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INTRODUCTION

We study here the existence of c.hords with positive length which may be slided along
a curve in R2.

R. Fenn has stuclied this problem in piecewise analytic simple closed curves in R 2 [F]
and has proved for such curves that there exists a chord with positive length which can be
slided in a non trivial way along the whole curve. keeping its orientation. by proving first
the existence of a chord with positive length which can be slided reversing orientation.

The leneth of such a chord. which may be slided reversing orientation. is unique and
R. Fenn conjectures that ic is the maximum of the lengths which may be slided keeping
orientation.

D. G. Larman proves ic for piecewise analytic curves [L]. but the nurnber of steps he
needs in his lernmas may be infinite when the Jordan curve is a polygon. for he has to
consider not only the points in the polygon in any parallel to the coordinate axis through
the vertices of‘the polygon but the points in the polygon in any parallel to the coordinate
axis. Even so his theorern is true assuming the lernmas are.

What we do here. is to prove Larman's lernmas for piecewise analytic curves using
Alexander Duality. and see that the conjecture is also true for anv continuous Jordan curve
constructing piecewise linear approxirnations to the slidings.

Definitions

Let h : S'	 be a Jordan curve. A sliding of h is a simple closed curve f : Si —

F C 5 1 x S I non nulhomotopic such that Il h(p l of(9))— h(p.2 o f(9))11= c > O.	 Vt9 E SI
Such curve doesn't meet the diagonal 	 C Si x 51 and therelore is homotopic co a

rnultiple of	 Because of the Jordan curve theorern. if F 	 m. m > o, r selfintersects.
so we can choose inside r a loop homotopic to 	 and we will assume we have done it.

Let s be the symmetry in S 1 x S' respect to the diagonal and v :5 1 x 5 1 — R2 the
map given by	 y) =	 — h(y)11.

An inversion of h is an arc a : I	 St x 5 1 such that a(0) = s o a(1) and
Lia(0)) = b > 0 V9 E S1.

Thinking in an intuitive wav we see that doing cwice an inversion we have done a
sliding. Coming to Mathernatics. we see that the projection of o onto the Mabius band
S i x 5 1 —	 is a loop not nulhomotopic and therefore a .(.s o a) is a sliding.
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We call width nf a curve r.he maximum of the lengths of chords which may be slided
along the curve in a non trrvirtl way. The length of such chords is bounded by the tharneter
of the curve. but this diaineter D may not be the inaximurn if D )) = 0 .We call
brendth such maxiintim when the final orientation is the opposite to the origitial one, sti

the breadth is less or equal to the width.

Results and Proofs

Theorem 1. Let a , at be inversions with respective values b > 0 ,b > 0, for a Jordan
curve. then b = b' .

Proof

Let r	 S' x S'	 1:0 be given by 1,.(r.y) 	 h(r) - h(y)	 Then	 cv(T)	 b
and	 o a')(/) = b' . If b	 b' , we consider a finite covering of cr( I ) by balls contained
in L .-1 (b -	 b	 e). being e <	 and construct a simple analitic arc 	 contained iri
the union of such balls connecting - a(0) and a(1). so that á(0.1)n (3 o a(o. 	 = 0. then
1,..(á(/)) C (b - e. b + e). We do the same for a' and get a analytic curve such that
tr(d/(/)) C (b'	 b' + e).

The loop ci . .s o	 separates S' x S' - 1.5 in two cylinders. Symmetrical points in
S' x S' -	 are separated into the two cylinders. but	 connects at least two symetrical
points and doesn • t meet the diagonal. so ci/(/)n (ci(I)Us oa(1)) -74 0. by the Jordan curve
theorem, therefore (b - e, b + E) n (6' -e, b' + e)	 0. contradiction.

We call this nttmber b the breadth of the curve.
Theorem 2 Let h :	 be a Jordan curve of breadth b > O. then

b -= sup{inf{(L . o 3)(t)}} = inf {sup{(1... o 3)(t)}}
Jer: 1E1	 JEn tEl

,.vhere	 is the space of arcs in S' x 5 1	with symmetrical end points.
Proof
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If there exists an arc o I	 x S - A such that	 o a)( 1) = b,

sup{Inf{ o a(t)}	 b > inf {sup{u. o3(t)}.
oEn rEi	 3€11 tE

On the other hand. let a/ E 	 cri(1) = (b' ,b1. and c‘- ' a simple piecewise analytic
aproximation as previously constructed stich that (tvoas ')( I ) C (b' - b"	 e). Considvritil
that a joins symmetrical points respect to A in Sx S l and that symmetrical points are
separated by a' • o c2(/) in different cylinders, we have o(I) n (c;' ,S 0 (7 ' )( 1)	 e.
b' - < b < b" + e Ve > 0 and so b < b < b" . therefore

sup(inf{ti, ol3(t)}	 b < inf {sup{ti, o,3(t)}
3Et-1 t E i	 ,3E1-1 tEi

and the theorern is proved.
We can verify that the last expression is positive in any simple cIosed curve.

Now we prove Fenn's conjecture in Larrnan • s way. but with different prcx)fs.

Proof of lemmas

Lemma 1:
Given tv.-o piecewise analytic closed curves:	 in S' x S I • homotopic to the

diagonal L1 with parametrizations f : S t	 r, g : S'	 r• there exist parametrizations
o:S 1	 S t , ;.3 S 1	Si such that: pi0foo=pi 0g0 3.

Proof:
We consider F : S t x S'	 x S' given by F( z ) = ( p t of( z ). pt og( z))	 E S' and the

map t : S' x S'	 given by	 y) =i1	 y	 We call A = {(.r. r)\,r E 5 1 } C 51 x S'
and K = F -1 ( = (L. o (0). K is compact and also triangulable because w o F is
piecewise analytic[L„]. So eech cohomology and strurular cohomolou coincide for the pair
(T. K). We have therefore the following commutative diagram:

HI(T - K) 1/ 1 (i) 111(T)

(1)
	

11D	 1113P

H 1 (T. K) 11 1 ( )	 ' ( T)

means Alexander Duality and D p rneans Poincare duality.
On the other hand we have the exact cohomology sequence
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(2)
	

Ht(T.K) H(j ) H i (T) HI(i)

which says that ker H t (i) = im Hl(j).
Given E H I (T E) C H i (T), Iet ),• be D p(ij E H' (T), then we have

E ker H t (z)==	 E im H t ())<=>À E H I (T — K) according to (1) and (2), so

H I (i)(A') 5:10 <=:«	 HI(T — K)

We deduce that if any representative of the homology class of À meets K there exist
a curve m in I such that mr1,X o Even more, if may be inserted as a generator in a
basis of	 considering integer coefficients we deduce that there exist a curve m c
such that rn •	 = 1.

If	 is	 C S' x S' F(A) = {p, o	 o g(e')} C 5 1 x S is a cur.e
homotopic to À because deg(p t o f) =deg(p i o g)=1 as r	 (1 and r•	 So À	 = 1
means F(A) «	 = 1 and ), fl K	 0. Therefore we get m C K such that m • ), = 1.
Let m be given by a parametrization (cx(e` e ), ,(3(e' e )) C 51x51	 Since F(m) C
P1 o f o a(e') = p , o g o3(e' 9 ) c.q.d.

Letruna 2:

Given t-wo piecewise analytic closed curves f : S'	 F, g :	 r• homotopic to
in S' x S' there exist parametrizations a', 3, 7 : S'	 S' L such that

	

o f o	 pi o g o;.9'

p2ofoct1=p2ogc7

Proof:
Leta,,lbe the parametrizationsfound in lemma 1. We consider f o cr and g and apply

lemma 1 to p.2 so we obtain d, 3 such that
Thof000d=Thogo
Now, we make = cr o 3' = 3 o Er,7 = ,3 and we write

Pt ° f o cy = lo t ofoclod=P10903_0&=P1090;3'
p2 ofoo'=Thofocroci=p2 ogo3=Thogo 7 . c.q.d.

Lemma 3:

Given two piecewise analytic closed curves : r . F" C S I x S' homotopic to	 being
r- symmetric respect to the diagonal given by parametrizations f : S t 	 F. g : S t — F.
there exist parametrizations o n . 3, -y " : S l	 S l such that

(1)	 g o 3"(0)	 .s(g o	 (0	 r))
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P1 ° o c: ( 9 ) =	 g 3-(9)

o f o cf - (9) =Thogo 7"(9)

We write 9 instead of e' e for the sake of simplicity and denote by 3 the simmetry.
P roo f:
Getting a symmetric parametrization of a symrnetric simple closed curve is easy you

consider a point	 E rand its symmetric s(ro ) E r•. you parametrize the arc joining both
points by I : I r" and then you consider Isi01 but it is not that easy getting a simmetric
parametrization which keeps up with the first coordinate of another parametrization of a
different curve r. So we modify the g o ,3 1 ,previously obtained to make it symmetric.

First, we see, following Larman, that in any parametrization of a symmetric curve
g : S1 r• there exists 90 such that g(90 ) = s(g(90 + :r)).For that we consider the points
g(0). g(x). 3(g(0)). If s(g(0)) 7-= g( 7). choosing the orientation in the curve we can assurne
that g(0) < sg(0) < g(z)

As the symmetry respect to the diagonal keeps the orientation in the diagonal, and
it keeps also the orientation in F sos(g(0)) < ssg(0) < sg(z) i. e. g(0) < sg(7).

We have g(	 > s o g(0). g(77. + 7r) < sg(z). then. according to mean value theorems.
and considering the maps s o g(9). s o (9 + :r) we get the existence of 6. E (0. :r) such that

3 9( 9o) = 9(90 +
In the following we assume g defined in the incerval [0.27]
Now, let 9 be the sup {9 E (90,6. + z) g(9) = g(90 )} and

= inf {9 E + :r) g(9) = g(9. :7)}

= sup {9 E (9„ 7,61. -1- 27) g(9) g(90 + :7)}
= inf {9 E (0. z.B. 2:r) 9(9) = g( 8 . +27)}

Making an adequate linear reparametrization we have
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9 1( d.	 = 9 1(x. r.i • g itir..tr.; "91(11.e.-i,r1

= 91.(9.+,.e.:1 • 9f(n.ir,1 "91(ir:.ao+2,1

and we construct:

	

jg1(9.+,.4;1* 91(9.3r.i • g lie;	 •

9/9...4.

Both pairs of couples at the beginning and the end are symnietric with th.ese parame-
trizations.

The central arcs don't touch	 and begin and end in common perpendiculars to
so tnaking a	 turn. they may be considered as arcs in / x I beginning at {0} x / and
ending at {1} x /.

We transform I x / in S' x S' by identifing opposed sides and we complete the a•cs
to simple closed curves by adding vertical segments in {0} x / E {1} x /. These simple
closed curves are homologons to a meridian.

We consid,Lr now:

F = (p i ok.p 1 o i) : S x S 1	Si x S'

=

{e' 9	 C S x

and foilow the same reasonning as in lemma 1. Then we find a.b. such that p i ckoa = p, oiob.
As p i o j.:(0) = 1 .4.1. p i o 1(9) = 1. taking the restrictions of k and I . to the intervals
S' — (p t o 1:) -1 (1) and S — (p i o i) -1 (1) we have	 okoa =p, o / o b.

Also. as the arcs are piecewise differentiable and the tangent vectors are symmetric.
we see that the set H = {t!1; o a(t) = o 1 ob(t)} D {0.1} is open. taking into account the
exponential map. and the commutative diagram:

	

Tp	
•

T(p) .

ezp j	 j e.rp

	

r,	 r,
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r,	 r,

H is closed because H	 (k o /1..s o 1 o	 so H is connerted and not empty and
therefore is the whole interval.

This result gives in S' x S' :	 o a =9lta	 o b and glueing the couples of
loops at the beginning and the end we have a symmetric parametrization.

1,Ve can asstune that the new parametrization inay be written as go 3 where 3 makes
S' zo back to draw the loops introduced by a and then changes the speed in these arcs
appropriately. such as we had to do in order to get	 •

Considering go 3 instead of g, the desired parametrizations are 3" = 3oij ,	 = a o

=

Now, we are going to study the variation of angle in the slided chord.

Let h : 5 1 — J C R 2 be a simple closed curve. then a simple closed curve f : S'

F C S' x 51 — determines the sliding of the chord [h(p i of(9))h(Thof(9))1. The variation
of the angle in this shding is determined by

h(Pi o f( 8 )) — h (P2 o f(9)) 

ii h (Pi o f( 9 )) — h (192 o f(8))li

lemma 4.:
El grado de la funciOn es 1.

P roo f:
We observe that F is homotopic to a curve like the one drawn in the picture in which

there are four straight arcs, each of them with one constant coordinate. The corresponding
slided chord moves only the origin or only the end in every step. The degree of H depends
only on the homotopy type of F. so we can calculate its deg-ree for this particular sliding.
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We can also choose the orighis and ends in every step.
As the curve J is compact we can consider its ansolute extremes respect to the coor-

dinates x and y and call thern •4. B.C. D in the sense of orientation of the curve so that it
completes a cycle in the clockwise direction.

We consider the chord .4D and we slide the orizin A up to C in the sense of the curve.
getting C'D in the first step. Then we slide D up to B in the sarne sense getting CB in
the second step. After that we slide C up to A getting AB and finally we slide B up to D
coming again to •D.

As the curve is placed above the horizontal line through D. the angle in the first
step is only 8 as it is drawn in the picture, independently of the turns and rounds it has
made. In the same way the angles in the following steps are 3, a, and the total angle is
a + 3 + + d = 27. So deg A = 1.

Juan Peran has given a proof of lemma 5 based on lemma 1 let us call .V : C — {0}
th-e-rnap	 -	 -

-v ( z) =
II =
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This map vc• rifies .V(k:) = .V(:) Vk E 3? + and N(N(.:)) =
Let us assume also that the origin is in interior of J.

Then, A(9) = .V(h op, o f(9) —hop-2 0 f(9)).
Considering the curves in S t x 5 1 : r given by o h o p, o f,.V o h op, o f) and r"

given by (—,V o h o p2 o f.—.Vc h o p2 o f), by lemma 1, these exist o,j3 : S' — S t such
that Noho p, ofoo = —.\" o h o pl f o where dego = deg ..3 = 1.

Then

hoptofock—hop2ofo3
A=N(hoplofoo—hop-2ofol3)=N(

I1 hoThofoal111hop2o.f0311

:V(h o	 o f o a)	 N(hop-2ofo.13)
_ .V(

II h °P-2 0 f 03 i1	 ii ho Pt o f o cr II
)

1 	 1 
= N(N(h o Pt af °C)( ilh o p2 o foBil	 ho p2 ofo cx

f °

So deg H = 1.

)=N(hop, of ocr)

non trivial sliding (not going and coming back in che sarne way) preserving the
orientation of the chord is given by a non-nulhomotopic curve r c st x S —	 by means
of h x h :	 R2 x R 2 . This curve is, therefore, homotopic to a multiple of
Considering 51 x S t — as a cylinder in R 2 , by the Jordan curve theorem we ca.n choose
a loop homotopic to	 inside r which also gives a sliding.

We have pointed out that the breadth of a curve is less or equal than the width. so .
‘ve only have to prove that the width is less or equal than the breadth.

Theorem 3:

Let f : S t	 C S x 51,9 : S 1	 1-• C S t x .5 1 be slidings homotopic to 	 such
that

II b(P1(1(8))) — b(P2(1(9)))11= u > 0 and 11 h(Pi(j(0)))— h(P-2(j(9)))11= b > 0

where h :	 3/2 is a Jordan curve and r• is symmetric then u< b.

Proo f:
interchange the tilde ber.veen the slidings and their aproximations. which are of

the form described in Theorern 1. in order to simplify the notacion in this proof.
Given £. 6 E R. we can construct f. g piecewise analitic slidings which are and á

aproximations to f and ij. We can assurr.e g symmetric, then by the previous lernmas we
have a", j3.	 so that

p i ofoo"= Th ogo 3"
p2 o f o ck" =p2ogo
go.3-(9)=.5cgo.3"(0+7r)

a_s in lernma 4.
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(2)

p.(e).p(e-,) q(e) pce

	

Denoting f o o"	 p. q) wi would have g o 3- = (p.p*), g o	 = (q • q).
Taking the origin of the parametrization such that g o -/ "(0) =Jogo -y"(rrLy..e clefin.•

j : S 	 S' x S' as
P1 0 /( 9 ) = Pt o g o 3- ( 9 ) = P(.9) V8 E (0•271
p-2 oj(9) = p i o o 7 "(9) = g • (9) V8 E [0,1]

o j(0) = p l cgo	 (9 — 7r) = q(9 — 7r) Ve E
The curve j is weU clefined.
If j meets L1. it must be p(9) = g • (9) or p • (61 — rr) = p(9) = g(9 — 7r). In either cases

would have ( ty — e. w + e)n (b + 6, b S)	 0. As we can do it for every e > 0 and for
every 6 > 0,we have w = b. If j doesn't meet lemma 4 applied to j gives variation of the
angle of j equal 2rr. Calling q(9) = uctr(j(0), j(0 + 7)), we have q(0) + q(r) = 2,r, so either
both are ir or one of them is bigger and other smaller than rr. In any case, by the mean
value theorem. there exists 9 such that ri(8) = Tr, what means that the chords [p(0). g • (9)1

and 5*(9), g(9)1 have opposite direction . We have the sicuation represented in one of the
following pictures:

In che first picture the angles sum 1 . 1 + ZP2 iS T. This picture shows that 0 / > rz/2 we
'nave II g'(9) — g(9) >11 p(9) — g(9) 11 i. e. b + 6	 — e for every e and 6, therefore b > w.
When r	 rr we consider the second picture which also shows that lj p(8) — p - (6) i1>11

P( 9 ) — g(9) j i. e. u — e < b + 6 for every e and 6, and u; < b, i.e. the same conclusion.

(1)

P*(e).p(e.,)	 q (8)
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