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Abstract 
State space optimal controllers became popular over the last decades mainly because of its performance and robustness properties, as well 
as easy extension for multi-variable systems (MIMO). On the other hand, many industrial processes present dominant dead-time which 
may cause issues related to performance or even stability. Despite of its importance, few works from optimal control may be traced for this 
matter. In order to deal with dead-time effect one may use dead-time compensation (DTC) structures, mainly applied for single-variable 
systems (SISO). Within this context, this work proposes to modify a prediction structure recently proposed aiming to combine the best 
properties of both DTC and optimal control for MIMO linear systems. Simulation results along with the application to an experimental 
setup of a neonatal incubator prototype are presented to highlight the advantages and show the effectiveness of the proposed control 
strategy, as well as its practical aspect. 
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Control óptimo con estructura de compensación de tiempo muerto 
para sistemas multivariábles con retardo 

Resumen 
Los controladores óptimos en espacio de estado han tenido bastante popularidad en las últimas décadas, principalmente, debido a sus 
buenas propiedades de robustez, desempeño y la posibilidad de aplicación en sistemas multivariables. Sin embargo, muchos procesos 
industriales presentan retrasos dominantes entre sus variables los cuales pueden ocasionar problemas de desempeño y estabilidad. A pesar 
de su importancia, existen pocos trabajos reportados de control óptimo que tratan este problema. Para mitigar el efecto del retraso pueden 
ser usadas estructuras compensación de retraso conocidas como DTC y usadas principalmente en procesos monovariables. En  este trabajo 
se propone la modificación de una estructura de predicción recientemente propuesta con el objetivo de combinar las mejores propiedades 
de un DTC y del control óptimo para controlar procesos lineares multivariables (MIMO). Resultados de simulación y la aplicación al 
prototipo de laboratorio de una incubadora neonatal son usados para mostrar las ventajas, efectividad y practicidad de la estrategia 
propuesta. 

Palabras clave: Control óptimo; sistemas con retraso; incubadora neonatal. 

1. Introduction

Dead-time systems, sometimes also referred to as
transportation lag systems, can be found in many real 
processes. They are especially common for the chemical or 
biological plants, being also found in many industrial 

How to cite: Bezerra Correia, W., Claure Torrico, B. and Olímpio Pereira, R. D., Optimal control of mimo dead-time linear systems with dead-time compensation structure., DYNA 
84(200), pp. 62-71, 2017. 

applications or communications. Mass and energy 
transportation or package losses in a network are just a few 
examples linked to this matter [1]. Control system 
complexity increases as dead time also does, as it is necessary 
to apply dead-time compensation techniques in this case [2]. 

Therefore, the closed-loop control of dead-time systems 
may exhibit an observer structure in order to compensate the 
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dead time and avoid oscillations or even instability. Such 
observer is commonly referred to as predictor, while the Smith 
predictor is the first dead-time compensator reported in 
literature [3]. Basically dedicated to the representation of 
transfer functions, this structure and its respective variations 
have been used over the last decades to deal with plants that 
present dead-time. Some modifications include the Filtered 
Smith Predictor (FSP) [4,5]. A simplified version of the FSP 
has been proposed recently by [6] being able to deal with stable, 
integrative, and unstable first-order dead-time processes. A case 
study of dead-time compensation (DTC) in a second-order plus 
dead-time (SOPDT) system is reported in [7], where the 
Modified Smith Predictor (MSP) strategy is applied. 

On the other hand, optimal control techniques are known 
by their robustness properties widely studied and well-
established in literature. One of them is the LQG/LTR control 
[8,9], which has been initially proposed for continuous-time 
systems, while robustness conditions for the discrete-time 
case can be found in the work developed by [10]. Despite of 
its popularity few examples can be found in literature that 
link LQG for dead-time systems, e. g. [11,12]. Such 
approaches employ state augmentation to accommodate time 
delay, which increases computational effort, making them 
unattractive for implementation purposes. 

However, a study of the DTC structure under the linear 
fractional transformation (LFT) framework with a loop 
shifting approach is presented in [13]. The extension of the 
loop shifting approach to the case of multiple delay systems 
was presented in [14]. Following the same approach, a 
solution to an equivalent delay-free H2 problem was 
proposed in [15]. 

Although the aforementioned approach deals with a dead-
time compensator structure, it is developed for the 
continuous-time case, while this work is driven for the 
discrete-time case. Here we propose to modify the DTC 
structure presented by [16], in order to obtain a predictor-
observer. Hence, one can apply any well-known and suitable 
technique to obtain both a state feedback control law and 
state estimation. Therefore, the proposed control structure 
obtained is applicable for linear dead-time systems, with the 
dead time explicitly compensated and the optimal control 
problem addressed for the linear model of the process without 
time delay. An advantage of this approach over traditional 
DTC is the fact that the same algorithm can be extended for 
MIMO systems. By using this approach, the best properties 
of both controller and predictor-observer are mixed resulting 
in improved performance in terms of robustness and step 
response. In addition, the proposed control scheme is applied 
to a classical linear MIMO plant case study to investigate its 
performance over multivariable case. 

This paper is organized as follows. Problem statement is 
presented in section 2. Section 3 shows a review on the 
explicit dead-time compensation followed by its 
modification in order to get the predictor-observer structure. 
The separation principle in section 4 let us able to apply a 
state feedback control law for the predicted state, where the 
proposed control strategy with its block diagram is presented, 
followed by the robustness analysis in section 5. Simulation 
examples are present in section 6 and the implemented case 
for an incubator prototype is present in section 7. 

Conclusions in section 8 end the paper. 
 

2.  Problem statement 
 
Consider the dead-time linear system whose model in 

discrete-time is given by: 
 
𝑥𝑥(𝑘𝑘 + 1) =  𝐴𝐴𝑥𝑥(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘 − 𝑑𝑑),    (1) 

 
where x(k) and u(k) are the state and input of the system, 

respectively, and d is the discrete time delay. 
Many multivariable approaches for processes with model 

given by Eq (1) may be found under transfer function 
framework. One of those is the extension of the FSP for 
MIMO systems [17]. This approach has proved to be suitable 
for many well-known examples, despite of the inherent 
coupling between loops. The design procedure of the FSP 
algorithm considers to obtain a fast-model of the plant whose 
performance is improved if L i = min (L i j )  =  L ii , i.e., when 
the minimal delay j in each row is the one in the main 
diagonal of the transfer matrix [1]. Although the 
aforementioned approach is applied for square systems, an 
extension of the MIMO-FSP for non-square system has been 
recently proposed [18], where a fast model without any time 
delay may be considered. 

Under state space framework, state augmentation has 
been initially proposed to deal with dead-time, where an 
implicit representation, which may be found for instance in 
[19], is commonly reported [11, 16]. By this approach the 
order of the matrices of the system increase as dead-time also 
does. Therefore, systems with longer delays lead inevitably 
to high dimension matrices. From the computational effort 
viewpoint this is an undesirable condition, as operations may 
be critical for embedded systems 

In order to overcome this issue, some approaches have 
been proposed where dead-time is compensated by matrices 
with the same order as those of the plant. One of these is 
based on the internal model control (IMC) proposed by [20], 
where the Generalized Multi-Delay Compensator (GMDC) 
[21] is split in two parts: a fast model and a delayed one. By 
this approach, the primary controller is designed for an 
undelayed plant and a reference filter may be required. The 
derived control schema is able to control MIMO plants. 

Solutions based on predictor approaches have been recently 
proposed as in [16], although the multiple delay case considers 
the augmented representation. The case of multiple dead-times 
has been considered for SISO systems in [22,23]. In order to 
deal with time-varying delay Gonzalez et al. [24] proposed a 
predictor-based controller with stability analyzed under LMI 
framework, applied for SISO systems. Under this perspective, 
this work is intended to present a predictor-based approach that 
avoid the use of augmented state to ease implementation. The 
proposed control method is able to deal with both SISO and 
MIMO square plants with multiple dead-times. 

 
3. State estimation and prediction 

 
Classical representations of dead-time systems include 

state augmentation. However, this approach increases the 
order of the model, which may lead to lengthy matrices. In 
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order to avoid high order matrices to represent the dead time, 
an explicit dead-time compensation structure is used by [16] 
and analyzed in terms of robust stability. Such structure is 
called a predictor as the development therein explicitly 
provides state estimation d steps ahead from the 
measurements instant. 

 
3.1.  Explicit dead-time compensation: A review 

 
In order to apply the explicit dead-time compensation 

structure under the optimal control framework, this section 
provides a brief review on the predictor aforementioned. 
Such predictor was proposed in the work by Santos et al. [16], 
so that this section is intended to give a brief review. 

Consider a dead-time system with state disturbance and 
input delay whose discrete-time model is given by: 

 
𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘 − 𝑑𝑑) + 𝑤𝑤(𝑘𝑘);  (2) 

 
𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝑥𝑥(𝑘𝑘) + 𝑣𝑣(𝑘𝑘),   (3) 

 
where d is the time delay, x(k), y(k) and u(k) are the 

process state, output and input, respectively. It is assumed 
that the pair (A,B) is controllable and (A,C) is observable. 
Also, w(k) and v(k) are white noise additive disturbances 
related to the state and output, respectively. 

Note that for a discrete-time system, the control signal 
u(k) affects state and output only at k + d time instant, i.e., 
x(k + d) and y(k + d). Then, by recursively applying eq. (1) d 
steps ahead, one gets an expression capable to predict the 
state of the system, given by: 

 
𝑥𝑥(𝑘𝑘 + 𝑑𝑑) = 𝐴𝐴𝑑𝑑𝑥𝑥(𝑘𝑘) + � 𝐵𝐵𝐵𝐵(𝑘𝑘 − 𝑗𝑗)𝑑𝑑

𝑗𝑗=1 .  (4) 
 
It is important to mention that the expression defined in 

eq. (4) depends uniquely on the actual state x(k) and the past 
values of the control actions, so that it can be readily 
obtained. In addition, by considering v(k+d|k) as the variable 
v written d steps ahead, with information available up to time 
sample k, it is convenient to define: 

 
𝑥𝑥
~

(𝑘𝑘) = 𝑥𝑥(𝑘𝑘 + 𝑑𝑑|𝑘𝑘);    (5) 
 

𝑦𝑦
~

(𝑘𝑘) = 𝑦𝑦(𝑘𝑘 + 𝑑𝑑|𝑘𝑘).    (6) 
 
Therefore, by considering eq.(5), the system described by 

eq.(2) may be written d steps ahead, leading to the predictor: 
 

𝑥𝑥
~

(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥
~

(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) +𝑤𝑤
~

(𝑘𝑘),   (7) 
 
where 𝑤𝑤

~
(𝑘𝑘) is the effect of disturbance 𝑤𝑤(𝑘𝑘) over 𝑥𝑥

~
(𝑘𝑘). 

Predictor given by eq.(7) has to guarantee estimation for 
x(t) instead of 𝑥𝑥

~
(𝑘𝑘). Then, it has to be considered the 

prediction error defined as: 
 

𝑒𝑒𝑝𝑝(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) − 𝑥𝑥
~

(𝑘𝑘 − 𝑑𝑑).   (8) 
 
Fig. 1 shows the structure derived from eq. (7). As stated 

by Lemma 1 in [16], such predictor is input to state stable 

(ISS) if w(k) is bounded and u(k) is given by a feedback 
control law that stabilizes the delay-free model of the plant. 
For such condition, Santos et al. [16] have shown that: 

 
𝑤𝑤
~

(𝑘𝑘) = 𝐴𝐴𝑑𝑑𝑤𝑤(𝑘𝑘);     (9) 
 
𝑒𝑒𝑝𝑝(𝑘𝑘) = 𝑤𝑤(𝑘𝑘 − 1) + 𝐴𝐴𝑤𝑤(𝑘𝑘 − 2) + ⋯⋯+ 𝐴𝐴𝑑𝑑−1𝑤𝑤(𝑘𝑘 − 𝑑𝑑).    (10) 
 
Under optimal control framework it is usual to consider a 

state estimator. For the delayed system described by eq. (2), 
an estimator may be given by: 

 
𝑥𝑥
^

(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥
^

(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘 − 𝑑𝑑) +𝑤𝑤
^

(𝑘𝑘),  (11) 
 
where 𝑤𝑤

^
(𝑘𝑘) is an estimate of the state disturbance w(k). 

Likewise performed in the previous section, 𝑥𝑥
^

(𝑘𝑘 + 𝑑𝑑) 
may be obtained by recursively applying eq. (11) dropping 
𝑤𝑤
^

(𝑘𝑘) from it, which gives 
 

𝑥𝑥
^

(𝑘𝑘 + 𝑑𝑑) = 𝐴𝐴𝑑𝑑𝑥𝑥
^

(𝑘𝑘) + � 𝐵𝐵𝐵𝐵(𝑘𝑘 − 𝑗𝑗)𝑑𝑑
𝑗𝑗=1 .  (12) 

 
In this case it is suitable to define 
 

𝑥𝑥′(𝑘𝑘) = 𝑥𝑥
^

(𝑘𝑘 + 𝑑𝑑|𝑘𝑘);    (13) 
 

𝑦𝑦′(𝑘𝑘) = 𝑦𝑦
^

(𝑘𝑘 + 𝑑𝑑|𝑘𝑘).    (14) 
 
Therefore, by applying eqs. (12)-(13) into the observer 

described by eq.(11), one gets the predictor-observer: 
 

𝑥𝑥′(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥′(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) + 𝑤𝑤′(𝑘𝑘),  (15) 
 
where 𝑤𝑤′(𝑘𝑘), is the effect of the estimated disturbance 

𝑤𝑤
^

(𝑘𝑘) over the predicted-observed state 𝑥𝑥′(𝑘𝑘). In this case, 
eq. (9) becomes 

𝑤𝑤′(𝑘𝑘) = 𝐴𝐴𝑑𝑑𝑤𝑤
^

(𝑘𝑘).    (16) 
 
State disturbance w(k) in eq. (9) is defined under the 

invariant sets framework in [16] to obtain the structure in Fig. 
1. On the other hand, under the optimal control perspective, 
this work proposes to consider 

 

 
 

Figure 1. Explicit dead-time compensation structure (predictor).  
Source: Adapted from [16]. 
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𝑤𝑤
^

(𝑘𝑘) = 𝐾𝐾𝑒𝑒[𝑦𝑦(𝑘𝑘) − 𝑦𝑦
^

(𝑘𝑘)],    (17) 
 
where 𝑦𝑦

^
(𝑘𝑘) = C𝑥𝑥

^
(𝑘𝑘) and Ke is the estimator gain which 

may be found by any technique, e. g., pole placement or 
optimal estimation error (Kalman filter). Note that such 
consideration already takes into account the fact that 𝑤𝑤^ (𝑘𝑘) is 
bounded if the pair (A,C) of the delay-free system is 
observable and the poles of A − Ke C lie inside the unit circle. 
However, 𝑤𝑤′(𝑘𝑘) in the predictor-observer given by eq. (15) 
has to be bounded also. So that, we have to consider the 
prediction error, described by eq. (8), for the predictor-
observer, which becomes: 

 
𝑒𝑒𝑝𝑝′ (𝑘𝑘) = 𝑥𝑥

^
(𝑘𝑘) − 𝑥𝑥′(𝑘𝑘 − 𝑑𝑑).     (18) 

 
On the other hand, eq. (10) applied for the predictor-

observer gives the prediction-estimation error: 
 
𝑒𝑒𝑝𝑝′ (𝑘𝑘) = 𝑤𝑤

^ (𝑘𝑘 − 1) + 𝐴𝐴𝑤𝑤
^ (𝑘𝑘 − 2) + ⋯⋯+𝐴𝐴𝑑𝑑−1𝑤𝑤^ (𝑘𝑘− 𝑑𝑑).    (19) 

 
In this case, eq. (15) defines the predictor whose structure 

is shown in Fig. 2. 
It is important to highlight that according to eq. (19), this 

error depends uniquely on the past values of the estimated 
disturbance 𝑤𝑤

^
(𝑘𝑘) which can be written in the z-domain by 

 
𝐸𝐸𝑝𝑝′ (𝑧𝑧) = Φ(𝑧𝑧)𝑊𝑊

^
(𝑧𝑧),    (20) 

 
where 
 

Φ(𝑧𝑧) = 𝐼𝐼𝑧𝑧−1 + 𝐴𝐴𝑧𝑧−2 + ⋯+ 𝐴𝐴𝑗𝑗−1𝑧𝑧−𝑑𝑑 .   (21) 
 
Therefore, by writing eq. (18) in the z-domain and 

replacing eqs. (20)-(20) into it, we have 
 

𝑋𝑋
^

(𝑧𝑧) = 𝐸𝐸𝑝𝑝′ (𝑧𝑧) + 𝑋𝑋′(𝑧𝑧)𝑧𝑧−𝑑𝑑.    (22) 
 
Note that eq. (21) defines a FIR filter, which is always 

stable, whose entry is given by eq. (17) that is a bounded 
signal. Then, the term 𝐸𝐸𝑝𝑝′ (𝑧𝑧) →  0 as k → ∞, which makes the 
convergence of the predicted state 𝑥𝑥′(𝑘𝑘) a fundamental issue. 

It worths to analyze the predictor-observer from the 
disturbance perspective. Then, by replacing eq. (17) into eq. 
(16) we have 𝑤𝑤′(𝑘𝑘) = 𝐴𝐴𝑑𝑑𝐾𝐾𝑒𝑒[𝑦𝑦(𝑘𝑘) − 𝑦𝑦

^
(𝑘𝑘)], i.e., the effect of the 

estimation error over the predicted state 𝑥𝑥′(𝑘𝑘) depends on the 
 

 
Figure 2. Predictor-observer structure for the optimal control approach. 
Source: The authors. 

outputs of the system and the delay d. If a single time delay 
is considered, like for SISO systems, then no additional 
issues are related to obtain 𝑤𝑤′(𝑘𝑘). 

On the other hand, consider a nth-order square MIMO 
system with multiple dead-times given by the transfer matrix 

 

⎣
⎢
⎢
⎡𝐘𝐘𝟏𝟏(𝑧𝑧)
𝐘𝐘𝟐𝟐(𝑧𝑧)
⋮

𝐘𝐘𝐧𝐧(𝑧𝑧)⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝐺𝐺11𝑧𝑧−𝑑𝑑11 ⋯ 𝐺𝐺1𝑛𝑛𝑧𝑧−𝑑𝑑1𝑛𝑛

𝐺𝐺21𝑧𝑧−𝑑𝑑21 ⋯ 𝐺𝐺2𝑛𝑛𝑧𝑧−𝑑𝑑2𝑛𝑛

⋮ ⋱ ⋮
𝐺𝐺𝑛𝑛1𝑧𝑧−𝑑𝑑𝑛𝑛1 ⋯ 𝐺𝐺𝑛𝑛𝑛𝑛𝑧𝑧−𝑑𝑑𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡𝐔𝐔𝟏𝟏(𝑧𝑧)
𝐔𝐔𝟐𝟐(𝑧𝑧)
⋮

𝐔𝐔𝐧𝐧(𝑧𝑧)⎦
⎥
⎥
⎤
. 

 
In this case each output Yi (z), i=1,2,…, n is described by 

a linear combination of transfer functions Gij z−dij, i, j = 
1,2,…,n. So that, the system we wish to control is described 
for the cases where i = j while i ≠ j describe transfer functions 
related to control actions of the others manipulated variables 
and can be seen as “disturbance” signals. Therefore, for the 
multivariable case, the predicted disturbance is given by 

 
𝑤𝑤′(𝑘𝑘) =  � 𝑤𝑤′

𝑖𝑖(𝑘𝑘)
𝑛𝑛

𝑖𝑖=1
, 

 
where 
 

𝑤𝑤′
𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾𝑒𝑒 �𝑦𝑦𝑖𝑖(𝑘𝑘)− 𝑦𝑦

^
i(𝑘𝑘)�.    (23) 

 
Focusing on eq. (23) one can notice that the proposed 

technique takes into account the actual delay of each output, 
i.e., there is no need to consider a fast model. Moreover, 
performance is improved if the maximum delay in each row 
is that in the main diagonal. 

 
4.  State estimation and the proposed control 

 
The latter section presented an observer that combines the 

state estimation with its prediction, in order to compensate 
the time delay of a dead-time system. In this section we 
investigate the predictor properties, under the estimator 
viewpoint, and link it with the feedback control law. 

 
4.1.  State prediction-estimation 

 
In order to compute the predicted state given by eq. (15), 

it is necessary to consider the predicted disturbance 𝑤𝑤′(𝑘𝑘). 
As mentioned earlier, 𝑤𝑤′(𝑘𝑘) is the effect of the estimated 
disturbance 𝑤𝑤

^ (𝑘𝑘) in the future state estimation 𝑥𝑥′(𝑘𝑘). 
However, note that eq. (17) may also be applied for 𝑤𝑤′(𝑘𝑘), 
as it holds in the time instant k + d as well. Then, one may 
write 

 
𝑤𝑤′(𝑘𝑘) = 𝐾𝐾𝑒𝑒[𝑦𝑦

~
(𝑘𝑘) − 𝑦𝑦′(𝑘𝑘)];

= 𝐾𝐾𝑒𝑒𝐶𝐶[𝑥𝑥
~

(𝑘𝑘) − 𝑥𝑥′(𝑘𝑘)];

= 𝐾𝐾𝑒𝑒𝐶𝐶[𝑥𝑥(𝑘𝑘 + 𝑑𝑑) − 𝑥𝑥
^

(𝑘𝑘 + 𝑑𝑑)],  (24) 
 
where x(k + d) and 𝑥𝑥

^
(k + d) may be computed by eqs. 

(11)-(12), respectively. Then, by replacing eq. (24) into eq. 
(15), the predicted state is given by: 

 
𝑥𝑥′(𝑘𝑘 + 1) = (𝐴𝐴 − 𝐾𝐾𝑒𝑒𝐶𝐶)𝑥𝑥′(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) +𝐾𝐾𝑒𝑒𝐶𝐶𝑥𝑥

~
(𝑘𝑘),  (25) 
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which is stable if the eigenvalues of A − KeC lie inside the 
unit circle. For such condition, the delay-free model pair matrices 
(A,C) must be observable. This is an important conclusion for the 
predictor-observer because if 𝑥𝑥

^
(𝑘𝑘 + 𝑑𝑑) has guaranteed 

convergence, then so it has  𝑥𝑥
^

(𝑘𝑘), according to eq. (22). 
 

4.2.  Control law 
 
The problem of state estimation addressed in the later 

subsection shows that the variable 𝑥𝑥′(𝑘𝑘) given by eq. (25) is 
an accurate prediction of the state of the system d steps ahead. 
Despite of that, a feedback control law cannot be applied if 
the future prediction error 

 
𝑒𝑒
~

(𝑘𝑘) = 𝑥𝑥
~

(𝑘𝑘) − 𝑥𝑥′(𝑘𝑘)    (26) 
 
does not converge. 
On the other hand, the system we wish to control is given 

by the predicted model: 
 
𝑥𝑥
~

(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥
~

(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘).    (27) 
 
Note that eq. (26) can be written as: 
 

𝑒𝑒
~

(𝑘𝑘 + 1) = 𝑥𝑥
~

(𝑘𝑘 + 1) − 𝑥𝑥′(𝑘𝑘 + 1), 
 
where replacement of eqs. (25) and (27) into it lead to 
 
𝑒𝑒
~

(𝑘𝑘 + 1) = (𝐴𝐴 − 𝐾𝐾𝑒𝑒𝐶𝐶)𝑒𝑒
~

(𝑘𝑘).    (28) 
 
Then, by considering a feedback control law such as 
 
𝐵𝐵(𝑘𝑘) = −𝐾𝐾𝑐𝑐𝑥𝑥′(𝑘𝑘),     (29) 

 
the regulator case is applied to eq. (27), which allows us to write: 
 
𝑥𝑥
~

(𝑘𝑘 + 1) = (𝐴𝐴 − 𝐵𝐵𝐾𝐾𝑐𝑐)𝑥𝑥
~

+ 𝐵𝐵𝐾𝐾𝑒𝑒
~

(𝑘𝑘).    (30) 
 
Thus, the closed loop is formed by eqs. (28) and (30), 

leading to 
 

�
𝑥𝑥
~

(𝑘𝑘 + 1)
𝑒𝑒
~

(𝑘𝑘 + 1)
� = �𝐴𝐴 − 𝐵𝐵𝐾𝐾𝑐𝑐 𝐵𝐵𝐾𝐾𝑐𝑐

0 𝐴𝐴 −𝐾𝐾𝑒𝑒𝐶𝐶
� �
𝑥𝑥
~

(𝑘𝑘)
𝑒𝑒
~

(𝑘𝑘)
� .   (31) 

 
It is worthy to point out that the estimator gain in eq. (17) is 

applied to measurements taken at time instant k, while eq. (29) is 
a feedback law based on the future state estimator at k + d. 
However, eq. (31) shows that the Separation Principle holds for 
the predictor-observer structure of the Fig. 2, i. e., estimator and 
control poles may be assigned independently. Note from eq. (30) 
that the controlled system is stable if the eigenvalues of (A − BKc) 
lie inside the unit circle, i. e., if the pair (A,B) of the delay-free 
system is controllable. So that, feedback gain Kc in eq. (29) may 
be computed by any known method, e.g., pole-placement or 
optimal state feedback. 

 
4.3  Closed-loop relationships 

 
The predictor-observer in Fig. 2 may be viewed as a structure  

 
Figure 3. Discrete-time Smith predictor structure. 
Source: The authors. 

 
 

that provides an accurate state prediction 𝑥𝑥′(𝑘𝑘) of the state 
estimation 𝑥𝑥

^
(𝑘𝑘) of the actual state x(k). In light of that, if the 

delay-free system is controllable, the application of the control 
law given by eq. (29) stabilizes the delayed system. 

However, by paying attention at the traditional Smith 
Predictor (SP) structure shown in Fig. 3, it is noticed that the 
output of the system considered in the feedback path is given by 

 
𝑦𝑦𝑟𝑟(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) − 𝑦𝑦′

 
(𝑘𝑘 − 𝑑𝑑) + 𝑦𝑦′(𝑘𝑘). 

 
Taking this equation under the state space representation, 

one may write 
 
𝑦𝑦𝑟𝑟(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) − 𝐶𝐶�𝑥𝑥

~
(𝑘𝑘 − 𝑑𝑑) − 𝑥𝑥

~
(𝑘𝑘)�.     (32) 

 
All the quantities in the right side of eq. (32) are available 

in the predictor described in subsection 3.2 as can be seen in 
Fig. 2. Then, for the purpose of reference tracking, the output 
feedback loop may be set as for the SP. 

However, in order to obtain a block diagram for the 
proposed control method, by replacing eqs. (16)-(17) and eq. 
(29) into eq. (7), the predicted state is then given by: 

 
𝑥𝑥′(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥′(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) + 𝐴𝐴𝑑𝑑𝐾𝐾𝑒𝑒[𝑦𝑦(𝑘𝑘) − 𝑦𝑦

^
(𝑘𝑘)].  (33) 

 
For the tracking problem, the control signal is written as 
 
𝐵𝐵(𝑘𝑘) = −𝐾𝐾𝑥𝑥𝑥𝑥′(𝑘𝑘)− 𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘),   (34) 

 
where Kc=[Kx Ki] and xi (k) is the integrator state, 

written as 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑟𝑟(𝑘𝑘) − 𝑦𝑦𝑟𝑟(𝑘𝑘). 
 
Replacing yr (k) given by eq. (32) into this equation, 

gives: 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑟𝑟(𝑘𝑘) − 𝑦𝑦(𝑘𝑘) + 𝐶𝐶�𝑥𝑥′(𝑘𝑘−𝑑𝑑) − 𝑥𝑥′(𝑘𝑘)�.   (35) 
 
By replacing eq. (34) into eq. (33), the predicted state 

model becomes: 
 

𝑥𝑥′(𝑘𝑘 + 1) = (𝐴𝐴 − 𝐵𝐵𝐾𝐾𝑥𝑥)𝑥𝑥′(𝑘𝑘) −𝐵𝐵𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘) + 
𝐴𝐴𝑑𝑑𝐾𝐾𝑒𝑒 �y(𝑘𝑘) − 𝑦𝑦

^
(𝑘𝑘)�.     (36) 
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Figure 4. Proposed control scheme with modified dead-time compensation. 
Source: The authors. 

 
 

So that, the predicted state estimation and the output 
feedback given by eqs. (36) and (32), respectively, can be set 
into the block diagram shown in Fig. 4. 

It is important to highlight that by this approach all the 
involved matrices to compensate the dead-time have the same 
order of that of the system model. Hence, digital implementation 
of such strategy is less affordable, from the computational burden 
viewpoint, than those based on state augmentation. Note that the 
algorithm derived from the structure in Fig. 4 is applied for both 
SISO and MIMO linear cases. 

The proposed control method can be summarized as 
follows: 

Compute gains Ke and Kc of the estimator and state 
feedback, respectively, for the delay-free system; 

Split Kc = [Kx Ki]; 
Apply the gains previously computed into the diagram 

shown in Fig. 4. 
 

5.  Robustness analysis 
 
Implementation of the control strategy as shown in Fig. 4 

is a feasible task because the order of all the involved 
matrices is the same of those of the plant. However, for 
robustness analysis purposes, it is suitable to take the 
sensitivity and complementary sensitivity functions, which 
turns mandatory to obtain associated transfer functions, 
which are not immediate from Fig. 4. 

Therefore, the analysis presented in this section is driven 
to obtain an equivalent state space representation of the 
diagram shown in Fig. 4, in order to obtain the sensitivity and 
complementary sensitivity functions. Within this context, 
from eq. (18) we have 

 
𝑥𝑥′(𝑘𝑘 − 𝑑𝑑) =  𝑥𝑥

^
(𝑘𝑘) − 𝑒𝑒𝑝𝑝′ (𝑘𝑘), 

 
where applying eq. (19) into it lead to 
 

𝑥𝑥′(𝑘𝑘 − 𝑑𝑑) = 𝑥𝑥
^

(𝑘𝑘) − 𝑤𝑤
^ (𝑘𝑘 − 1) − 𝐴𝐴𝑤𝑤

^ (𝑘𝑘 − 2) −⋯ 
⋯− 𝐴𝐴𝑑𝑑−1𝑤𝑤

^ (𝑘𝑘 − 𝑑𝑑), 
 
and considering eq. (17), one gets 
 

𝑥𝑥′(𝑘𝑘 − 𝑑𝑑) = 𝑥𝑥
^

(𝑘𝑘)− 𝑒𝑒𝑒𝑒(𝑘𝑘 − 1) − 𝐴𝐴𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 − 2) −⋯⋯−

𝐴𝐴𝑑𝑑−1𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 − 𝑑𝑑),       (37) 
 
where 𝑒𝑒𝑒𝑒(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) −  𝑦𝑦

^
(𝑘𝑘) is the estimation error of the 

delay-free model. 
Thus, by replacing eq. (37) in eq. (35) the integral state is 

then given by 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑟𝑟(𝑘𝑘) − 𝑦𝑦(𝑘𝑘) − 𝑦𝑦′
 

(𝑘𝑘) + 𝑦𝑦�(𝑘𝑘) − 
𝐶𝐶𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 − 1) − 𝐶𝐶𝐴𝐴𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 − 2) −⋯ 

−𝐶𝐶𝐴𝐴𝑑𝑑−1𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 − 𝑑𝑑). (38) 
 
Therefore, by defining the augmented state 
 

𝐱𝐱(𝑘𝑘) = [𝑥𝑥′(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘)𝑒𝑒𝑒𝑒(𝑘𝑘 − 1)𝑒𝑒𝑒𝑒(𝑘𝑘 − 2)⋯𝑒𝑒𝑒𝑒(𝑘𝑘 − 𝑑𝑑)]𝑇𝑇, 
 
the input vector 
 

𝐦𝐦(𝑘𝑘) = [𝑟𝑟(𝑘𝑘)  𝑦𝑦(𝑘𝑘)  𝑦𝑦
^

(𝑘𝑘)  𝑦𝑦′(𝑘𝑘)]𝑇𝑇 , 
 
and the control vector 
 

𝐮𝐮(𝑘𝑘) = [𝐵𝐵(𝑘𝑘)  𝑥𝑥′(𝑘𝑘)  𝑒𝑒𝑝𝑝′ (𝑘𝑘)]𝑇𝑇, 
 
then eqs. (36), (38) and (34) may be written in a single 

system in order to obtain an equivalent controller for the 
augmented state space model given by: 

 
𝐱𝐱(𝑘𝑘 + 1) = 𝐀𝐀𝐱𝐱(𝑘𝑘) + 𝐁𝐁𝐦𝐦(𝑘𝑘)   (39) 

 
𝐮𝐮(𝑘𝑘) = 𝐂𝐂𝐱𝐱(𝑘𝑘) + 𝐃𝐃𝐦𝐦(𝑘𝑘),     (40) 

 
where 

𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐴𝐴 − 𝐵𝐵𝐾𝐾𝑥𝑥 −𝐵𝐵𝐾𝐾𝑖𝑖 0 ⋯ 0

0 𝐼𝐼 −𝐶𝐶𝐾𝐾𝑒𝑒 ⋯ −𝐶𝐶𝐴𝐴𝑑𝑑−1𝐾𝐾𝑒𝑒
0 0 0 ⋯ 0
0 0 𝐼𝐼 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0
0 0 0 ⋯ 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 

 

𝐁𝐁 = 

⎣
⎢
⎢
⎢
⎢
⎡0 𝐴𝐴𝑑𝑑𝐾𝐾𝑒𝑒 −𝐴𝐴𝑑𝑑𝐾𝐾𝑒𝑒 0
𝐼𝐼 −𝐼𝐼 𝐼𝐼 −𝐼𝐼
0 𝐼𝐼 −𝐼𝐼 0
0 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

 

𝐂𝐂 = �
−𝐾𝐾𝑥𝑥 −𝐾𝐾𝑖𝑖 0 ⋯ 0
𝐼𝐼 0 0 ⋯ 0
0 0 𝐾𝐾𝑒𝑒 ⋯ 𝐴𝐴𝑑𝑑−1𝐾𝐾𝑒𝑒

� , 𝐃𝐃 = 𝟎𝟎. 

 
For robustness analysis purposes eqs. (39)-(40) may be 

written as 
 
𝐾𝐾𝐿𝐿(𝑧𝑧) = 𝐂𝐂(𝑧𝑧𝐈𝐈 − 𝐀𝐀)−1𝐁𝐁,     (41) 

 
so that, one may readily find the sensitivity and 

complementary sensitivity functions [25]: 
 
𝑆𝑆(𝑧𝑧) = �𝐈𝐈 + 𝐺𝐺(𝑧𝑧)𝐾𝐾𝐿𝐿(𝑧𝑧)�

−1;    (42) 
 

𝐶𝐶(𝑧𝑧) = 𝐺𝐺(𝑧𝑧)𝐾𝐾𝐿𝐿(𝑧𝑧)(𝐈𝐈+ 𝐺𝐺(𝑧𝑧)𝐾𝐾𝐿𝐿(𝑧𝑧))−1.  (43) 
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Figure 5. Proposed control scheme in a closed form.  
Source: The authors. 

 
 
The equivalent structure of the proposed controller is 

shown in Fig. 5. 
 

6.  Simulation case study 
 
The linear multivariable system considered in this section 

is a plant which exhibits stable, unstable and integrating 
modes. The plant has been previously studied in [20], whose 
transfer matrix is given by: 

 

�𝐘𝐘𝟏𝟏(𝑠𝑠)
𝐘𝐘𝟐𝟐(𝑠𝑠)� = �

1
𝑠𝑠−1

𝑒𝑒−0.5𝑠𝑠 0.5
𝑠𝑠+1

𝑒𝑒−0.7𝑠𝑠

0.1
10𝑠𝑠+1

𝑒𝑒−0.3𝑠𝑠 1
𝑠𝑠
𝑒𝑒−0.7𝑠𝑠

� �𝐔𝐔𝟏𝟏(𝑠𝑠)
𝐔𝐔𝟐𝟐(𝑠𝑠)�,   (44) 

 
where Y1(s) and Y2(s) are the Laplace transform of the 

outputs y1(t) and y2(t), respectively. This example is a very 
attractive multivariable plant because it includes integrating, 
unstable and stable transfer functions, as well as multiple 
dead-times. In addition, the minors dead-times are not all in 
the main diagonal, so that, this plant does not represent the 
more favorable dead-time system, which occurs when the 
minimal dead-time in each is the one presented in the main 
diagonal, as pointed out in [1]. In this case the control 
approach for MIMO systems proposed by [20] becomes a 
suitable control solution, successfully applied for this 
process. 

The system in eq. (44) has been discretized considering a 
zero-order hold and the sampling time Ts = 0.1 s, with 
discrete-time representation: 

 

�𝐘𝐘𝟏𝟏(𝑧𝑧)
𝐘𝐘𝟐𝟐(𝑧𝑧)� = �

0.10517
𝑧𝑧−1.105

𝑧𝑧−5 0.04758
𝑧𝑧−0.9048

𝑧𝑧−7
0.000995
𝑧𝑧−0.99

𝑧𝑧−3 0.1
𝑧𝑧−1

𝑧𝑧−7
� �𝐔𝐔𝟏𝟏(𝑧𝑧)
𝐔𝐔𝟐𝟐(𝑧𝑧)�.   (45) 

 
In this case Y1(z), Y2(z), U1(z) and U2(z) are the Z-

transform of the related time outputs and inputs. 
The plant exhibits four states with two outputs, which 

means two additional states related to the integral action, i.e., 
six states to be fed back and four states to be estimated. In a 
case of a pole placement approach one gets 10 poles to be 
assigned. Hence, in order to reduce design effort it has been 
considered to apply optimal state feedback control law 
(solution to the associated LQR problem), which has been set 
with: 

 
𝑅𝑅 = �30 0

0 4500�   and  𝑄𝑄 =
𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶𝑎𝑎 , 

 

Figure 6. MIMO example. 
Source: The authors. 

 
 
where R and Q are control and state matrices, 

respectively, and Ca = [C I] comes from the augmented 
model considered to include the integrator. State estimation 
applies a classical pole placement, which desired closed loop 
poles have been set to pdes = [0.9048 0.99 0.99 0.9]. Note that 
the poles in pdes are the stable poles of the model, however it 
replaces the unstable ones, z=1.105 and z=1, by the stable 
poles z=0.99 and z=0.9. Such tuning parameters lead to 

 
𝐾𝐾𝑥𝑥 = �1.2685   − 0.0075    0.2107   − 0.1110   

−0.0010    0.0144    0.0009    0.2182   � ; 
𝐾𝐾𝑖𝑖 = �−0.1556    0

0   − 0.0145�; 
 
and 

𝐾𝐾𝑒𝑒 = �0.2804         0    0.0108         0
0   − 0.0134         0    0.2392�

𝑇𝑇
. 

 
A step response simulation has been performed for both the 

proposed control method and the MIMO controller proposed by 
Garcia and Albertos [20], with tuning parameters therein. Results 
are shown in Fig. 6. The control method in [20] considers the 
design of a primary controller taken from a H-∞ problem, 
although a P/PID has been considered for this case. Additionally, 
a reference filter is included to avoid the undesirable effect of the 
zeros included by the controller. If a faster response is necessary 
the overall design has to be considered. Note that two transfer 
matrices have to be tuned: the reference filter and the primary 
controller. On the other hand, a faster or slower step response for 
the proposed controller can be achieved by simply modifying the 
main diagonal of the weighting matrix R. Decrease it for the 
former and increase it for the latter. Also, time response is 
considerably more decoupled (compare y1 outputs at about 40 
min) which makes the tuning of the weights almost independent 
(R11 for the output y1 and R22 for the output y2 ). So, tuning 
procedure is quite intuitive and simpler than that of the controller 
proposed by Garcia and Albertos [20]. 

 
7  Experimental case study 

 
Previous section presented the effectiveness of the control 

method proposed in this work through examples that include 
SISO and MIMO dead-time systems. In this section the control 
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strategy is implemented in an experimental system, consisting 
of a pilot plant of a Neonatal Incubator Care Unit (NICU). The 
main goal is to control both temperature and humidity of an 
inner dome what makes it an experimental MIMO set up. Such 
plant is attractive from the viewpoint of the control field 
because control of temperature and humidity is found in many 
industrial applications and a control strategy that works 
properly for the NICU system may be extended for other plants. 

The arrangement is a prototype unit assembled at Electrical 
Engineering Department of the Federal University of Ceará 
with two main parts: data processing unit and incubator unit. 

The data process unit consists of a desktop computer, where 
the code if the controller runs, and a Nidaq-USB6009 data 
acquisition card manufactured by National Instruments. 
Computer communicates through USB cable with the data 
acquisition card to manage analogue inputs and outputs to read 
data and apply voltage signals, accordingly. 

The incubator unit is a three stage equipment divided as 
follows. On top stage is a box-like acrylic made enclosed 
ambient, commonly referred to as dome, mounted over a plate 
with two main holes where the air flows in and out. The middle 
stage houses a heating resistor and a fan, for temperature control 
purposes. At the bottom one finds an ultrasonic humidifier 
which controls the inner humidity of the dome on top stage. Fig. 
7 presents a picture of the incubator unit described above. 

The temperature control works with a fan, that operates at 
constant speed, while the operation point of the heating resistor 
modify the inflow air temperature. For that, the power of such 
resistor is modified through a driving circuit whose command 
signal comes directly from the analogue output port of the 
Nidaq-USB6009 card. A similar connection is assembled for 
the ultrasonic humidifier, whose steam is driven through a 
separate tube for the dome. A schematic view of the incubator 
unit is shown in Fig. 8, with details as described above. Sensor 
readings are provided in digital words to a microcontroller 
which converts them to analogue voltage values, in order to 
allow connection with input port of the Nidaq-USB6009 card. 

The plant has been identified by applying non-linear 
optimization with constraints to a set of step responses for both 
temperature and humidity loops. Those steps were performed 
with nothing inside the dome to emulate any thermal charge. 
Therefore, the results show the ability to control temperature 
and humidity inside an ambient as a room. The resulting linear 
model is given by: 

 

 
 

Figure 7. Incubator unit prototype for the experimental case study. 
Source: The authors. 

 
 

 
Figure 8. Schematic diagram of the incubator unit prototype. 
Source: The authors. 
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All the time constants and dead-times are in minutes. The 

model given by eq. (49) has been discretized with Ts = 0.2 
min with a zero order hold to obtain the discrete-time transfer 
matrix: 
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The process presents a significant interaction between 

both loops and multiple delays, as indicates eqs. (49) - (50). 
Such characteristics make it an attractive plant to apply 
MIMO control strategies as the one proposed in this work. 

As performed for the MIMO example in section 6, we 
considered the associated LQR problem in order to find the 
optimal state feedback control law, which has been set with 

 
𝑅𝑅 = �40 0

0 40� and 𝑄𝑄 = 𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶𝑎𝑎 , 
 
where R and Q are control and state matrices, 

respectively, and Ca = [C I]. In this case, the estimator gain 
is not computed from the pole placement procedure, as it is 
considered the optimal estimation (Kalman filter) instead. 
Therefore, by applying the LQR problem together with the 
Kalman filter we consider the LQG approach as the primary 
controller. Robustness is improved by applying the well-
established loop transfer recovery (LTR) [8, 9]. The LTR 
parameters are as follows: state covariance Rw = q2BBT, q 
= 1 and output covariance Rv = I, which lead to 
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−0.0404   − 0.0201    0.0495    0.5931   � ; 
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 0  − 0.1521�; 

 
and 
 

𝐾𝐾𝑒𝑒 = � 0.0401    0.0078   − 0.0102   − 0.0069
−0.0035   − 0.0013    0.0043    0.0035 �

𝑇𝑇
. 

 
The tuning parameters were chosen in order to guarantee set-

point to be tracked within 2% error in less than 30 minutes for 
humidity and 50 minutes for temperature. In addition, it is desirable 
maximum overshoot of 5% for humidity and no overshoot 
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Figure 9. Frequency response for the incubator prototype model. 
Source: The authors. 

 
 

 
Figure 10. Frequency response for the incubator prototype model. 
Source: The authors. 

 
 
for temperature control loops. It is also usual to consider the 

trade-off between robustness and performance behavior. 
Related to this matter, the graphical design procedure named 
loop shaping is normally found for optimal controllers (see for 
instance [25,26]), whose graphs for this case study are shown 
in Fig. 9. This figure exhibits the graphs of the maximum 
singular value of the complementary sensitivity function 
𝜎𝜎�(Csens), the inverse of the maximum singular value of the 
sensitivity function 1/𝜎𝜎�(Ssens) and the open loop GK 
maximum and minimum singular values, 𝜎𝜎�(GK) and σ(GK), 
respectively. The analysis is taken at the frequency range from 
ω = 10−3 rad/s up to ω = π/Ts rad/s, and it is desirable to keep 
𝜎𝜎�(𝐺𝐺𝐾𝐾) and σ(GK) within 𝜎𝜎�(Csens) and 1/𝜎𝜎�(Ssens) bounds for 
low and high frequencies, respectively [25]. 

For this experiment, desired references have been set as 
10% and 4°C above humidity and temperature of the room, 
respectively. Fig. 10 shows the step response for both 
simulation and real step response for a 200 min of total time. 
Note that the proposed controller successfully track 
references for both variables and guarantees the design 

specifications (settling time and overshoot, as mentioned 
earlier). Also, control signal related to both manipulated 
variables exhibits a smooth behavior, meaning that the 
additive noise is not fed back to the actuators. 

 
8.  Conclusions 

 
This paper presents a control method which combines a 

predictor with a state observer, in order to compose a 
predictor-observer. The derived structure is able to predict 
the states of the system d steps ahead in order to compensate 
the dead time, so that, a state feedback control law can be 
obtained for the delay-free system. Simulation examples for 
SISO systems compare the proposed approach with SFSP 
recently proposed. For these simulations robustness graphs 
show the robustness improvement of the proposed method 
compared with the SFSP controller. A great advantage of the 
proposed control strategy is that it might be applied for both 
SISO and MIMO systems such that proposed structure does 
not have to be modified if the order of the model is. 
Additionally, the experimental MIMO system considered 
shows the practical aspect of the proposed controller. 
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