115.
263 Id. § 3.4.1, at 117.



In other words, the volatility and the variance of the disturbance function, {at}, are both

“influenced by the lagged value of the disturbance term,” at–1.264 As long as the coeffi-

cient “ 1 is greater than zero,” there will be “serial correlation in the disturbance term.”265

ARCH models rely on “many parameters to adequately describe the volatility process

of an asset return,” such as the ARCH(9) process used to model “monthly excess re-

turns [on an] S&P 500 index.”266 The search for an “alternative model” gave rise to

generalized autoregressive conditional heteroskedasticity (GARCH).267 Let the distur-

bance term at = rt – t. In that event, “at follows a GARCH(m, s) model if”:268

at = t t

2
t = 0 +

m

i=1 1a2
t–i +

S

j=1 j
2
t –j

GARCH is well suited to modeling time series with volatility clustering. A large value

for “a 2
t–1 or 2

t–1 gives rise to a large 2
t .”269 “This means that a large a 2

t–1 tends to fol-

lowed by another large a 2
t , generating … the well-known behavior of volatility clus-

tering in financial time series.”270 As long as disturbance term at has a defined

variance, “the multistep-ahead volatility forecasts of a GARCH(1,1) model converge

to the unconditional variance of at as the forecast horizon increases to infinity.”271

ARCH and GARCH models encounter the same weaknesses.272 Among other things,

because they “depend[] on the square of previous shocks” to calculate volatility,

ARCH and GARCH models “assume[] that positive and negative shocks have the

same effects on volatility.”273 This is a particularly disturbing flaw in a time series

model for a process whose time-invariant prices “respond[] differently to positive

and negative shocks.”274 What is said of beta in space applies with equal force to

beta in time: Because investor “sensitivities to upside and downside” financial sta-

tistics “are not equal,” the “use of double-sided moments incorporating both up-

side and downside in one measure are not a realistic representation of investor

preferences and behaviour.”275
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264 MILLER, supra note 84, at 231.
265 Id.
266 TSAY, supra note 240, § 3.5, at 131. See generally Debabrata Basu, On the Elimination of Nuisance Parameters, 77 J. Am. Stat. Ass’n 355 (1977);

James C. Spall & John P. Garner, Parameter Identification for State-Space Models with Nuisance Parameters, 26 IEEE TRANSACTIONS ON AEROSPACE

& ELECTRONIC SYS. 992 (1990).
267 TSAY, supra note 240, § 3.5, at 131. See generallyTim Bollerslev, Generalized Autocregressive Conditional Heteroskedasticity, 31 J. ECONOMETRICS 307

(1986).
268 TSAY, supra note 240, § 3.5, at 132.
269 Id.
270 Id.
271 Id. § 3.5, at 133.
272 See id. § 3.5, at 134.
273 Id. § 3.4.2, at 119.
274 Id.
275 Balzer, supra note 68, at 142.



ARCH and GARCH models may also be criticized for their propensity “to overpredict

… volatility because they respond slowly to large isolated shocks to the return se-

ries.”276 Finally, these models “provide [no] new insight for understanding the source

of variations of a financial time series.”277 Serving merely as “mechanical” tools for

“describ[ing] the behavior of … conditional variance,” ARCH and GARCH models

“give[] no indication about what causes such behavior to occur.”278

Accordingly, the application of a time series model for bifurcated beta should not be

interpreted as a choice involving meaningful analysis beyond a strictly empirical effort

to fit a model to data regarding volatility and correlation. Even the standard divide

in financial econometrics between BEKK as the tool of choice for measuring condi-

tional covariance279 and DCC (dynamic conditional correlation)280 as the default tool

for measuring conditional correlation carries a certain arbitrariness.281 Given the char-

acteristics that bifurcated beta is known to demonstrate on a time-invariant basis, a

time series model should detect asymmetry (ideally in variance as well as correlation)

without excessive sensitivity to outliers. Those are precisely the traits that José María

Montero, Gema Fernández-Avilés, and María-Carmen García have demonstrated in

their application of a threshold asymmetric autoregressive stochastic volatility (TA-

ARSV) model to energy commodity prices.282

Another time series model sharing TA-ARSV’s potential to capture differences in

volatility on the upside and the downside of bifurcated financial returns is exponential

GARCH (EGARCH).283 To “allow for asymmetric effects between positive and negative

asset returns,” EGARCH evaluates “the weighted innovation”:284

g( t)= t + [| t| – | t| ]

and are real constants. Since both t and | t| – | t| “are zero-mean [independent

and identically distributed] sequences with continuous distributions,” g( t) =0 .285

Upon rewriting, the asymmetry of g( t) is readily seen:286

173A E S T I M AT I O

Sin
kin

g, fast an
d
 slo

w
: B

ifu
rcatin

g b
eta in

 fin
an

cial an
d
 b

eh
avio

ral sp
ace

. Chen, J.M
.

A
E
ST

IM
A

T
IO

, T
H

E
IE

B
IN

T
E
R

N
A

T
IO

N
A

L
JO

U
R

N
A

L
O

F
FIN

A
N

C
E, 2

0
1
5
. 11

: 1
2
4
-2

0
1

276 TSAY, supra note 240, § 3.4.2, at 119.
277 Id.
278 Id.
279 See generally Robert F. Engle & Kenneth F. Kroner, Multivariate Simultaneous Generalized ARCH, 11 ECONOMETRIC THEORY 122 (1995). Because

this work in draft included contributions from Yoshi Baba and Dennis Kraft, it came to be known by the acronym of all four original authors’

names: BEKK. See id. at 122.
280 See generally Robert F. Engle, Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity

Models, 20 J. BUS. & ECON. STAT. 339 (2002).
281 See generally Massimiliano Caporin & Michael McAleer, Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models (Feb. 2009)

(available at http://www.ssrn.com/abstract=1338190).
282 Montero, Fernández-Avilés & García, supra note 111, at 345.
283 See generally Daniel B. Nelson, Condtitional Heteroskedasticity in Asset Returns: A New Approach, 59 ECONOMETRICA 347 (1991).
284 TSAY, supra note 240, § 3.8, at 143.
285 Id.
286 See id.



If t ≥ 0, g( t)=( + ) t – | t|
If t < 0, g( t)=( – ) t – | t|

Accordingly, “the use of g( t) enables the [EGARCH] model to respond asymmetrically

to positive and negative lagged values of [disturbance term] at.”287

Full treatment of modeling single-sided beta and its constituent parts, volatility and

correlation, as time-varying phenomena will await another time. “[T]ime is the longest

distance between two places.”288 Let us “find in motion what was lost in space.”289

I will therefore conclude this interlude on time series and return to a strictly spatial

topic: using the behavior of single-sided beta to extrapolate a logical progression from

the conventional two-moment specification of the capital asset pricing model to a

four-moment CAPM. “For nowadays the world is lit by lightning! Blow out your can-

dles … — and so goodbye.”290

� 7. A four-moment capital asset pricing model

7.1. From asymmetric beta to coskewness and cokurtosis: harbingers of a four-
moment capital asset pricing model

This entire enterprise has been driven by recognition of asymmetry in financial markets

— whether expressed in terms of returns, volatility, correlation, or some combination

of those factors — and the anticipation of asymmetrical responses to those imbal-

ances. While it is trivially true that “[d]ownside risk is relevant only when the security

returns distribution is skewed,”291 it is more persuasive to say that asymmetry and

skewness give single-sided beta and related measures their significance. “[A]s long as

… distributions do not vary significantly from normality,” then beta in its conven-

tional, two-tailed form “is the appropriate ‘risk measure’ for a single asset held in an

efficient portfolio.”292 Within the mean-variance framework of modern portfolio the-

ory and the conventional CAPM, “[t]he systematic risk of a security is measured as

the contribution to the variance of a well-diversified portfolio.”293
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287 Id. § 3.8, at 143-44. See generally Charles Cao & Ruey S. Tsay, Nonlinear Time Series Analysis of Stock Volatilities, 7 J. APPLIED ECONOMETRICS s165

(1992).
288 TENNESSEE WILLIAMS, THE GLASS MENAGERIE 96 (New Direction Books, 1999) (1st ed. 1945).
289 Id. at 97.
290 Id. at 97.
291 Galagedera & Brooks, supra note 109, at 215.
292 Timothy J. Nantell & Barbara Price, An Analytical Comparison of Variance and Semivariance Capital Market Theories, 14 J. FIN. & QUANT. ANALYSIS

221, 231 (1979).
293 Campbell R. Harvey & Akhtar Siddique, Conditional Skewness in Asset Pricing Tests, 55 J. FIN. 1263, 1264 (2000).



The history of bifurcated risk measures reflects rapid if grudging acceptance of ab-

normality in financial markets. In 1979, Timothy Nantell and Barbara Price declined

to embrace single-sided variance. At least “for normal distributions of portfolio re-

turns,” they reasoned, “semivariance below the expected return is half the portfolio’s

variance, and, hence, the more familiar variance measure may as well be used to quan-

tify risk.”294 In 1982, Nantell and Price rejected their prior assumption of equivalence

between ordinary beta and beta conditional on failure to meet expected return, es-

pecially for samples where both risk measures exceeded 1.0.295 The case for bifurcating

the constituent risk measures of the conventional CAPM can therefore be expressed

in very simple mathematical terms: “If the ratio” of variance to below-mean return

semivariance “is not equal to two, then there is evidence that the distribution is

skewed or asymmetrical.”296 “When the skewness of an asset return distribution is

negative, then the downside returns will have a larger magnitude of returns than the

upside returns, i.e., losses when they occur will tend to be large losses.”297

The “considerable evidence that the unconditional returns distribution cannot be ad-

equately characterized by mean and variance alone” naturally “leads us to the next

moment — skewness.”298 As I have already noted, single-sided beta and its con-

stituents (including semivariance and semivolatility) reflect both skewness and dis-

persion in financial returns.299 And as we have just seen, evidence assembled by Javier

Estrada reveals a close connection between skewness and measures of volatility on

either side of mean returns. The strongest evidence that skewed markets behave dif-

ferently on the upside and the downside may subsist in the link between correlation

and skewness. Correlations between equities and bonds rise in downside markets rel-

ative to their normal levels.300 This asymmetrical “exceedence correlation” in equity

and bond markets “is directly related to negative skewness and higher kurtosis.”301

All of these considerations now pose a pivotal methodological question. We must

now ask whether the bifurcation of beta across financial space adequately addresses

questions of skewness, or whether skewness merits further elaboration through an

expanded capital asset pricing model that addresses higher moments beyond mean

and variance. In expounding a proper model for asset allocation or asset pricing, the

broad methodological goal is to avoid “the acceptance of irrelevant sources of sys-
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294 Nantell & Price, supra note 292, at 222.
295 See Kelly Price, Barbara Price & Timothy J. Nantell, Variance and Lower Partial Moment Measures of Systematic Risk: Some Analytical and Empirical

Results, 37 J. FIN. 843, 854 (1982). Note: be sure to consider pp. 852-53 of this source in the discussion of (co)skewness.
296 Nawrocki, supra note 75.
297 Id.
298 Harvey & Siddique, supra note 293, at 1264.
299 See sources cited supra 108.
300 See, e.g., Baker & Wurgler, supra note 24; Longin & Solnik, supra note 170.
301 James A. Xiong & Thomas M. Idzorek, The Impact of Skewness and Fat Tails on the Asset Allocation Decision, 67:2 FIN. ANALYSTS J. 23, 30 (March/April

2011).



tematic risk.”302 This paper alone has presented the risk measures of the conventional

CAPM, examined those measures on either side of mean returns, and made various

efforts to reconcile these approaches with work by Fama, French, and others empha-

sizing the size, value, and momentum characteristics of individual securities.303 The

proliferation of competing risk measures raises the distinct possibility that many pro-

posed financial statistics not only fail to advance our true understanding of risk, but

also clutter and retard analysis with useless factors.304 Although no firm formula pro-

vides a firm safeguard against useless factors, “a large increment in R 2 and the per-

sistence of [the] sign and size of coefficients over time are most likely to be associated

with truly priced factors.”305

Within contemporary literature on mathematical finance, Don Galagedera may be the

most persistent critic of risk measures based on downside volatility and beta. Galaged-

era does acknowledge the usefulness of downside risk measures: “[T]he relationship

between the CAPM beta and downside beta is influenced by characteristics such as the

standard deviation, skewness and kurtosis of the market portfolio returns distribution.

The influence of these characteristics is more pronounced in the relationships derived

in the downside framework.”306 Emphasizing the small “proportion of equities benefit-

ing from downside beta” and the resulting limits on the utility of that risk measure,307

however, Galagedera has advocated the adoption of more direct measures of skewness

or coskewness in financial returns. If “co-semi-variance and co-semi-skewness between

security returns and market portfolio returns” are “alternative” and therefore inter-

changeable “measures of downside risk,” then “it may be sufficient to include a measure

that accounts for co-semi-skewness in the pricing model rather than a measure of co-

semi-variance.”308 In spite of other scholars’ conclusion that downside beta can explain

the cross-section of returns,309 Galagedera treats “downside beta and downside co-

skewness [as] highly correlated measures of downside risk,” whose joint inclusion “in a

pricing model” would allegedly “produce misleading results.”310

Galagedera poses the choice between second- and third-moment risk measures as a

methodological struggle to define what his frequent intellectual nemesis, Javier

Estrada, has described as the race to define the “model to beat” in emerging markets,
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302 Barone Adesi, Gagliardini & Urga, supra note 44, at 474.
303 See Estrada & Serra, supra note 167, at 259.
304 See generally Raymond Kan & Chu Zhang, GMM Test of Stochastic Discount Factor Models with Useless Factors, 54 J. FIN. ECON. 103 (1999); Raymond

Kan & Chu Zhang, Two-Pass Tests of Asset Pricing Models with Useless Factors, 54 J. FIN. 203 (1999).
305 Barone Adesi, Gagliardini & Urga, supra note 44, at 474.
306 Galagedera, An Alternative Perspective, supra note 80, at 16.
307 Galagedera, Economic Significance, supra note 115, at 1627.
308 Galagedera & Brooks, supra note 109, at 215.
309 Compare Thierry Post & Pim Van Vliet, Downside Risk and Asset Pricing, 30 J. BANKING & FIN. 823 (2006) (accepting downside beta as a risk

measure) with Galagedera & Brooks, supra note 109, at 215 (dismissing Post and Van Vliet’s conclusions).
310 Don U.A. Galagedera, Elizabeth A. Maharaj & Robert Brooks, Relationship Between Downside Risk and Return: New Evidence Through a Multiscaling

Approach, 18 APPLIED FIN. ECON. 1623, 1631 (2008).



akin to the iconic contribution of the conventional CAPM to developed markets.311

Galagedera frames “variation in the difference between systematic risk measured in

terms of co-semi-skewness and co-semi-variance” as a contest between “two down-

side systematic risk measures” for evaluating emerging markets.312

Other sources likewise support the consideration of coskewness within portfolio the-

ory and asset pricing models. In response to Andrew Ang and Joseph Chen’s sugges-

tion that correlation asymmetry tracks not only Fama and French’s size and value

factors, but also momentum in returns,313 Giovanni Barone Adesi, Patrick Gagliardini,

and Giovanni Urga proposed coskewness as a unique, meaningful source of financial

risk. They argued that the “negative (positive) coskewness” of “small (large) firms …

with market returns” implies that “small firm portfolios are exposed to a source of

risk” — namely, “market coskewness, which is different from the usual market beta

and arises from negative covariance with large absolute market returns.”314 In short,

“characteristics such as firm size [may] have no explanatory power … once coskew-

ness is taken into account.”315 Positive correlation between coskewness and firm size

suggests that the otherwise “anomalous” and illusory “explanatory power of size in

the cross-section of expected returns … is a proxy for omitted coskewness risk.”316

By contrast, other sources suggest that single-sided beta and coskewness measure dif-

ferent sources or elements of risk. Ang and Chen’s study of correlation asymmetry “cap-

tur[ed] [information] that [was] fundamentally differently from skewness or

co-skewness.”317 Close inspection of the precise mechanics at work suggests a truly nu-

anced relationship between single-sided beta and coskewness. In contemporaneous

work with Yuhang Xing, Ang and Chen found that “past downside betas,” in general,

do “predict future expected returns.318 Ang, Chen, and Xing not only found a “contem-

poraneous relationship between realized downside beta and realized average returns”;

they also discovered that “high past downside beta predicts high future returns over the

[following] month.”319 Consistent with the low-volatility anomaly, however, these re-

searchers concluded that “this relation breaks down among stocks with very high volatil-

ity.”320 Past beta offered very little guidance on “the future downside covariation of very
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311 Estrada & Serra, supra note 167, at 268.
312 Galagedera, Downside Framework, supra note 115, at 152; see also Galagedera, Economic Significance, supra note 115, at 1632 (urging “further in-

vestigation of co-skewness as … a measure of risk in the downside especially in emerging markets”).
313 Ang & Chen, supra note 135, at 445.
314 Barone Adesi, Gagliardini & Urga, supra note 44, at 482.
315 Id. at 483.
316 Id.
317 Ang & Chen, supra note 135, at 471; see also id. at 469 (“we are not caputruing the same information in [correlation asymmetry] as skewness

and co-skewness”).
318 Ang, Chen & Xing, supra note 90, at 1193.
319 Id.
320 Id. Compare id. at 1194 (“stocks with very high volatility exhibit anomalously low returns”) with id. at 1232 (“it remains to be explored why

the cross-sectional relation for downside risk does not hold for stocks with very high levels of volatility”).



volatile stocks.”321 For example, the “average one-year auto-correlation of one-year betas

for very volatile stocks is only 17.3% compared to 43.5% for a typical stock.”322

Although “the proportion of the market where past downside beta fail[ed] to predict fu-

ture returns” was modest in Ang, Chen, and Xing’s study — “less than 4% in terms of

market capitalization” — a possible explanation lies in in coskewness.323 Coskewness “rep-

resents the contribution of an individual share to the skewness of a broader portfolio.”324

Although “past coskewness [does] predict[] future returns,” the “predictive power of past

coskewness” does not arise from a putative relationship between “past coskewness” and

“future exposure to downside risk.”325 Coskewness and downside beta “capture[] sepa-

rate aspects of an investor’s risk exposure,” unsurprisingly, because the two measures of

risk are “constructed differently.”326 Because “[n]egative co-skewness and downside beta

remain priced” as though “investors consider them to be separate risk exposures,” even

when the two factors are “assessed together,”327 “past downside beta and past coskew-

ness are different risk loadings.”328 “Downside risk is different from coskewness risk be-

cause downside beta explicitly conditions for market downside movements in a nonlinear

fashion, [whereas] the coskewness statistic does not explicitly asymmetries across down

and up markets, even in settings where coskewness may vary over time.”329

Of its own force, however, recognizing that “exposure to negative co-skewness does dif-

fer from exposure to downside beta” does not wholly address the low-volatility

anomaly.330 The two concepts continue to overlap; each risk measure “is rewarded by

excess returns during upturns, and is penalized by lower returns during downturns.”331

More precisely, “sizable exposure to either downside risk measure is associated with

positive relationships between variance and return during upturns, and negative rela-

tionships during downturns.”332 Even if we must ultimately refrain from “offer[ing] a[]

[complete] explanation for the variance-return puzzle” of the low-volatility anomaly,

in-depth evaluation of downside beta vis-à-vis negative coskewness “reveal[s] the com-

plexity of this relationship, and … suggest[s] a partial explanation.”333
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321 Id. at 1193.
322 Id. at 1194.
323 Id.
324 Alles & Murray, supra note 109, at 2504.
325 Ang, Chen & Xing, supra note 90, at 1194.
326 Alles & Murray, supra note 109, at 2504; see also Ang, Chen & Xing, supra note 90, at 1199 (“Downside beta and coskewness may potentially

capture different effects.”).
327 Alles & Murray, supra note 109, at 2508; see also id. at 2509 (assigning a 12% price premium to downside beta and a 7% price premium to

negative coskewness).
328 Ang, Chen & Xing, supra note 90, at 1194; accord id. at 1227 (“the predictive pattern for cross-sectional returns from past coskewness is not

picking up downside risk”).
329 Id. at 1193. On time-varying cokewness, see generally Campbell R. Harvey & Akhtar Siddique, Autoregressive Conditional Skewness, 34 J. FIN. &

QUANT. ANALYSIS 465 (1999).
330 Alles & Murray, supra note 109, at 2507.
331 Id.
332 Id.
333 Id.



Applying their own version of a four-moment Taylor series expansion, researchers at

the Federal Reserve Bank of St. Louis have found “evidence of two regimes in U.S.

stock markets, namely a bear state with high volatility and low mean returns and a

bull state with high mean returns and low volatility.”334 In turn, this insight has spurred

Tobias Adrian and Joshua Rosenberg to divide the components of market risk into a

short-run component driven by volatility and market skewness and a long-run com-

ponent reflecting business cycle risk.335 Even in the absence of intertemporal effects

of the sort posited by Adrian and Rosenberg, the existence of distinct bear and bull

market states, with corresponding shifts in volatility, correlation, and skewness as the

market moves across the boundary between those regimes, would unlock many mys-

teries, from the low-volatility anomaly to the interaction of odd- and even-numbered

statistical moments in distributions of financial returns.

In short, “[i]f the world behaves according to” a capital asset pricing model that has

been “augmented … with skewness,” then we should adopt analytical models and

statistical techniques that address “both beta and coskewness”336 — and, if theory

and evidence so warrant, some measure of kurtosis as well. As is evident from the de-

bates described here, and from the incorporation of skewness and kurtosis in cognate

areas of economics,337 mathematical finance has begun to extend the conventional

CAPM from a two-moment to a three- or four-moment model. At the dawn of mod-

ern portfolio theory, Harry Markowitz suggested that investor utility might be a func-

tion not just of mean and variance, but also of skewness.338 In the decades before

Fama and French’s assault on conventional beta threatened the primacy of two-mo-

ment CAPM, canonical works in the financial literature had already laid the founda-

tions for three- and four-moment CAPM.339 Although “financial theory has been

[historically] reluctant” to fully “incorporat[e] higher order moments,” the bifurcation

of the CAPM into single-sided measures of risk on either side of mean returns leads

inexorably toward explicit consideration of skewness and kurtosis in asset allocation

and pricing.340
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334 Massimo Guidolin & Allan Timmermann, Optimal Portfolio Choice Under Regime Switching, Skewness and Kurtosis Preferences, Federal Reserve

Bank of St. Louis Working Paper 2005-006A, at 2 (Jan. 2005) (available at http://research.stlouisfed.org/wp/2005/2005-006.pdf).
335 SeeTobias Adrian & Joshua Rosenberg, Stock Returns and Volatility: Pricing the Long-Run Components of Market Risk, 63 J. FIN. 2997 (2008).
336 Campbell R. Harvey, Drivers of Expected Returns in International Markets, 1:1 EMERGING MKTS. Q. 32, 46 (Fall 2000).
337 See, e.g., Rohan Christie David & Kukesh Chaudhry, Coskewness and Cokurtosis in Futures Markets, 8 J. EMPIRICAL FIN. 55 (2001); Kim Hiang Liow

& Lanz Chan, Co-Skewness and Co-Kurtosis in Global Real Estate Securities, 22 J. PROP. RESEARCH 163 (2005).
338 Harry Markowitz, Portfolio Selection, 7 J. FIN. 77, 91 (1952); accord Harvey, Liechty, Liechty & Müller, supra note 108, at 469.
339 See generally, e.g., Arditti, supra note 53; Robert F. Dittmar, Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross-Section of

Equity Returns, 57 J. FIN. 368 (2002); Irwin Friend & Randolf Westerfield, Co-Skewness and Capital Asset Pricing, 35 J. FIN. 897 (1980); Jonathan E.

Ingersoll, Jr., Multidimensional Asset Pricing, 10 J. FIN. & QUANT. ANALYSIS 785 (1975) Alan Kraus & Robert L. Linzenberger, Skewness Preference
and the Valuation of Risk Assets, 31 J. FIN. 1085 (1976); Haim Levy, A Utility Function Depending on the First Three Moments, 24 J. FIN. 715 (1969);

Kian-Guan Lim, A New Test of the Three-Moment Capital Asset Pricing Model, 24 J. FIN. & QUANT. ANALYSIS 205 (1989); Mark E. Rubinstein, The Fun-
damental Theorem of Parameter-Preference Security Valuation, 8 J. FIN. & QUANT. ANALYSIS 61 (1973); Paul Samuelson, The Fundamental Approximation
Theorem of Portfolio Analysis in Terms of Means, Variances and Higher Moments, 37 REV. ECON. STUD. 537 (1970).

340 Gustavo M. de Athayde & Renato G. Flôres, Jr., Finding a Maximum Skewness Portfolio — A General Solution to Three-Moments Portfolio Choice, 28

J. ECON. DYN. & CONTROL 1335, 1336 (2004).



To facilitate proper discussion of a four-moment capital asset pricing model, I now

turn to formal specifications of skewness and kurtosis as, respectively, third- and

fourth-moment attributes of a statistical distribution.

7.2. Skewness and kurtosis

“Skewness is a measure of symmetry, or more precisely, the lack of symmetry.”341 For-

mally, the skewness of a random variable is the third standardized moment:

1 = ( x– )3 =   

where 3 designates the third central moment.342 The addition of skewness as the

third standardized moment to an asset pricing model permits the dramatic depiction

of portfolio optimization in three dimensions, as illustrated by this plot of the mean-

variance-skewness space of possible portfolios accompanying 2010 work by Campbell

Harvey, John Liechty, Merrill Liechty, and Peter Müller:343

For its part, kurtosis “can be vaguely defined as the location- and scale-free movement

of probability mass from the shoulders of a distribution into its center and tails.”344

A traditional (but rarely used) definition of kurtosis invokes the fourth standardized

and central moments of a statistical distribution:345
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341 NATIONAL INSTITUTE OF STANDARDS ANDTECHNOLOGY, EHANDBOOK OF STATISTICAL METHODS § 1.3.5.11 (April 2012) (“measures of skewness and

kurtosis”) (available at http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm).
342 https://en.wikipedia.org/wiki/Skewness. See generally Barry C. Arnold & Richard A. Groeneveld, Measuring Skewness with Respect to the Mode,

49 AM. STATISTICIAN 34 (1995); Paul T. von Hippel, Mean, Median, and Skew: Correcting a Textbook Rule, 13:2 J. STAT. EDUC. (July 2005); J.C.W.

Rayner, D.J. Best & K.L. Matthews, Interpreting the Skewness Coefficient, 24 COMMUNICATIONS IN STAT.: THEORY & METHODS 594 (1995).
343 Harvey, Liechty, Liechty & Müller, supra note 108, at 482 (figure 9); see also id. at 476; Athayde & Flôres, supra note 340, at 1342; Harvey & Sid-

dique, supra note , at 1271.
344 Kevin P. Balanda & H.L. MacGillivray, Kurtosis: A Critical Review, 42 AM. STATISTICIAN 111, 111 (1988).
345 https://en.wikipedia.org/wiki/Kurtosis.
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2 =                  = 

The more familiar concept of excess kurtosis is formally “defined as the fourth cu-

mulant divided by the square of the second cumulant, which is equal to the fourth

moment around the mean divided by the square of the variance of the probability

distribution minus 3”:346

2 =      = –3 

This understanding of the fourth moment more intuitively addresses the idea of kur-

tosis as the shape of “part of the distribution rather than” the shape of “the entire

distribution.”347 In finance as in “the study of floods or pollution levels,” it is “the

tails (the extremes)” that “are of primary interest.”348

Skewness and kurtosis are closely related to each other. “The performance of skewness

tests is … very sensitive to the kurtosis of the underlying distribution.”349 Because “[d]ata

sets containing extreme values” are not only “skewed, but also generally … leptokurtic,”

it is impossible to “speak of non-normal skewness as if it were separable from non-nor-

mal kurtosis.”350 At best, “we can … focus on the skewness statistic simply as one test

for departure from the symmetric normal distribution.”351 “Although moments” — and

in the case of kurtosis, “the value of the standardized fourth central moment 2” —

“play an important role in statistical inference, they are very poor indicators of distrib-

utional shape.”352 Financial theories often treat “kurtosis … as a vague concept best

formalized using partial orderings on distributions and measures that preserve them.”353

7.3. Higher-moment CAPM as a Taylor series expansion

The expansion of the capital asset pricing model to higher moments extends the intuition

under conventional mean-variance optimization. If mean-variance optimization arises

“from the idea that the investor prefers higher expected returns and lower risk,” then

higher-moment CAPM presumes, “ceteris paribus, investors prefer a high probability of

an extreme event in the positive direction over a high probability of an extreme event in
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346 https://en.wikipedia.org/wiki/Kurtosis.
347 Lawrence T. DeCarlo, On the Meaning and Use of Kurtosis, 2 PSYCH. METHODS 292, 300 (1997).
348 Id. See generallyThomas P. Hettmansperger & Michael A. Keenan, Tailweight, Statistical Inference and Families of Distributions — A Brief Survey, in 1

A MODERN COURSE ON STATISTICAL DISTRIBUTIONS IN SCIENTIFIC WORK: MODELS AND STRUCTURES 161 (G.P. Patel, S. Kotz & J.K. Ord eds., 1975).
349 Ronald L. Horswell & Stephen W. Looney, Diagnostic Limitations of Skewness Coefficients in Assessing Departures from Univariate and Multivariate

Normality, 22 COMMUNICATIONS IN STAT.: SIMULATION & COMPUTATION 437, 437 (1993).
350 David P. Doane & Lori E. Seward, Measuring Skewness: A Forgotten Statistic?, 19 J. STAT. EDUC. (July 2011).
351 Id. See generally Richard A. Groeneveld & Glen Meeden, Measuring Skewness and Kurtosis, 33 J. ROYAL STAT. SOC’Y, SERIES D 391 (1984); D.N.

Joanes & C.A. Gill, Comparing Measures of Sample Skewness and Kurtosis, 47 J. ROYAL STAT. SOC’Y: SERIES D 183 (1998).
352 Balanda & MacGillivray, supra note 344, at 111.
353 Id. at 119; see also id. at 111 (“Like location, scale, and skewness, kurtosis should be viewed as a ‘vague concept’ that can be formalized in many

ways.”). See generally FREDERICK MOSTELLER & JOHN W. TUKEY, DATA ANALYSIS AND REGRESSION, ch. 1 (1977)
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the negative direction.”354 On that assumption, mean-variance optimization under the

conventional CAPM represents merely a special case of a more comprehensive model

that accounts for asymmetry in returns (as expressed by skewness) and the relative prob-

ability of extreme events in the distribution of returns (as expressed by kurtosis).355 The

goal, therefore, is to devise a theoretically coherent account of investor preferences with

respect to at least the first four moments — mean, variance, skewness, and kurtosis.

One mathematically cogent “way of dealing with higher moments in the asset alloca-

tion is the use of the Taylor series expansion to derive an approximation of the ex-

pected utility function.”356 A higher-order Taylor series expansion can “simplify[] the

asset allocation task”357 and inform “optimal portfolio selection in the presence of

… higher-order moments and parameter uncertainty.”358 Specifically, to “[m]easure

the effects of higher moments on … asset allocation, we can “approximate the ex-

pected utility by a Taylor series expansion around the expected wealth.”359

The Taylor series expansion for a function, f (x), that is infinitely differentiable at value

a takes the form of a power series:360

f (x)= f (a)+ (x–a)+  (x–a)2+      (x–a)3+…

Exploiting multiple mathematical identities — that (x – a)0 and 0! both equal 1, and

the zeroth order derivative of f (x) is f (x) itself — enables us to express the Taylor series

expansion in a more compact form:

f (x)=
∞

n=0                     
(x–a)n

Accordingly, if an investor’s “utility function is expressed in terms of the wealth distribu-

tion, so that”:

U(w) =∫U(w) f (w)dw 

where f (w) is “the probability distribution function of end-of-period wealth,” contingent

upon the multivariate distribution of returns” and the weights of the portfolio’s com-

ponents, then “the infinite-order Taylor series expansion of the utility function is”:

U(w)=
∞

n=0  
.....................
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354 Harvey, Liechty, Liechty & Müller, supra note 108, at 471. Athayde & Flôres, supra note 340, at 1342.
355 See Eric Jondeau & Michael Rockinger, Optimal Portfolio Allocation Under Higher Moments, 12 EUR. FIN. MGMT. 29, 33 (2006).
356 Id. at 30.
357 Harvey, Liechty, Liechty & Müller, supra note 108, at 470.
358 Id. at 469.
359 Jondeau & Rockinger, supra note 355, at 33.
360 See https://en.wikipedia.org/wiki/Taylor_series. Unless otherwise noted, background information on the mathematics of the Taylor series ex-

pansion comes from this source. The special case of a Taylor series where a = 0 is often designated a Maclaurin series.

f ’(a)
1!

f ’’(a)
2!

f ’’’(a)
3!

f (n)(a)
n!

U (n)(w–)(w–w–)n

n!



“where w–= w =1+ ’ denotes the expected end-of-period wealth,” designates the

vector of expected returns, and designates the vector of portfolio weights.361

The application of this model to a simple set of financial returns is even more straight-

forward. “Let R and r denote simple (arithmetic) and logarithmic (continuously com-

pounded) returns respectively.”362 By definition, r = ln(1+R ).363 For the logarithmic

function ln(1+x), the Taylor series expansion takes this form:364

ln(1+x)= 
∞

n=1
(–1)n+1 

n
xn

Generalizing the Taylor series expansion to account for ln(1+x) at x =  yields:

ln(1+ )+          – +             – +o[(x– )5]

where o[(x– )5]  represents remaining terms of order 5 and above.365 Inasmuch as

time series also rely on logarithmic returns, a more elaborate third-order (or higher)

Taylor series expansion may be derived by “relat[ing] the discount factor to the mar-

ginal rate of substitution between periods t and t +1 in a two-period economy.”366

Somewhat optimistically, Javier Estrada leaps directly from this model to a Taylor se-

ries expansion that consists exclusively of alternative central statistical moments. He is

partially correct — and almost entirely correct if we modify the definition of skewness

and kurtosis. If we “let and [represent] the mean and variance of R,” then the

conventional CAPM takes the form of a Taylor series expansion of expected returns:367

r = ln(1+R) = ln(1+ )+          – ·             +R2 [ln(1+R)]

where Rn(x) designates the remaining terms of the Taylor series expansion beyond order

n (which in this example is 2).368 Estrada omits the second term of the series,           ,

and takes no explicit account of the Taylor remainder. More critically, Estrada proposes

to interpret the remainder term as direct implementations of skewness and kurtosis:369

r = ln(1+R) = ln(1+ )– ·             +     ·            – ·............ 
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361 Jondeau & Rockinger, supra note 355, at 33.
362 Estrada, An Alternative Behavioural Model, supra note 89, at 241.
363 See id.
364 See https://en.wikipedia.org/wiki/Taylor_series.
365 See http://www.wolframalpha.com/input/?i=taylor+series+for+ln%281%2Bx%29+at+x%3Dy.
366 Harvey & Siddique, supra note 293, at 1269.
367 Estrada, An Alternative Behavioural Model, supra note 89, at 241.
368 See https://en.wikipedia.org/wiki/Taylor%27s_theorem.
369 Estrada, An Alternative Behavioural Model, supra note 89, at 241.
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And, likewise, for “[a]n approximate expected utility based on mean, variance, skew-

ness and kurtosis … for an investor who displays a logarithmic … utility function”:370

r = ln(1+R) = ln(1+ )– ·             +     ·            – ·............ 

Estrada’s interpretation of this Taylor series expansion is correct, but only if one defines

skewness and kurtosis, respectively, as the third and fourth central moments rather than

the third and fourth standardized moments. Potential confusion arises from other

sources’ adoption of the definition of skewness as the third standardized moment,

1= ( x– )3 =–3
3 .371 Note further that standard treatments of kurtosis subtract three

from the fourth standardized moment in order to express excess kurtosis by reference

to the kurtosis of a normal Gaussian distribution: 2 = 2–3=–4
4  –3 . In the interest of

precision, we should restate Estrada’s interpretation of the Taylor series expansion

of log returns:

ln(1+x) at (x = )

= ln(1+ )+          – +             – + o[(x – )5]

= ln(1+ )+          – +               – + o( 5)

Therefore, this Taylor series expansion does correspond to definitions for skewness

and kurtosis,372 but only if we define “skewness and kurtosis … as central higher mo-

ments” in place of these terms’ traditional “statistical definitions as standardised cen-

tral moments.”373

If we insist, very modest rearrangement allows us to restate the Taylor series expansion

in terms of more traditional interpretations of skewness and kurtosis — namely, 1,

2, and 2:

ln(1+x) at (x = )

= ln(1+ )+          – +             – + o( 5)

= ln(1+ )+          – +             – + o( 5)
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370 Id. at 246.
371 See, e.g., Balzer, supra note 68, at 121.
372 Cf. Jondeau & Rockinger, supra note 355, at 34 (adopting a functionally equivalent definition of the Taylor series expansion of expected re-

turns).
373 Id. at 34 n.5. The abandonment of the statistical convention of defining skewness and kurtosis according to standardized central moments

does separate more recent literature on three- and four-moment CAPM from the earliest works within this tradition. Compare sources

cited supra note 339 (especially Friend & Westerfield; Ingersoll; and Kraus & Linzenberger) (relying on the traditional definition of skewness)

with Harvey & Siddique, supra note 293, at 1268 & n.4 (relaxing the definition of skewness according to the third standardized central mo-

ment)
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The advantage of defining skewness and kurtosis in this Taylor series expansion 

as central moments, however, is the clarity with which the expression,

, demonstrates that the investor’s

“expected utility depends on all central moments of the distribution of end-of-period

wealth.”374

Of even greater significance is what the Taylor series expansion implicitly says about

the impact of skewness and kurtosis on investor welfare. Under rather modest as-

sumptions — “positive marginal utility, decreasing risk aversion at all wealth levels,”

and a “strict consistency” in the investor’s attitude toward a given statistical moment

without regard to her or his wealth — “the following inequalities hold”:375

U (n)(w)> 0 w, if n is odd and

U (n)(w)< 0 w, if n is even.

Specifically, investors “have positive preference for positive skewness” and “negative

preference for negative skewness.”376 Combining what we already know about variance

— that investors dislike it, at least on the downside — with this preference for positive

skewness enables us to generalize to the next moment, kurtosis: “Consistent risk aver-

sion, strict consistency of moment preference, and positive preference for positive skew-

ness imply negative preference for the fourth statistical moment (kurtosis).”377

Or, in simpler terms: “investors like mean return and positive skewness and dislike vari-

ance and kurtosis,” since the even moments “produce a drag on expected compound

return.”378 The alternating treatment of odd- and even-numbered mathematical mo-

ments represents a logical extension of “an essential non-linear feature of observed in-

vestor behavior” already “capture[d]” by the single-sided treatment of semivariance:

“most investors perceive infrequent large losses or shortfalls [to be] far more risky than

more frequent smaller losses or shortfalls.”379 As a result, investors generally “prefer

high values for odd moments and low ones for even moments.”380 Whereas odd mo-

ments “can be seen as a way to decrease extreme values on the side of losses and in-

crease them on the gains,” even moments “measure dispersion, and therefore volatility,

something undesirable that increases the uncertainty of returns.”381
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374 Jondeau & Rockinger, supra note 355, at 33.
375 Id. at 34.
376 Robert C. Scott & Philip A. Howath, On the Direction of Perference for Moments of Higher Order Than the Variance, 35 J. FIN. 915, 917 (1980).
377 Id. at 917-18.
378 Estrada, An Alternative Behavioural Model, supra note 89, at 241.
379 Balzer, supra note 68, at 130.
380 Athayde & Flôres, supra note 340, at 1336.
381 Id.
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2(1+ )2
4

4(1+ )4
3

3(1+ )3
ln(1+ )+        – +             – + o( 5)



Combining this insight with the basic, general definition of the Taylor series 

expansion as a function of differentials, factorials, and polynomials, 

, enables an even simpler aproxi-

mation of expected returns or investor utility as a “preference function”:382

U(w) ≈ U(w–)+ 1–2!U
(2)(w–) 2+ 1–3!U

(3)(w–)S3 + 1–4!U
(4)(w–)k4

where S and k designate skewness and kurtosis, again defined as central moments.

Consistent with our understanding of investor responses to odd and even moments,

the actual expected utility approximated by this function “depends positively on ex-

pected return and skewness and negatively on variance and kurtosis.”383 In this view

of the approximate preference function, the work of sorting expected return and skew-

ness from variance and kurtosis is performed by the sign of the odd- and even-num-

bered derivatives of the utility function. Alternatively, if we insert the single-sided

version of mean, variance, skewness, and kurtosis into the preference function, it be-

comes possible to frame downside risk as a sequence of “leakage sensitivit[ies]” to

each moment.384 Leslie Balzer’s version of the preference function thus extracts ordi-

nary, quadratic, cubic, and quartic penalties, respectively tempered by 1!, 2!, 3!, and

4!, for deviations in mean, variance, skewness, and kurtosis.385

Any Taylor series expansion of expected returns “is necessarily only an approxima-

tion,”386 and any model for asset allocation or pricing based upon it should be treated

accordingly. To observe, as we have, that “expected utility depends on all central mo-

ments of the distribution of end-of-period wealth,” is implicitly to commit to pursuing

an infinite series expansion.387 “[S]ince the infinite Taylor series expansion is not suit-

able for numerical implementation, [one] solution is to approximate the expected

utility by truncating the infinite expression at a given” order.388 Just as the conventional

CAPM omitted series elements above order 2, a four-moment expansion to kurtosis

truncates a Taylor series remainder, albeit at a higher order.

Truncating a Taylor series expansion, however, is neither a trivial task, nor one with

predictable, desirable outcomes. The Taylor series expansion does not invariably “con-

verge to the expected utility”; it does so “under restrictive conditions only.”389 For ex-

ample, although exponential series invariably converge, only some power series do.

“Worse, the inclusion of an additional moment does not necessarily improve the qual-

186 A E S T I M AT I O

Si
n
ki

n
g,

 f
as

t 
an

d
 s

lo
w

: B
ifu

rc
at

in
g 

b
et

a 
in

 f
in

an
ci

al
 a

n
d
 b

eh
av

io
ra

l 
sp

ac
e
. C

he
n, 

J.M
.

A
E
ST

IM
A

T
IO

, T
H

E
IE

B
IN

T
E
R

N
A

T
IO

N
A

L
JO

U
R

N
A

L
O

F
FI

N
A

N
C

E
, 2

0
1
5
. 1

1: 
1
2
4
-2

0
1

382 Jondeau & Rockinger, supra note 355, at 35.
383 Id.
384 Balzer, supra note 68, at 141.
385 See generally id. at 140-42, 150.
386 Ang, Chen & Xing, supra note 90, at 1199.
387 Jondeau & Rockinger, supra note 355, at 33.
388 Id. 
389 Id. at 30.

f (x)= f (a)+ (x–a)+  (x–a)2+      (x–a)3+…
f ’(a)
1!

f ’’(a)
2!

f ’’’(a)
3!



ity of the approximation.”390 In particular, “polynomial expansions … may not be

good global approximations” of a utility function that is kinked to reflect investor

aversions toward risk and disappointment.391 As a result, there is “no general rule for

selecting the order” at which a Taylor series expansion should be truncated.392 Indeed,

some sources do not truncate the series, but rather omit terms according to empirical

support for, say, the second and fifth order terms of a polynomial expansion, but not

the first, third, or fourth.393

These limitations are ameliorated, if not fully overcome, through simplification. A

Taylor series expansion that is truncated at a particular order can “provide[] an exact

solution to the expected utility” as long as “utility is [defined] by a polynomial” of

that order, as in a quadratic (Markowitz), cubic, or quartic utility function.394 Even

without resorting to such definitional extremes, we can adopt “rather mild assump-

tions,” such as continuity and infinite differentiability of our investor’s utility function,

so that “preference-weighted odd central moments are not dominated by their con-

secutive preference-weighted even central moments.”395 In other words, “including

skewness and kurtosis” under these assumptions “always leads to a better approxi-

mation of the expected utility.”396

7.4. Profusion and confusion over measures of coskewness and cokurtosis

The implications of four-moment CAPM as elaborated through a Taylor series expan-

sion are clear. “Everything else being equal, investors should prefer portfolios that

are right skewed to portfolios that are left skewed.… [A]ssets that decrease a portfo-

lio’s skewness … are less desirable and should command higher expected returns.

Similarly, assets that increase a portfolio’s skewness should have lower expected

rates.”397 In addition, skewness should be priced apart from risk factors associated

with lower-order moments. “Since the price of skewness should be negative, the im-

plied risk premium for skewness should be positive.… [T]he implied risk premium for

variance and skewness should be higher than that for variance alone ….”398

But it is not skewness as such, but rather the coskewness of an asset relative to the

market portfolio, that does the real work of moving returns. High coskewness, which

187A E S T I M AT I O

Sin
kin

g, fast an
d
 slo

w
: B

ifu
rcatin

g b
eta in

 fin
an

cial an
d
 b

eh
avio

ral sp
ace

. Chen, J.M
.

A
E
ST

IM
A

T
IO

, T
H

E
IE

B
IN

T
E
R

N
A

T
IO

N
A

L
JO

U
R

N
A

L
O

F
FIN

A
N

C
E, 2

0
1
5
. 11

: 1
2
4
-2

0
1

390 Id. 
391 Ang, Chen & Xing, supra note 90, at 1199.
392 Jondeau & Rockinger, supra note 355, at 30. See generally Patrick L. Brockett & James R. Garven, A Reexamination of the Relationship Between

Preferences and Moment Orderings by Rational Risk-Averse Investors, 23 GENEVA RISK & INS. REV. 127 (1998).
393 See Ravi Bansal, David A. Hsieh & S. Viswanathan, A New Approach to International Arbitrage Pricing, 48 J. FIN. 1719, 1733 (1993); Ronald Gallant,

Peter E. Rossi & George Tauschen, Stock Prices and Volume, 5 REV. FIN. STUD. 199, 214 (1992).
394 Jondeau & Rockinger, supra note 355, at 33.
395 Id. at 34.
396 Id. 
397 Harvey & Siddique, supra note 293, at 1264.
398 Id. at 1291.



occurs when “an asset contributes positive skewness to a diversified portfolio,” makes

“that asset … valuable” and will confer both “a high price” and “low expected re-

turn.”399 Negative coskewness, in the form of an “asset [that] contributes negative

skewness” to the overall portfolio, drives a drop in price, and correspondingly “higher

expected return,” in order to induce purchases by investors.400 In even simpler terms:

because “agents dislike stocks with negative coskewness, … stocks with low coskew-

ness tend to have high average returns.”401

It therefore behooves us to distinguish carefully between skewness and coskewness. In

the conventional capital asset pricing model, “it is only the beta that is rewarded, not the

total volatility.”402 In order to “be consistent” and “analogous” with the CAPM’s treat-

ment of “beta and variance,” we should structure higher-moment CAPM so that “only

the systematic part of skewness (the coskewness) … command[s] a reward.”403 This the-

oretically impeccable distinction between skewness and coskewness finds ample empirical

support, as in a study by Andrew Ang and Joseph Chen concluding that “co-skewness

monotonically increases with beta, while skewness has no discernable pattern.”404 In

short, “in the world of the augmented CAPM, coskewness should count, and skewness

itself should not.”405 Extending this logic rigorously to the fourth moment dictates the

comparable inclusion of “the contribution to [the] kurtosis of a well-diversified portfolio,”

or cokurtosis, in a properly specified four-moment capital asset pricing model.406

At either the third or the fourth order of this higher-moment implementation of the

CAPM, the distinction between simple, unconditional skewness or kurtosis, on one

hand, and the appropriate, corresponding measure of coskewness or cokurtosis, on

the other hand, parallels the distinction between variance and correlation. The dis-

tinction between those second moment concepts highlights the difference between a

simple measure of dispersion and a measure of the extent to which dispersion in a

specific source of returns moves alongside dispersion in the market as a whole.

Models approximating financial returns through Taylor series expansions, whether

taken to two, three, or four orders, are just that: approximations. In the absence of a

“utility function” with “an explicit form,” “both downside beta and coskewness” must

remain “approximations.”407 “Since [disappointment aversion] utility is kinked at an
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399 Harvey, supra note 336, at 38.
400 Id.
401 Ang, Chen & Xing, supra note 90, at 1193.
402 Harvey, supra note 336, at 38.
403 Id.
404 Ang & Chen, supra note 135, at 473.
405 Harvey, supra note 336, at 38.
406 Id. at 46; see also id. (conceding the absence of an “attempt to measure … cokurtosis” despite the presence of “a positive relation between

kurtosis and returns” in emerging markets, albeit “not in developed markets”).
407 Ang, Chen & Xing, supra note 90, at 1199.



endogenous certainty equivalent, skewness and other centered moments may not cap-

ture aversion to risk across upside and downside moments in all situations.”408 This

insight embodies two prescriptions. First, having extended the CAPM from two to

three or even four moments, we must move from central statistical moments to cross

moments. Second, once we have properly specified cross moments for skewness and

kurtosis, we need to measure them on either side of mean returns. These steps parallel

those that we undertook in expounding upside and downside variants of volatility,

variance, and beta.

The first of these steps is theoretically straightforward. Shifting from an extended

CAPM based on central moments of an order greater than variance to a four-moment

CAPM based on cross moments poses no serious conceptual problems.409 Like skew-

ness, coskewness “can be motivated by a third-order Taylor expansion.”410 By ex-

tended analogy, so can its fourth-moment counterpart, cokurtosis.411

Rather, the immediate problem is one of choosing the right measure from a profusion

of nontrivial measures of coskewness or cokurtosis. The formal statistical definition

of coskewness suggests one possibility,412 which Andrew Ang and Joseph Chen (writing

either in tandem413 or with Yuhang Xing)414 and Campbell Harvey and Akhtar Sid-

dique,415 have adopted:

(xa – a ) (xm – m)2 (xa – a ) (xm – m)2

1(a,m,m)=                              =
var(xa)· var(xm) a · 2

m

An obvious alternative to this definition is the other nontrivial formal measure of

coskewness in statistics:416

(xa – a )2 (xm – m)
1(a,m,m)=                              

2
m · m 

By contrast, in separate scholarship, Campbell Harvey has at least entertained the pos-

sibility that the definition of coskewness might include market-wide volatility, cubed,

rather than some multiple of powers of asset-specific and market-wide volatility:417
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408 Id. (emphasis added).
409 See generally MILLER, supra note 84, at 53-56.
410 Ang, Chen & Xing, supra note 90, at 1197.
411 See Harvey, supra note 336, at 46.
412 See https://en.wikipedia.org/wiki/Coskewness.
413 See Ang & Chen, supra note 135, at 469.
414 See Ang, Chen & Xing, supra note 90, at 1197.
415 See Harvey & Siddique, supra note 293, at 1276 (equation 11) (defining SKD as a “direct measure of coskewness”); see also id. (“As defined,

standardized coskewness is unit-free and analogous to a factor loading.”).
416 See https://en.wikipedia.org/wiki/Coskewness.
417 Harvey, supra note 336, at 33 (adopting this formulation as a “secondary measure of coskewness” to supplement the more traditional def-

inition).



(xa – a ) (xm – m)2

SKD
=                              

3
m

This measure appears to draw its inspiration from the definition of skewness as a spe-

cial case of coskewness, where two otherwise random variables are in fact identical.418

In that event, the denominator also consists simply of volatility cubed.

Don Galagedera has evaluated two measures similar to Harvey’s “secondary measure

of coskewness.” The first, named “E-gamma” after Javier Estrada, presents a possible

“measure of systematic downside co-skewness risk”:419

(xa – a | xa< a ) (xm – m | xm< m)2

(xm – m | xm < m) 3

Galagedera appears to favor a second, similar measure he calls “downside gamma,”

which differs from E-gamma in the substitution of unconditional returns on an asset

over the risk-free rate, (xa –xf) , for returns on that asset conditioned on their falling

below their mean return, (xa – a | xa< a ):420

(xa – xf)(xm – m | xm< m)2

(xm – m | xm < m) 3

Galagedera touts his downside gamma measure as a “dominant” and “more appro-

priate explanatory variable” in pricing models that also include downside beta.421 Al-

though “each component in the numerator of downside beta and downside gamma”

is aligned so that “there is no loss of information” in switching between these meas-

ures, the difference in exponents “amplifies” the gamma measure’s evaluation of “the

contribution of excess market returns in the downside.”422

Notably, we have not even contemplated kurtosis, let alone which among the three non-

trivial measures of cokurtosis we might care to implement in extending the CAPM to

four cross moments.423 The profusion of alternative definitions of coskewness alone

makes it to easy to understand why “many standard risk models do not explicitly define

coskewness or cokurtosis.”424 Despite the “obvious relevance” of coskewness and cokur-
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418 See https://en.wikipedia.org/wiki/Coskewness.
419 Galagedera & Brooks, supra note 109, at 217 (equation 6) (citing Estrada, Systematic Risk in Emerging Markets, supra note 51).
420 Galagedera & Brooks, supra note 109, at 217 (equation 2) (citing Hogan & Warren, supra note 69); accord Galagedera, Downside Framework,

supra note 115, at 147; Galagedera, Economic Significance, supra note 115, at 1627; Galagedera, Maharaj & Brooks, supra note 310, at 1625.
421 Galagedera & Brooks, supra note 109, at 229.
422 Id. at 218.
423 See generally https://en.wikipedia.org/wiki/Cokurtosis.
424 MILLER, supra note 84, at 56.



tosis “to risk management,” “many models avoid these higher-order cross moments”

for a very simple, practical reason.”425 As the number of variables increases, the number

of nontrivial cross moments increases rapidly.”426 For “n random variables,” the follow-

ing formula reports “the number of nontrivial cross central moments of order m”:427

(m +n – 1)!k =                   –n
m! (n – 1)!

For a model with 10 variables — asset classes, geographic markets, individual securities

— “there are 30 coskewness parameters and 65 cokurtosis parameters.”428 Once the

number of variables reaches 100, “these numbers increase,” rather intractably, “to

171,600” coskewness parameters “and over 4 million” cokurtosis parameters.429

7.5. A way forward: relative lower partial moments

Don Galagedera’s emphasis on downside measures of coskewness suggests one way

out of the thicket of proliferating cross moments. This entire article has rested a core

premise of behavioral economics: since “investors are primarily concerned with down-

side risk,” mathematical evaluation of financial risk “should concentrate on moments

related to the downside tails of the return distributions.”430 From this starting point,

Leslie Balzer has devised a definition of “relative lower partial moments,” whose or-

ders are flexible enough to encompass all of the moments of interest to even an ex-

panded version of the CAPM:

RLPMn= |(x–b )n|| x<b

where b designates the relevant benchmark return. This conditional definition implies

that the value of a relative lower partial moment is unaffected by instances where

x ≥ b. Much of this article proceeds from the further premise that b = — that the rel-

evant benchmark is mean return. But a regime of “personally relevant risk bench-

marks” implies the definition of single-sided cross moments “relative to potentially

random, rather than simply static, benchmarks.”

Following Balzer’s definition for orders 0 through 4 generates an entire family of rel-

ative lower partial moments that “provide[s] an elegant set of interesting information

regarding returns which fall short of the benchmark”:431
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426 Id.
427 Id.
428 Id.
429 Id.
430 Leslie A. Balzer, Measuring Investment Risk: A Review, 3:3 J. INVESTING 47, 57 (Fall 1994); accord Balzer, supra note 68, at 129. The balance of the

information in this paragraph is derived from these sources.
431 Balzer, supra note 68, at 129.



RLPM 0 is the probability of shortfall

RLPM 1 is the expected shortfall

RLPM 2 is the relative lower partial variance

RLPM3 is related to the relative lower partial skewness

RLPM4 is related to the relative lower partial kurtosis

Combining Balzer’s relative lower partial moment framework with traditional mathemat-

ical definitions of the first four moments generates a comparably elegant family of finan-

cial statistics. Let j = 1 to 4 serve as an indexing variable corresponding to the first four

moments. A simple formula defines a risk measure, rj , corresponding to each moment:

(xa – a)(xm – a) j–1

a m
j–1

For  j = 1 to 4 , this formula generates risk measures corresponding to very familiar fi-

nancial statistics:

Order      Name                  Symbol                      Formula

1            Sharpe ratio        n/a

2            Correlation          (a,m)

3            Coskewness        (a,m,m)

4            Cokurtosis           (a,m,m,m)

The accommodation of cross moments greatly improves the potential performance

of a four-moment capital asset pricing model. The elaboration of cross moments

within an augmented CAPM would address concerns that returns hinge on coskew-

ness between specific asset or asset classes and the broader market, and not simply

on the skewness of one asset or asset class per se, evaluated without reference to the

skewness of the rest of the portfolio. The recognition of this distinction parallels the

inclusion of correlation within any consideration of variance or volatility.

This model also offers a simple solution to the problem of proliferation in plausible

measures of higher cross moments. Unlike correlation, which consists of a single,

symmetrical measure, coskewness and cokurtosis demand some choice between mul-

tiple nontrivial ways to measure higher cross moments. The rj model outlined above

adopts measures of coskewness and cokurtosis, (a,m,m) and (a,m,m,m), that (re-

spectively) square and cube differences between market-wide returns and the mar-

ket-wide mean. It does so by analogy to the relationship between correlation and the

(xa – a) (xm – m)
a m

r2 = 
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rj = 

(xa – a)
a

r1 = 

(xa – a) (xm – m)2

a
2
m

r3 = 

(xa – a) (xm – m)3

a
3
m

r4 = 



Sharpe ratio. Other choices, of course, could be defended. For instance, we could

define coskewness and cokurtosis by compounding differences between asset-specific

returns and the asset-specific mean: (a,a,m) and (a,a,a,m). Or we could hew as

closely to the middle as odd- and even-numbered cross moments permit. The last re-

maining nontrivial measure of cokurtosis, (a,a,m,m) would be a natural candidate

for such an approach. Within this symmetry-seeking framework, the corresponding

third-moment measure could be based on the mean of the two nontrivial measures

of coskewness, (a,m,m) and (a,a,m). Short of yielding to the proliferation of cross

moments and calculating them all, however, we must make some choice.

This leaves the final question of elaborating these cross moments so that they reflect

differences on either side of mean returns. Balzer’s prescription for higher moments

reflects the strategy explored in the balance of this article, which is bifurcation of a

moment-based financial statistic into its upside and downside components. By anal-

ogy to semideviation, semivariance, and single-sided beta, we can specify each of

these measures on either side of mean returns: 

rj       Name                                    Symbol                    Formula

1        Downside Sharpe ratio        n/a

2        Downside correlation          –(a,m)

3        Downside coskewness        –(a,m,m)

4        Downside Cokurtosis           –(a,m,m,m)

In sum, this expansion of a four-moment capital asset pricing model, from its origins

as a Taylor series expansion of log returns, through an elegant implementation of rel-

ative lower partial moments for mean, variance, skewness, and variance, supplies

tractable, mutually consilient single-sided moments for modeling risk across multiple

dimensions of financial space.

7.6. The practical implications of a spatially bifurcated four-moment 
capital asset pricing model

Javier Estrada has argued that differences attributable to the bifurcation of beta on

either side of mean returns, at least in emerging markets, are too substantial to

ignore.432 We should likewise expect to find considerable differences in financial per-

formance arising from the deployment of a four-moment capital asset pricing model,
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(xa – a | xa< a) (xm – m | xm< m)
a,– m,–

r2,– = 

(xa – a | xa< a)
a,–

r1,– = 

(xa – a | xa< a) (xm – m | xm< m)2

a,–
2
m,–

r3,– = 

(xa – a | xa< a) (xm – m | xm< m)3

a,–
3
m,–

r4,– = 



the proper specification of this augmented CAPM according to cross moments, and

the bifurcation of coskewness and cokurtosis along the upside and downside of mean

returns. “[A]dopting sub-optimal investment strategies” in ignorance of higher-order

moments undoubtedly inflicts “a large opportunity cost.”433 Eric Jondeau and Michael

Rockinger have concluded that the “inability” of the conventional two-moment

CAPM’s “mean-variance criterion to cope with higher moments … cost[s] more than

25 cents per dollar invested for all risk aversion levels.”434 They peg the “opportunity

cost” of implementing higher-order variants of the CAPM at “significantly lower” lev-

els: “about 10 cents” for a “three-moment strategy,” plus an incremental “cost [for]

the four-moment strategy … not exceed[ing] 2.5 cents per dollar invested.”435

Even more intriguingly, a fully specified and properly implemented four-moment

CAPM may unlock some of the deepest abiding mysteries in portfolio theory. Con-

ventional mean-variance optimization is notorious for its “fail[ure] to [correctly] ap-

proximate the expected utility” for markets exhibiting “large departure[s] from

normality.”436 “In such cases, … three-moment or four-moment optimisation strate-

gies may provide a good approximation of the expected utility.”437 Inasmuch as “[t]he

failures of traditional asset pricing models often appear in specific groups of securities

such as those formed on ‘momentum’ and small size stocks,” the evaluation of “pric-

ing errors” in those “asset pricing models” sheds light on the impact of skewness,

kurtosis, and other statistical elements on asset pricing.438 Bifurcated four-moment

CAPM therefore holds promise for better understanding of phenomena such as cor-

relation asymmetry, the low-volatility anomaly, the persistence in differences between

emerging and developed markets, and factor-based critiques of conventional asset

pricing, including Fama and French’s value and size factors and momentum trading.

1. Correlation asymmetry

As we have seen, the bifurcation of beta on either side of mean returns and the sep-

arate evaluation of the impact of volatility and correlation on single-sided beta suggest

that correlation tightening may hold some of the answers to the low-volatility anom-

aly. Asymmetry in correlation, it turns out, is deeply connected to a wide range of

anomalous phenomena in finance. In their foundational 2002 study of correlation,

Andrew Ang and Joseph Chen did not merely “find that riskier stocks, as reflected in

higher beta, have lower correlation asymmetry than lower beta stocks.”439 They also

found that “greater correlation asymmetry” in “[r]eturns on portfolios of … small
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433 Jondeau & Rockinger, supra note 355, at 50.
434 Id.
435 Id.
436 Id.
437 Id.
438 Harvey & Siddique, supra note 293, at 1279.
439 Ang & Chen, supra note 135, at 445.



firms, value forms, or low past return firms.”440 “[S]ignificant correlation asymmetry”

appears not only in speculative sectors such as international markets (where “corre-

lations tend to increase on large negative, or ‘bear market,’ returns),441 but also in

“traditional defensive sectors, such as petroleum and utilities.”442 This represents a

comprehensive list of some of the most vexing problems in mathematical finance.

Among the conclusions of Ang and Chen’s study, perhaps the most intriguing were

those affecting evaluation of the low-volatility anomaly: “The portfolio of lowest beta

stocks is the portfolio that exhibits the greatest correlation asymmetry. Lower risk

firms exhibit more correlation asymmetry than higher risk firms.”443 In light of evidence

presented by Javier Estrada in 2007, which linked downside beta to correlation tight-

ening,444 we might ponder whether skewness or coskewness bears on correlation tight-

ening. Ang and Chen found no “pattern between past co-skewness and correlation

asymmetry.”445 After “sorting stocks by coskewness” Ang and Chen concluded that

coskewness was “not related to the degree of correlation asymmetry in [their]

data.”446 They likewise discerned “no pattern in the skewness or co-skewness of port-

folios formed by past conditional co-skewness.”447

The distinction between correlation tightening or asymmetry, on one hand, and skew-

ness or coskewness, on the other hand, persisted in all market segments studied by

Ang and Chen. Every portfolio in their study was “both negatively skewed and … neg-

atively co-skewed with the market.”448 This finding suggested “that there is some com-

mon component among all … asymmetry statistics.”449 At the same time, however,

Ang and Chen found low levels of correlation between (co)skewness and their meas-

ure of correlation asymmetry, indicated that they were “not capturing the same in-

formation” in correlation asymmetry “as skewness and co-skewness,” but rather

“capturing something that is fundamentally different” from those measures.450 This

persistent failure to explain “correlation asymmetries in equity portfolios” through

“traditional skewness and co-skewness measures,” even for “small size, high book-

to-market ratios, and low past return portfolios,” confirms that “contemporaneous

downside moves” by these asset classes “with the market” are “not reflected in meas-

ures that solely capture second moments, such as volatility.”451
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440 Id.
441 Id. at 446
442 Id. at 445; see also id. at 457 (table 1) (presenting summary statistics on many of the foregoing categories); id. at 459 (figure 3) (illustrating

downside correlation tightening between the broader market and defensive sectors, small and value stocks, and past losers).
443 Id. at 473.
444 See supra table following text accompanying notes 224-225.
445 Ang & Chen, supra note 135, at 474.
446 Id.
447 Ang & Chen, supra note 135, at 474.
448 Id. at 469.
449 Id. at 469.
450 Id. at 469.
451 Id. at 474-75.



2. Emerging markets

The relationship between conventional, two-moment CAPM, bifurcated beta, and

(co)skewness also sheds light on pricing anomalies in “emerging markets [that] are

not fully integrated into world capital markets.”452 Global capital markets continue

to exhibit a striking difference between “emerging market returns,” where “total vari-

ance can account for 52% of [the] variation,” and “developed market returns,” where

total variance has “practically no[]” impact.453 In his 2000 evaluation of emerging

markets, Campbell Harvey concluded that “semivariance measures,” which “are all

highly correlated with total variance,” “account for a substantial part of the variation

in … emerging market returns.”454 By contrast, semivariance had little impact in de-

veloped markets.455

Elaborating beyond considerations of semivariance and single-sided beta, Harvey

linked the behavior of emerging markets to coskewness. Volatility and his measures

of skewness showed “a positive relation for emerging markets but not developed mar-

kets.”456 In “both developed and emerging markets,” multiple measures of coskewness

displayed “a negative relation,” confirming the predictions of asset pricing theory

“that more negative coskewness [should] get[] a higher expected return.”457

In concert, these effects carry two significant implications for mathematical finance.

The first of these lessons teaches more about imperfectly integrated markets in less

developed parts of the world. The persistence of “total risk measures like variance

and skewness” in “many emerging markets” is “consistent with their less-than-com-

plete integration with world capital markets.”458 The second implication of Harvey’s

analysis, however, goes to the core of the four-moment capital asset pricing model

and its explanatory power. “Risk measures implied by asset pricing pricing theory, in

particular world beta and coskewness, work reasonably well in capturing the cross-

section of average return in world markets.”459 Accordingly, a global implementation

of the “CAPM with coskewness appears to have some ability to explain average returns

in both developing and emerging markets.”460 Bifurcated beta has already exhibited

some value for modeling emerging markets. Enhancing that model, and extending it

to the third and fourth moments of the distribution of returns, may yet rehabilitate

the CAPM in emerging and developed markets around the world.
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452 Harvey, supra note 336, at 45.
453 Id. at 35.
454 Id. at 38.
455 See id.
456 Id.
457 Id. at 45.
458 Id. at 48.
459 Id.
460 Id. at 47.



3. Size, value, and momentum

Finally, a bifurcated, four-moment approach to asset pricing may provide good an-

swers to the anomalous market segments and trading strategies that have most per-

sistently vexed the conventional CAPM. It is now received wisdom that “the standard

CAPM” fails to “explain[] the returns of … the smallest market-capitalized deciles”

and stocks with low book-to-market ratios, as well as “returns for specific [trading]

strategies such as … momentum.”461 Those are also the “assets … with the most

skewed returns.”462 Devising an explanation for these anomalies in terms of all four

cross moments and the bifurcated nature of an augmented CAPM would go a long

way toward reconciling conventional approaches to portfolio theory with Fama and

French’s size and value factors and with momentum trading.

The leading study of these relationships remains Campbell Harvey and Akhtar Sid-

dique’s canonical 2000 article, Conditional Skewness in Asset Pricing Tests. Consistent with

contemporaneous work by Harvey alone, the ultimate emphasis should fall not on skew-

ness as such, but on coskewness between disputed asset or asset classes and the overall

market. 463 To be sure, overall skewness does matter in the sense that “[n]onincreasing

absolute risk aversion implies that … increases in total skewness are preferred.”464 But

changes in total skewness do not take place in the abstract or in a financial vacuum.

Instead, they arise from the coskewness of individual components of the overall porfolio.

“Since adding an asset with negative coskewness … makes [a] portfolio more negatively

skewed, … assets with negative coskewness must have higher expected returns than as-

sets with identical risk-characteristics but zero-coskewness.”465 Asset-specific differences

in coskewness assume heightened signficance in market conditions where “uncondi-

tional skewness is negative” for baseline portfolios in “both U.S. and world” markets.466

Harvey and Siddique found, “as expected,” a “negative correlation between [their]

direct measures of coskewness and … mean returns” for all test portfolios.467 For

“three-way (size, book-to-market, and momentum) sorted portfolios,” which com-

bined Fama and French’s size and value factors with momentum trading strategies,

Harvey and Siddique found “a remarkably sharp relation between the direct measure

of skewness, and … mean returns (–0.71 correlation).”468

Using a “full-information maximum likelihood (FIML) method that [did] not allow

time-series variation in the betas” and therefore “explicitly assume[d] that the betas
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461 Harvey & Siddique, supra note 293, at 1264.
462 Id. at 47.
463 Cf. Harvey, supra note 336, at 38 (“in the world of the augmented CAPM, coskewness should count, and skewness itself should not”).
464 Harvey & Siddique, supra note 293, at 1269.
465 Id. at 1269-70.
466 Id. at 1291.
467 Id. at 1278.
468 Id. at 1279.



[were] constant over time,”469 Harvey and Siddique reported R2 values linking the fol-

lowing test portfolios:470

Portfolios (vertical axis) versus            Fama and French’s           CAPM with negative              CAPM alone 
pricing models (horizontal axis)         3-factor pricing model               coskewness              (“one-factor CAPM”)

Size and book-to market (value)                           71.8%                                     68.1%                                     11.4%

Momentum                                                               89.1%                                     61.0%                                      3.5%

Although Fama and French’s “three-factor model always” outperformed “the one-

factor CAPM,” adding “a skewness factor makes the single-factor strikingly more com-

petitive.”471 Combining negative coskewness with Fama and French’s three-factor

pricing model increased the asset pricing model’s explanatory power to 95 percent.472

At a minimum, this analysis demonstrated that Fama and French’s size and value fac-

tors, “to some extent, capture[d] information similar to that captured by skew-

ness.”473 Even more “[i]mportantly, the addition of the skewness factor add[ed]

something over and above the three-factor model.”474 Adding skewness “raise[d] the

expalantory power in all … portfolio groups with the exception of the size portfolios”

— where “the explanatory power of the CAPM plus skewness” was already “slightly

higher than that of the three-factor model.”475

Harvey and Siddique found similar results for momentum trading.476 “Momentum or

relative strength [trading] strategies have posed the greatest challenge for asset pricing

models,” since “the strategy of buying [past] winners and selling losers … produce[s]

abnormal returns,” even to the point of constituting “a large component of … ab-

normal returns” overall.477 Surveying momentum in equity markets from 1992 through

1997, Harvey and Siddique found that “winners have substantially lower skewness

than losers”:478 “For every momentum definition, the skewness of the loser portfolio

[was] higher than that of the winner portfolio.… The higher mean strategy is associ-

ated with lower skewness.”479 Indeed, as Andrew Ang and Joseph Chen concluded in

parallel research, “[m]omentum strategies are more profitable than they first appear,

because in times of market distress, loser stocks … are more likely to fall with the mar-

ket than past winners.”480
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470 Id. at 1283.
471 Id.
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These conclusions carry deep “implications for asset allocation and portfolio analy-

sis.”481 The presence of a skewness premium across all market conditions, “higher than

what one should expect from variance alone,” could help “explain the market risk pre-

mium” for equities over all other asset classes.482 Better understanding of the bifurcated

nature of coskewness, on either side of mean returns, could help clarify “the asymmet-

rical variance phenomenon,” whereby conditional variance increases when returns are

negative.483 Suffice it to say that the elaboration of capital asset pricing beyond its

conventional “mean-variance framework,” and outward in financial space to the con-

sideration of higher-order cross moments on either side of mean return, and their re-

lationship to known anomalies involving emerging markets, size and value factors, and

momentum trading, promises to enhance portfolio theory through the rise of “a richer

conditional mean-variance-skewness [and –kurtosis] framework.”484

� 8. Finance as a romance of many moments485

Eugene Fama and Kenneth French’s demolition of beta in 1992 heralded the scholarly

embrace of multifactor asset-pricing models at the expense of the conventional capital

asset pricing model. Over the past generation, finance has likewise acknowledged —

however grudgingly and belatedly — the economic impact of investor behavior. Fi-

nance nevertheless remains a mathematical romance, one in which the ultimate quest

is that of finding the asset-pricing formula, the statistical distribution, and the set of

equations that best explain the behavior of capital markets. But the simplicity and

elegance of mathematical finance in its modern incarnation have yielded to the anom-

alies and abnormalities of a more nuanced age.486 Asymmetry, autocorrelation, and

aleatory uncertainty have taken center stage in a new financial drama. Extensions of

the CAPM’s classic toolkit enable us to evaluate, perhaps even to master, the new

quantitative landscape.

In its grandest manifestations, portfolio theory is a pattern of timeless moments. De-

spite their shortcomings, modern portfolio theory and mathematical models derived

from it continue to wield considerable influence. A wide range of policy judgments

continue to rest on the assumption that market returns and risks follow the visually

supple and analytically pliable curves of the standard normal distribution. Indeed,

the metaphysical arc of modern portfolio theory and its intellectual successors ex-
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482 Id. at 1291-92. On the equity premium puzzle, see generally sources cited supra note.
483 Harvey & Siddique, supra note 293, at 1292.
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hibits the seductive symmetry of “beauty supreme — a beauty cold and austere, like

that of sculpture, without any appeal to any part of our weaker nature, without the

gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern

perfection such as only the greatest art can show.”487 The attraction in law and fi-

nance to formal elegance reflects a love affair with the Gaussian mathematics that

dominates the culture of contemporary business and science.488

In this period of scientific transition, mathematical finance often finds that it “can

no longer understand [itself] because the theories … of [its] former age no longer

work and the theories of the new age are not yet known.”489 We have exactly one path

forward: to “start afresh as if [we] were newly come into a new world.”490 We have

no choice but to subject the comforting mirage of modern portfolio theory to a with-

ering postmodern critique. The law’s preference for ordered liberty must give way to

pragmatic exigencies. When at last we grasp the uncomfortable truth that Gaussian

models of risk and return belong to “a system of childish illusions,” our affair with

the seductive symmetry of traditional risk modeling shall pass “like first love … into

memory.”491
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