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Abstract 
Robustness of process capability measurements is a very important matter in statistical quality control. In this paper, two new classes of 
capability measurements are studied as robust mechanisms to detect the influence of factors that may cause large departures from the 
process’ engineering specifications. The behavior of the new indices was analyzed by comparing their performance to other capability 
measures that have been widely studied in literature. The paper aims to investigate the robustness of the new capability ratios under the 
presence of outliers and a lack of normality. For this purpose, bootstrap techniques were applied to detect the true potential capability of a 
process via statistical inference methods. The accuracies of the proposed indices are discussed by means of numerical results from a real 
data example. 
 
Keywords: Process capability ratio, robust statistics, bootstrap hypothesis testing, bootstrap confidence intervals. 

 
 

Nueva propuesta de índices de capacidad robustos para el control de 
la calidad 

 
Resumen 
En este trabajo, se proponen dos nuevos índices de capacidad robustos para detectar la influencia de los factores que pueden causar grandes 
desviaciones de las especificaciones técnicas del proceso. El comportamiento de estos nuevos índices se analizó mediante la comparación 
de su rendimiento con respecto a otras medidas de capacidad ampliamente estudiados en la literatura. El trabajo tiene como objetivo 
investigar la robustez de estos nuevos índices de capacidad bajo la presencia de valores extremos y de falta de normalidad. Para este 
propósito, se aplicaron técnicas de remuestreo Bootstrap para detectar la verdadera capacidad potencial de un proceso a través de los 
métodos de inferencia estadística. La precisión de los índices propuestos es discutida por medio de resultados numéricos con un ejemplo 
de datos reales. 
 
Palabras clave: índices de capacidad; estadística robusta, contraste de hipótesis bootstrap, intervalos de confianza bootstrap. 

 
 
 

1.  Introduction 
 
A process capability ratio (PCR) is a numerical score that 

helps the manufacturers to know whether the output of a 
process meets the engineering specifications. Large values of 
the ratio indicate that the current process is capable of 
producing items that meet or exceed customer requirements. 
Unfortunately, traditional assumptions of the data, such as 
normality or independence are often violated in many real 
situations. A common scenario, in which the assumptions of 
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normality or independent and identically distributed data 
(i.i.d.) does not hold, is, for example, when the data are 
autocorrelated or when they belong to non-centered and 
skewed distributions. Specifically, if the assumption of 
normality is violated, it could then be very difficult, or even 
impossible, to obtain closed expressions for the probability 
distribution of the PCR estimator. This means that, in many 
cases, it is not possible to derive exact confidence intervals 
for the estimates of process capability. As a consequence of 
this, capability estimates may be far away from the true 
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parameters of interest, and manufacturers could, therefore, be 
making the wrong decisions about the quality management 
of the process.  

Many authors have studied different estimators for 
process capability under various distributional settings. 
Recent advances in inferential analysis applied to quality 
control techniques have motivated more theoretical research 
into the distribution theory of estimated PCR (see, for 
instance, the works by Chou and Owen [1], Clements [2], 
Pearn et al. [3], Ebadi and Shahriari [4], Kotz and Johnson 
[5], and Chien-Wei et al. [6]). The last two presented an 
exhaustive discussion on a number of capability indices, their 
sampling properties and practical applications. Moreover, 
there are some studies that address capacity indexes applied 
to autocorrelated data, such as Pan et al.’s [7] work that is 
applied to environmental features. Additionally, in terms of 
the particular case that deals with non-normal data and 
processes with unilateral specifications, extensive 
discussions can be found in the work undertaken by the 
following authors: Somerville and Montgomery [8], Kotz 
and Lovelace [9], Shore [10], Tang and Than [11], Chang et 
al. [12], Pearn and Chen [13], and Kotz and Johnson [14]. 
Most of the literature devoted to the study of process 
capability analysis frequently considers four indices, Cp, Cpk, 
Cpm, Cpmk, which are defined as:  

 
    (1) 

 

    (2) 

 

     (3) 

 

  (4) 

 
Where USL and LSL are the upper and the lower 

specification limits for the variations in the process, is the 
process mean,   is the process standard deviation, is 
some target value of interest in the process, d is the half of 
the spread between the upper and lower engineering 
specifications, and  m is the midpoint between the 
specification limits. 

It is well known that indices Cp and Cpm are improved 
when the process data comes from symmetric distributions, 
e.g. the normal one. These are used to estimate process 
capability when two-sided tolerance limits are of concern. In 
the case of one-sided specifications, capability indices Cpk 
and Cpmk are preferred to obtain the desired process capability 
estimates [15, 16]. The Cpmk index deals with the departure of 
the process mean μ from the target value τ. It does this faster 
than the indices, Cp, Cpk and Cpm while remaining sensitive to 
changes in the total deviation of the process (see the 

expression in equation (4)). A handicap of most capability 
measures is related to their efficiency, which strongly 
depends on the appropriate estimation of the process 
variability. They are also influenced by the shape of the 
underlying distribution function that characterizes it (see, for 
instance, the papers by Heavlin [17], Chou and Owen [1], 
Pearn et al. [3] and Borges and Ho [18] for a more theoretical 
discussion). 

The present paper is concerned with the estimation of 
process capability measurement when the data are possibly 
affected by contamination, hereafter the outliers, which may 
be an alert from an out-of-control process. A real data 
example is presented to compare the performance of the new 
capability ratios relative to the standard indices (1) to (4), that 
are under various schemes of distributions, sample sizes, and 
percentages of contamination of data. 

The analysis consisted of a double inferential procedure. 
Bootstrap techniques for statistical inference were used to 
study the degree of potential capability of processes 
generated by distributions that have been affected by 
different outliers in different percentages. Bootstrap 
techniques for statistical inferences were used to study the 
degree of potential capability of processes that were 
generated by distributions affected by the different 
percentage of outliers. Inferential methods consisted of 
testing a standard null hypothesis in the context of process 
capability analysis. Moreover, approximately 95 percent 
bootstrap confidence intervals were obtained for the indices. 

The present study is organized as follows: in section 2, 
definitions and mathematical formulations to compute the 
new capability indices are given. In section 3, theoretical 
basis of the bootstrap approach for statistical inference are 
introduced in a process capability analysis context. Section 4 
is devoted to results obtained by applying the indices and 
methods described in section 3. Finally, numerical results and 
concluding remarks are discussed in section 5. 

 
2.  Robust process capability ratios 

 
2.1.  Robust capability measures for quality process 

 
In a broad, but non theoretical sense, since outliers are 

data that commonly come from distributions different from 
the main set of data, it could be thought that the presence of 
outliers could be evidence that the process is out of statistical 
control. In that sense, there are a wide range of mathematical 
methods to deal with the problem of outliers. All these 
methods are connected to robust statistics [19]. Robust 
statistics are used in many applications of statistical process 
control analysis. Abu-Shawiesh and Abdullah [20] studied 
control limits for control charts by using robust estimates of 
process parameters (location, scale, shape, etc.). In Grznar et 
al.’s paper [21], the authors present a routine for outlier 
detection based on the smoothing methods. Kocherlakota and 
Kocherlakota [22] discuss different methods to obtain 
confidence intervals for PCR based on robust estimates under 
non normal data. Prasad and Bramorski [23] studied the 
interactions between outliers and correlation structures as 
unknown sources of variability under the scope of time 
series. Also, Yeh and Bhattacharya [24] proposed an index 
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based on the idea of estimating non-conforming proportions. 
They also discussed a methodology to obtain bootstrap 
confidence intervals. 

In the following subsections, an ordered sample of n 
independent identically distributed (i.i.d.) random variables 
(r.v.) with the same distribution of the process X is 
represented by 𝑋𝑋1𝑛𝑛, … ,𝑋𝑋1𝑛𝑛, and a corresponding realization 
of n items taken from X is denoted by x1n, … , x1n. Some 
robust estimators that will be used in the rest of this paper are 
the standard deviation, σ, the sample range, R, the median, 
M, and the first and third quantiles, 𝑄𝑄1 and 𝑄𝑄3. 

 
2.2.  Definition of Cpk and Cprk indices 

 
The introduction of these new process capability 

estimates is justified since there are systems characterized by 
the existence of sources of deviations that make large 
departures from the engineering specifications. We assume 
that such sources of deviations take place due to the presence 
of outliers in the data. 

The first class of ratio that we introduce, Cpr, is based on 
the idea of the outlier detection criteria that is defined by the 
boxplot charts. It is expected that Cpr will be robust for 
detecting outliers when it is used to estimate the process 
capability of two-sided specifications systems. The second 
class of ratio, denoted by Cprk, was developed to estimate 
process capability for unilateral (one-sided) specifications in 
a similar way to that of the equations (2) and (4). Cpr measure 
the potential process capability while Cprk estimate the real 
capability of a process. 

We define the new indices Cpr and Cprk as: 
 

     (5) 

 
     (6) 

 
      (7) 

 

    (8) 

 
We stress that 𝜆𝜆𝑈𝑈 and 𝜆𝜆𝐿𝐿 are, respectively, two robust 

measures for the upper and the lower bounds of an in-control 
process, defined as:  

 
    (9) 

 
and     (10) 

 
Where ,  and  

is the sample interquartile range. Thus, the quantity  
represents a new robust measure for the process width. 

 
Figure 1. Box-plot chart.  
Source: The authors. 

 
 
Fig. 1 shows a basic representation of a univariate process 

distribution based on the idea of box-plot charts, i.e. based on 
a robust definition for outliers into the data set. Thus, if we 
denote the domain of the process by 𝐷𝐷𝑥𝑥 ⊆ ℝ , then any point 
belonging to 𝑂𝑂𝑥𝑥, where 𝑂𝑂𝑥𝑥 is defined as the set 𝑂𝑂𝑥𝑥 =
�𝑥𝑥 ∈ 𝐷𝐷𝑥𝑥: 𝑥𝑥 < 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∨  𝑥𝑥 > 𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢� , will represent an outlier 
for the process X. Let us analyze situations represented in A, 
B or C, and A' , B' or C'. Under the new approach, three 
elemental criteria can be used to construct process capability 
measures based on the (natural) process variability 
estimation. The setting can be defined as follows: 

i) For bilateral specifications, the process width is 
estimated by: 

 

𝜆𝜆𝑈𝑈 − 𝜆𝜆𝐿𝐿� =

⎩
⎪
⎨

⎪
⎧𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑖𝑖𝑖𝑖(𝐴𝐴 ∨ 𝐵𝐵) ∧ (𝐴𝐴′ ∨ 𝐵𝐵′) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑥𝑥𝑛𝑛:𝑛𝑛 − 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑖𝑖𝑖𝑖(𝐴𝐴 ∨ 𝐵𝐵) ∧ 𝐶𝐶′              𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑥𝑥1:𝑛𝑛, 𝑖𝑖𝑖𝑖 𝐶𝐶 ∧ (𝐴𝐴′ ∨ 𝐵𝐵′)            𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

𝑅𝑅� ,         𝑖𝑖𝑖𝑖 𝐶𝐶 ∧ 𝐶𝐶′                         𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 (11) 

 
ii) For one upper specification, the process width is 

estimated by: 
 

𝜆𝜆𝑈𝑈 − 𝑀𝑀� = �
𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑀𝑀, 𝑖𝑖𝑖𝑖 (𝐴𝐴′ ∨ 𝐵𝐵′)    𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑥𝑥𝑛𝑛:𝑛𝑛 − 𝑀𝑀, 𝑖𝑖𝑖𝑖 𝐶𝐶′                 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

   (12) 

 
iii) For one lower specification, the process width is 

estimated by: 
 

𝑀𝑀 − 𝜆𝜆𝐿𝐿� = �𝑀𝑀 − 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑖𝑖𝑖𝑖 (𝐴𝐴 ∧ 𝐵𝐵)      𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑀𝑀 − 𝑥𝑥1:𝑛𝑛, 𝑖𝑖𝑖𝑖 𝐶𝐶                 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜    (13) 

 
3.  Bootstrap analysis 

 
3.1.  Bootstrap based inference methods 

 
In recent years, due to the analytical advances in industry 

control, not only point estimation but also hypothesis testing 
and interval estimation, is often obligatory for the producer 
to demonstrate process capability as part of the contract. In 
that sense, an important part of the analysis included in the 
present paper is based on the behavior results of hypothesis 
testing and confidence intervals for the indices and , 
relative to the indices (1) to (4), that are obtained via 
bootstrap techniques. Informally, bootstrap methods are 
based on sampling with replacement following the next idea. 
Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛, a sequence of n i.i.d. r.v. with the same 
distribution of the process X, and  𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 a realization of 
size n; then a uniformly distributed random variable 𝑋𝑋∗ 
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taking values on the set {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} is defined by the 
probability distribution 

 
 𝑃𝑃(𝑋𝑋∗ = 𝑥𝑥∗) = 1

𝑛𝑛
, 𝑖𝑖 = 1, … ,𝑛𝑛    (14). 

 
Thus, a bootstrap sample, denoted by {𝑥𝑥1∗, … , 𝑥𝑥𝑛𝑛∗}, is a 

sample drawn with replacement from the original sample 
{𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} by using the law of probability distribution 
defined in (14). In the next sections we describe the methods 
used in this paper in the context of statistical inference for 
PCR.  

 
3.2.  Hypothesis testing 

 
From industry experience, it is frequently necessary to 

demonstrate that the capability ratio C  meets or exceeds a 
particular target value, say 

0C . This may be formulated as a 
hypothesis testing problem, i.e.  (Process is not 
capable) and   (Process is potentially capable). We 
would like to test  against  in the case of the indices 
and  relative to the indices (1) to (4), in different 
scenarios. Several authors have investigated this test (see for 
instance Kane [25], Montgomery [26], Lin and Pearn [27], 
Shu and Lu [28], Mathew et al. [29] and Albing [30]). In all 
mentioned works, the authors have dealt with this problem 
by finding parametric distributions for test statistics under the 
null hypothesis. Regarding the above, we have avoided 
complicated mathematical processes to derive the null 
distribution of any pivotal test statistic based on the and 

 indices. Thus, we have proposed a reasonable 
alternative based on bootstrap techniques to test the null 
hypothesis . The approach implemented in this paper is 
based on the ideas discussed by Hall and Wilson [31] and 
Becher et al. [32]. The method is defined as follows. 

Let us denote  as the value of the process 
capability ratio of the process X, with  representing a non-
stochastic set of intrinsic parameters of the quality process X, 
and u representing one of the following classes of indices: 
, , , ,  and . In what follows, we shall 
consider that  contains (non-identical) subsets of intrinsic 
parameters such as: , , , , , , , , , and 

, where , and  are the 
upper and lower proportions of non-conformity detected in 
the process, respectively. The corresponding sample 
estimator and bootstrap estimator of the index  
are 𝐶𝐶𝑢𝑢(𝑥𝑥1, …, 𝑥𝑥𝑛𝑛�𝜃𝜃�� = 𝐶̂𝐶𝑢𝑢 and 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢 = (𝑥𝑥1𝑏𝑏∗ , … , 𝑥𝑥𝑛𝑛𝑛𝑛∗  �𝜃𝜃�∗� = 𝐶̂𝐶𝑢𝑢𝑏𝑏∗ , 
where sub index b represents the b-th bootstrap replicate 
(𝑏𝑏 = 1, … ,𝐵𝐵). 

The study of the probability distribution of the estimator 
𝐶̂𝐶𝑝𝑝𝑝𝑝 is equivalent to finding the distribution of the inverse of 
a random variable. As it can be seen from the equations (11) 
to (13), this random variable contains a highly nonlinear 
transformation of order statistics. To solve this problem, long 
and tedious  algebra are necessary, as well as the application 
of asymptotic results from the distribution theory of order 

statistics. This is outside the scope of this paper and has been 
left to future work.  

A common alternative to constructing useful pivotal 
statistics, avoiding such a theoretical analysis, is based on the 
idea of using bootstrap techniques. Hall and Wilson [31] 
proposed two guidelines to test hypotheses for the population 
mean based on percentiles of the null distribution of a 
bootstrap test statistic. Due to every u-th class of capability, 
ratio 𝐶̂𝐶𝑢𝑢 is an univariate real-valued function of the sample 
𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. We can adapt the first guideline in the above 
mentioned paper to test  against 

 for a specific value . The implementation 
of the test is synthesized as follows: 

i) Null statistic: Computing the ratio  with the 
original sample 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, a natural null statistic  is given 
by 

 
 𝑇𝑇0 = 𝐶𝐶𝑢𝑢(𝑥𝑥1,…,𝑥𝑥𝑛𝑛�𝜃𝜃��

𝜎𝜎�𝑢𝑢∗
= 𝐶̂𝐶𝑢𝑢−𝐶𝐶0

𝜎𝜎�𝑢𝑢∗
     (15),  

 
where 𝜎𝜎�𝑢𝑢∗ is a suitable estimator of the squared root 

of 𝑣𝑣𝑣𝑣𝑣𝑣�𝐶̂𝐶𝑢𝑢 |𝑥𝑥1,…,𝑥𝑥𝑛𝑛 �. In the present work, we propose to use a 
large enough number B0 of bootstrap samples of�𝑥𝑥1,…,𝑥𝑥𝑛𝑛�  to 
compute 

 

 𝜎𝜎�𝑢𝑢∗ = � 1
𝐵𝐵0−1

∑ �𝐶̂𝐶𝑢𝑢𝑢𝑢∗ − 𝐶̂𝐶𝑢𝑢∗����
2𝐵𝐵0

𝑏𝑏=1 �
1/2

   (16),  
 
where 𝐶̂𝐶𝑢𝑢∗��� = 1

𝐵𝐵0
∑ 𝐶̂𝐶𝑢𝑢𝑢𝑢∗
𝐵𝐵0
𝑏𝑏=1  is the bootstrap estimator 

of 𝐸𝐸�𝐶̂𝐶𝑢𝑢 |𝑥𝑥1,…,𝑥𝑥𝑛𝑛 �. It can be proved that 𝐶̂𝐶𝑢𝑢∗��� → 𝐸𝐸�𝐶̂𝐶𝑢𝑢 |𝑥𝑥1,…,𝑥𝑥𝑛𝑛 � 
with probability one [31,33]. 

ii) Test statistic: The statistic  is computed with the 
b-th resample 𝑥𝑥1𝑏𝑏∗ , … , 𝑥𝑥𝑛𝑛𝑛𝑛∗ . Thus, the b-th bootstrap test 
statistic is obtained by computing 

 
 𝑇𝑇�𝑢𝑢𝑢𝑢∗ = 𝐶𝐶𝑢𝑢(𝑥𝑥1𝑏𝑏

∗ ,…,𝑥𝑥𝑛𝑛𝑛𝑛
∗ �𝜃𝜃�𝑢𝑢𝑢𝑢

∗ �−𝐶̂𝐶𝑢𝑢
𝜎𝜎�𝑢𝑢𝑢𝑢
∗ = 𝐶̂𝐶𝑢𝑢𝑢𝑢

∗ −𝐶̂𝐶𝑢𝑢
𝜎𝜎�𝑢𝑢𝑢𝑢
∗     (17) 

 
for 𝑏𝑏 =  1, … ,𝐵𝐵. Here, 𝜎𝜎�𝑢𝑢∗ is the bootstrap estimator of the 

squared root of 𝑣𝑣𝑣𝑣𝑣𝑣�𝐶̂𝐶𝑢𝑢∗�, which is obtained in the same way as 
 

𝑣𝑣𝑣𝑣𝑣𝑣�𝐶̂𝐶𝑢𝑢 |𝑥𝑥1,…,𝑥𝑥𝑛𝑛 �,i.e., 𝜎𝜎�𝑢𝑢∗ = � 1
𝐵𝐵−1

∑ �𝐶̂𝐶𝑢𝑢𝑢𝑢∗ − 𝐶̂𝐶𝑢𝑢∗����
2

𝐵𝐵
𝑏𝑏=1 �

1/2
with 𝐶̂𝐶𝑢𝑢∗��� =

1
𝐵𝐵0
∑ 𝐶̂𝐶𝑢𝑢𝑢𝑢∗𝐵𝐵
𝑏𝑏=1  
Informally, the basic idea of the expression (17) is based 

on the assumption that the distribution of the statistic 𝑇𝑇�𝑢𝑢∗ 
accurately mimics the distribution of 𝑇𝑇�𝑢𝑢0. Thus, the decision 
rule for the test at the b replication is to rejec𝐻𝐻0t  if  𝑇𝑇�𝑢𝑢𝑢𝑢∗ > 𝑇𝑇�𝑢𝑢0  
or not to reject 𝐻𝐻0 if  𝑇𝑇�𝑢𝑢𝑢𝑢∗ ≤ 𝑇𝑇�𝑢𝑢0. 

iii) P value: Se𝛿𝛿𝑏𝑏∗ = 𝐼𝐼�𝑇𝑇�∗ > 𝑇𝑇�0 �𝐻𝐻0�t, where the probability 
or p-value in the expression (17) is computed by: 

 
𝑝̂𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣∗ = 1+∑ 𝛿𝛿𝑏𝑏

∗𝐵𝐵
𝑏𝑏=1
1+𝐵𝐵

      (18) 
 

3.3.  Confidence intervals 
 
Bootstrap methods to construct confidence intervals for 

PCR, have been widely studied by several authors, e.g. 

prC

prkC

prC

prkC

0H
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Franklin and Wasserman [34,35], Choi et al. [36], Tong and 
Chen [37], Yeh and Bhattacharya [24], Balamurali and 
Kalyanasundaram [38], Mathew et al. [29], and Wang et al. 
[39] among others. The conventional parametric approach 
would suggest that the probability distribution of capability 
ratios 𝐶̂𝐶𝑝𝑝𝑝𝑝 and 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝need to be investigated, but due to the 
same reasons explained in section 3.2, from a practical point 
of view, it makes more sense to try to approximate the 
distribution of every class of ratio, 𝐶𝐶𝑢𝑢, via bootstrap 
techniques. In this paper, we have used the method of bias 
corrected percentile bootstrap (BCPB). A complete 
justification of this method is in Efron [40]. 

The method is summarized as follows: firstly, using the 
ordered distribution of 𝐶̂𝐶𝑢𝑢1∗ ,…,𝐶̂𝐶𝑢𝑢𝑢𝑢∗ , a significance level is 
fixed, α , and then the following quantities are calculated: 
𝑞𝑞0 = 𝑃𝑃�𝐶̂𝐶𝑢𝑢∗ < 𝐶𝐶𝑢𝑢�, , 

, where  is the inverse of the standard 
normal probability distribution and  is the 

th-quantile of the standard normal distribution. Then, 

using a large number  of bootstrap resamples, a [(1 −
𝛼𝛼) × 100] percent BCBP confidence interval for 𝐶𝐶𝑢𝑢,  is given 
by �𝐶̂𝐶𝑢𝑢[𝑞𝑞𝐿𝐿×𝐵𝐵]

∗ , 𝐶̂𝐶𝑢𝑢[𝑞𝑞𝑈𝑈×𝐵𝐵]
∗ �. 

Efron and Tibshirani [41] indicated that a rough minimum 
of 1000 bootstrap samples is usually sufficient to compute 
reasonably accurate confidence interval estimates. 
Nevertheless, numerical results included in the present paper 
have been obtained by using B=10000 bootstrap samples.  

 
4.  Numerical results 

 
The following subsections presents the results corresponding 

to the application of the proposed capability indices (and their 
quality assessment methodology) to the real data. 

 
4.1.  Real data example 

 
For the purpose of investigating whether outliers can 

affect decisions in a quality management process, in this 
section we present numerical results obtained from the 
application of the new approach to a real data application. 

Original experimental data were collected from a study of 
150 test steel pipes, which were analyzed in the Science and 
Engineering of Materials labs at the University of A Coruña 
in Spain. Originally, the study consisted of developing 
statistical quality control measurements on traction-
resistance by using the European norm UNE-EN 10002-140. 
Previous analyses of goodness of fit confirmed that the data 
were normally distributed with a 516 mean and standard 
deviation of 20 for 95% of confidence level. Fig. 2, shows a 
histogram describing the real data set. 

Fig. 2 shows that the data are centered to its mean value. In 
this case, the sample mean is very close to the sample median, 
516.3 and 517.6 respectively, and the sample standard deviation 
is 20.81. Moreover, the histogram also shows that the data set 
is a little skewed to the left: the skewness coefficient is -0.1641, 
whereas the kurtosis excess is 3.0112. 

 
Figure 2. Histogram for real data set.  
Source: The authors. 

 
 
In terms of capability, several indices were computed to 

characterize the process X and for which the estimates of LSL 
and USL are 453.87 and 578.73 respectively. These values 
remained fixed during the whole bootstrap analysis and their 
results will be discussed in subsection 4.2. 

For the first classical approach, the estimate 𝐶𝐶𝑝𝑝 =
1.00007. This value tells us that the process seems to be 
potentially possible under the 3σ criteria. The other classical 
ratios showed little differences with respect to the 𝐶𝐶𝑝𝑝 
measure. In fact, the estimates were 𝐶𝐶�𝑝𝑝𝑝𝑝 =  0.99936, 𝐶𝐶𝑝𝑝𝑝𝑝 =
0.99779,  and 𝐶𝐶�𝑝𝑝𝑝𝑝𝑝𝑝  =  0.99715, which suggest that process 
is not possible. In this case, 𝐶𝐶�𝑝𝑝𝑝𝑝 and 𝐶𝐶�𝑝𝑝𝑝𝑝𝑝𝑝 were computed by 
choosing the value 𝜏𝜏 =  𝑀𝑀�  (target = median). Finally, the 
proposed measures, 𝐶𝐶�𝑝𝑝𝑝𝑝 and 𝐶𝐶�𝑝𝑝𝑝𝑝𝑝𝑝  suggest the same 
conclusion: the 𝐶𝐶�𝑝𝑝 index, i.e., the process is potentially 
possible, and 𝐶𝐶�𝑝𝑝𝑝𝑝 = 1.20012  and 𝐶𝐶�𝑝𝑝𝑝𝑝𝑝𝑝 = 1.19545. 

 
4.2.  Bootstrap-based inference results 

 
In this section, we present the results obtained by the 

bootstrap based statistical inference approach. The results 
collected in the following tables were obtained after varying 
the sample size and also the percentage of outliers in the 
original experimental data. After having applied the 
goodness of fit tests for contaminated data, we conclude that 
both 5 percent and 10 percent of outliers resulted in lack of 
normality for the original data. This fact added a third source 
of lack of robustness for all capability measures. 

Table 1 shows results of the bootstrap hypothesis testing 
that was described in section 3.1. Firstly, allow us to draw 
your attention to the columns in Table 1. It can be seen that 
in case of normally distributed data (0% outliers), p-values 
seem to decrease as the sample size increases for all indices 
even though, as it was expected, p-values are less than the  
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Table 1. 
Bootstrap p-value obtained with approximately a 95% confidence level. 

Sample 
size Outliers Cp Cpk Cpm Cpmk Cpr Cprk 

 0% 0.0079 0.0059 0.0479 0.0069 0.0100 0.0026 
n =100 5% 0.0095 0.0071 0.8036 0.7524 0.1130 0.0651 

 10% 0.4819 0.3857 0.9999 0.9993 0.2442 0.0689 
 0% 0.0001 0.0001 0.0064 0.0051 0.0020 0.0013 

n =150 5% 0.0085 0.0059 0.7859 0.7414 0.0060 0.2300 
 10% 0.4918 0.4009 0.9989 0.9995 0.1541 0.3560 
 0% 0.0001 0.0001 0.0055 0.0028 0.0002 0.0001 

n =300 5% 0.0134 0.0103 0.9948 0.9826 0.0159 0.0612 
 10% 0.4957 0.4148 0.9983 0.9981 0.0529 0.0597 

Source: The authors. 
 
 

0.05 nominal significance level. Thus, in this experiment, the 
tests do not fail by rejecting the null hypothesis.  

When data significantly departs from normality (5% and 
10% outliers), some differences can be observed in the 
performance behavior of indices 𝐶̂𝐶𝑝𝑝, 𝐶̂𝐶𝑝𝑝𝑝𝑝 and 𝐶̂𝐶𝑝𝑝𝑝𝑝, relative to 
the indices 𝐶̂𝐶𝑝𝑝𝑝𝑝, 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝. 

For a moderate level of contamination of data (5% 
outliers), indices 𝐶̂𝐶𝑝𝑝, 𝐶̂𝐶𝑝𝑝𝑝𝑝 do not reject the null hypothesis. 
However, it seems that the test tends are not rejected when 
sample size increase. For a higher level of outliers (10% 
outliers), results show that all indices behave as expected and 
they gain in robustness. In fact, this happens because they do 
not reject H0, no matter the sample size. 

Results for indices 𝐶̂𝐶𝑝𝑝𝑝𝑝, 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 show that these capability 
measures were more robust than the other indices. These 
measurements do not fail by rejecting H0. 

Finally, results concerning the proposed indices 𝐶̂𝐶𝑝𝑝𝑝𝑝 and 
𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 show some evidence that the indices are robust 
capability measures. This is because these indices do not 
reject the null hypothesis when data are completely out-of-
control. 

Table 2 shows results on approximately 95 percent 
confidence intervals obtained via the bias corrected 
percentile bootstrap method. It can be seen that some results 
are somewhat surprising, relative to the results collected in 
Table 1. 

Firstly, for normal distributed data (0% outliers), natural 
intuition tells us that confidence intervals should contain the 
hypothetical value C0 = 1 when sample sizes increase. As it 
can be seen in Table 2, the results of our experiment show 
that the proposed indices 𝐶̂𝐶𝑝𝑝𝑝𝑝 and 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 showed the expected 
behavior when the sample size was greater than or equal to 
300. This result suggests that these two new classes of 
process capability measurements have robust properties in 
normal conditions. 

Nevertheless, when there are non-normal conditions (5% 
and 10% outliers), the 95% confidence intervals for the 
proposed indices are surprisingly unified (Cpr and Cprk lies 
within the confidence interval). 

For both, moderate and highly contaminated data (5% and 
10% outliers), upper limits of obtained confidence intervals 
tend to be less than 1 (Cp, Cpk, Cpm and Cpmk are out of the 
interval). This fact allows to consider that classical measures 
𝐶̂𝐶𝑟𝑟  and 𝐶̂𝐶𝑝𝑝𝑝𝑝 show a better behavior when sample size increase 
(n >100). 

Table 2.  
Approximate 95% bias of corrected percentile bootstrap confidence 
intervals. 

  0% outliers 5% outliers 10% outliers 
Sample  

size                 
Capability  

ratio 
Lower  

lim. 
Upper 
 lim. 

Lower 
 lim. 

Upper 
 lim. 

Lower  
lim. 

Upper 
 lim. 

 
     n 
=100 

 
 

Cp 0.8844 1.1674 0.8002 1.2531 0.8539 1.1090 
Cpk 0.8698 1.1645 0.8139 1.2290 0.8439 1.1084 
Cpm 0.7929 

 
1.0335 

 
0.8484 

 
0.9544 

 
0.3954 

 
0.7033 

 
Cpmk 0.7927 0.9741 0.8502 0.8965 0.3338 0.6845 
Cpr 1.0836 1.2034 0.7618 1.2612 0.7511 1.2781 
Cprk 1.0261 1.2127 0.7436 1.2788 0.7107 1.2942 

 Cp 0.9047 1.1338 0.8927 1.1390 0.6556 0.9425 
 Cpk 0.8935 1.1280 0.8931 1.1241 0.6235 0.9186 

n =150 Cpm 
 

0.7930 
 

0.9708 
 

0.7862 
 

0.9211 
 

0.5983 
 

0.7659 
 

 Cpmk 0.7937 0.9246 0.7927 0.9110 0.5701 0.7458 
 Cpr 1.0836 1.2062 0.8217 1.2289 0.9452 1.3784 
 Cprk 1.0264 1.2146 0.8052 1.2383 0.9047 1.3477 
 Cp 0.6556 0.9425 0.4605 0.6853 0.3850 0.5813 
 Cpk 0.6235 0.9186 0.4226 0.6708 0.3576 0.5689 
 Cpm 0.5983 0.7659 0.4181 0.6048 0.3615 0.5302 

n =300 Cpmk 
 0.5701 0.7458 0.3796 0.5958 0.3311 0.5182 

 Cpr 0.9452 1.3784 0.9738 1.3352 0.9109 1.2466 
 Cprk 0.9047 1.3477 0.9738 1.3352 0.8747 1.2369 

Source: The authors. 
 
 
Finally, 𝐶̂𝐶𝑝𝑝𝑝𝑝 and 𝐶̂𝐶𝑝𝑝𝑝𝑝𝑝𝑝 indices can be seen to be more 

conservative than the other indices, no matter the sample size. 
These two measurements suggest that when data are not 
normal the process is not possible. 

Taking the results into account, the proposed robust 
indices could be applied in a wide range of study cases, e.g. 
energy efficiency evaluation, academic evaluation, or the 
assessment of technology and innovation in companies [42-
46]. 

 
5.  Conclusions 

 
In this paper, two classes of capability measurements 

inspired by the idea of robustness derived from the theory of 
construction box-plot charts have been studied. These new 
measurements were formulated by defining two new classes 
of robust process capability ratios that were then compared 
with traditional ratios in the literature, under several 
experimental schemes. 

Due to the difficulty of obtaining the probability 
distribution of the new capability ratios, bootstrap methods 
were applied to study the robustness of the indices via the 
statistical inference approach. Thus, bootstrap hypothesis 
testing and bootstrap confidence intervals were used to test 
and estimate the true level of capability of a quality process. 

The bootstrap experimental analysis was implemented by 
using a set of laboratory data that came from the analysis of 
the traction-resistance of steel pipes by using the European 
norm UNE-EN 10002-1 at the University of A Coruña, 
Spain. 

The inference based results showed that the proposed 
capability measurements were comparable with the 
traditional process capability ratios. Comparative analyses 
suggested that the new ratios are robust measures to estimate 
the true level of process capability under normality. 
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Moreover, the new capability ratios were shown to be less 
conservative than some traditional ratios under the presence 
of outliers; this produced a moderate lack of normality that 
seems to improve when increasing the sample size. 
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