BREADTH EQUAL TO WIDTH IN A SIMPLE CLOSED CURVE

by
Lucta CONTRERAS CABALLERO

INTRODUCTION

We study here the existence of chords with positive length which may be slided along
a curve in R%.

R. Fenn has studied this problem in piecewise analytic simple closed curves in R? [F]
and has proved for such curves that there exists a chord with positive length which can be
slided in a non trivial way along the whole curve. keeping its orientation. by proving first
the existence of a chord with positive length which can be slided reversing orientation.

The length of such a chord. which may be slided reversing orientation. is unique and
R. Fenn conjectures that it is the maximum of the lengths which may be slided keeping
orientation.

D. G. Larman proves it for piecewise analytic curves [L], but the number of steps he
needs in his lemmas may be infinite when the Jordan curve is a polygon, for he has to
consider not only the points in the polygon in any parallel to the coordinate axis through
the vertices of*the polygon but the points in the polvgon in any parallel to the coordinate
axis. Even so his theorem is true assuming the lemmas are.

What we do here. is to prove Larman’s lemmas for piecewise analytic curves using
Alexander Duality. and see that the conjecture is also true for anv continuous Jordan curve

constructing piecewise linear approximations to the slidings.

Definitions

Let h: S' — R? be a Jordan curve. A sliding of h is a simple closed curve f: §' —
[ c §!'x S! non nulhomotopic such that || A(py ¢ f(8)) = h(p20 f(8)) |l=c>0. Wwhe S!

Such curve doesn’t meet the diagonal A C S' x S!' and therefore is homotopic to a
multiple of . Because of the Jordan curve theorem. if [ = mA, m > 0, [ selfintersects.
so we can choose inside [ a loop homotopic to A, and we will assume we have done it.

Let s be the symmetry in §* x S' respect to the diagonal and v : S! x §' — R? the
map given by v(zr.y) =|la(x) = h(y)ll.

An inversion of h is an arc @ : I — S! x §' such that a{0) = s 0 a(l) and
via(d))=b>0Vv0e St

Thinking in an intuitive way we see that doing twice an inversion we have done a
sliding. Coming to Mathematics. we see that the projection of a onto the Mobius band
S' x §' — A/s is a loop not nulhomotopic and therefore a = (£ 9 a) is a sliding.
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We call width of a curve the maximum of the lengths of chords which may be slided
along the curve in a non trivial way. The length of such chords is bounded hy the diameter
of the curve. but this diamneter D may not be the maximum if H,(v~'t D)) =0.We call
breadth such maxiimmm when the final orientation is the opposite to the original one, so
the breadth is less or equal to the width.

Results and Proofs

Theorem 1. Let a , af be inversions with respective values b > 0 %' > 0, for a Jordan
curve. then b = §'.

Proof

Let ¢ : S' x S' — R? be given by ¢(z.y) =|| A(z) — A(y) ||l. Then :oall) =5
and (voa')(f) =b. Ifb# ., we consider a finite covering of a([) by balls contained
in 7' (b - eb+e) being € < 5—7.;!- and construct a simple analitic arc & contained in
the union of such balls connecting a(0) and a(1). so that &(0.1)N (s 0 &(0,1)) = 0. then
w(&(I)) C (b—e.b+¢). We do the same for o' and get a’ analytic curve such that
wlan)) C (b —e b +e).

The loop & = s 0 & separates §' x §' — A in two cylinders. Symmetrical points in
S!' x §' — A are separated into the two cylinders, but a/ connects at least two symetrical
points and doesn’t meet the diagonal, so a/(I)N(a{I)Usca(l)) # 0. by the Jordan curve
theorem, therefore (b — e. b+ ¢) N (b — ¢, b + ¢) # 0. contradiction.

£y

We call this number b the breadth of the curve.
Theorem 2 Let h: §' — R’ be a Jordan curve of breadth b > 0. then

b= 3:?!{'525{{“ )} = }gg{s':?{[w 36)}}

where ( is the space of arcs in §' x §' — A with symmetrical end points.
Proof
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If there exists anarca: [ — S' x §' = A such that (rroa)(f) = b.

inf {1 >b> i TR,
::g{:lelt;{f calt)) 262 jré{]{:::?{l. o 3(t)}.

On the other hand. let o/ € Q. a/(]) = [b',57]. and o’ a simple piecewise analytic
aproximation as previously constructed such that (vea')([) C (b — ¢, b" +¢). Considering
that @ joins symmetrical points respect to & in S' x S' and that symmetrical points are
separated by o' = s 0 a’([) in different cylinders, we have o(/)N(a’ ss0&')([) # 0. i. .
b —e<b<b'+¢ Ye>0andso b <b<b". therefore

sup{inf{v 0 3(t)} S b < dnf (sup{v 0 3()}

and the theorem is proved.
We can verifv that the last expression is positive in any simple closed curve.

Now we prove Fenn's conjecture in Larman’s way. but with different proofs.

Proof of lemmas

Lemma 1:

Given two piecewise analytic closed curves: [. " in §' x S', homotopic to the
diagonal A with parametrizations f: §' — T, g : §' — " there exist parametrizations
a:S' = S' 3:5' = S such that: pyo foa=pjoged.

Proof:

We consider F: §' xS' — S'xS' givenby F(z) = (p1of(:).p1og(=)) Y= € S' and the
map¢: §' xS' — Rgiven by w(z,y) = z-y|. WecallA = {(r.z)\zr€S'} CS§' xS’
and K = F~'(A) = (v o F)~'(0). K is compact and also triangulable because v o F is
piecewise analytic[L,]. So Cech cohomology and singular cohomology coincide for the pair
(T.R). We have therefore the following commutative diagram:

H(T-K) Hi) HIT)

——

(1 nbh, nDe

HYT.K) HYj) HYT)

D, means Alexander Duality and Dp means Poincare duality.
On the other hand we have the exact cohomology sequence
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(2) — HMT.R) H'(j) HMT) H'(i) HYK)—

which says that ker H'(:) = im H'(j).
Given A € H|(T-K)C Hi(T).let A* be Dp(A) € H'(T). then we have
A" € ker H'(1) = A" € im H'(j) &= A € H (T — R) according to (1) and (2), so

H'Wi)(A")#£0 = A€ H(T -R)

We deduce that if any representative of the homology class of A meets K there exist
a curve min K such that mN A # ¢ . Even more, if A may be inserted as a generator in a
basis of H(T). considering integer coefficients we deduce that there exist a curve m C I
such that m - A = 1.

IfAis {9, e7?} € §' x S, F(A) = {p1 o f(e"”), progle="?)} C S x §' is a curve
homotopic to A because deg(p, o f) =deg(pyog)=lasT~A and "~ A. So X - A =1
means F(A) A =1and ANR # 0. Therefore we get m C A such that m -\ = 1.
Let m be given by a parametrization (afe'?), 3(¢')) C S! x S!'. Since F(m) C A.
profoa(e?) =p ogodle’)cqd.

Lemma 2:

Given t-vo piecewise analytic closed curves f : 5' — T, ¢: §' — ' homotopic to A
in S§' x S' there exist parametrizations a’, 8, v : S' — §! such that

profoa' =pogod
pgofca'=p30§c’f

Proof:

Letx,3be the parametrizationsfound in lemma 1. We consider f o o and g and apply
lemma 1 to p; so we obtain G. J such that

profoaoca=pogod

Now, we makea' =ao0d, 3 =Joca. v =0 and we write

profoa'=pofoaca=pogodead=pogel

profoa' =prcfoaocda=progod=progoe. cq.d.

Lemma 3:
Given two piecewise analytic closed curves : ' . " C S' x §' homotopic to :\. being

" svmmetric respect to the diagonal A given by parametrizations f: §' —T.g: §' =T,
there exist parametrizations @, 3", 7" : §' — §' such that

(1) go3"(8) =s(go B (6+ 7))
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(2) piofoa (8)=pegod(d)

(3) profoa”(8)=progoy(6)

We write § instead of ¢'® for the sake of simplicity and denote by s the simmetry.

Proof:

Getting a symmetric parametrization of a symmetric simple closed curve is easy : you
consider a point ry € ["and its symmetric s(zr9) € ['". you parametrize the arc joining both
points by [: [ — [* and then you consider [=s0l but it is not that easy getting a simmetric
parametrization which keeps up with the first coordinate of another parametrization of a
different curve ['. So we modify the g o 3’ previously obtained to make it symmetric.

]

s(g(o)N

First, we see, following Larman, that in any parametrization of a svmmetric curve
g : S' — T'" there exists 8, such that g(8y) = s(g(8y + 7)).For that we consider the points
g(0), g(x).3(9(0)). If 5(g(0)) # g(=). choosing the orientation in the curve we can assume
that g(0) < s9(0) < g(7)

As the svmmetry respect to the diagonal keeps the orientation in the diagonal, and
['" ~ A it keeps also the orientation in '" so 35(g(0)) < s39(0) < sg(7) i. e. g(0) < sg(=).

We have g(7) > s0¢(0). g( 7 + 7) < sg(=), then, according to mean value theorems.
and considering the maps s 0 g(#). s o (6 + 7) we get the existence of 4, € (0, 7) such that
59(80) = g(8o + 7).

In the following we assume g defined in the interval [0.27]

Now, let 8, be the sup {6 € (6.,68, + =) | g(8) = g(6.)} and

g, = inf (8 € (8..8. + =) | 9(8) = g(8s + =)}
8 =sup (6 € (6, + 7.8, +27) | g(8) = g(6 + =)}
8Y =inf (€ (8, +7.0, +27)| g(8) = g(8, +27)}

Making an adequate linear reparametrization we have

15



o, 00 +v = 9lw.,) = Ilie.o1 = 9N(os .00+

glio,+ =2, =201 = gl +v.00; = Glow 40y = Tl(d agean

and we construct:
39l(a,+ =001 = glio o) = Olios i) * 9lia 0, * Moy 0,025

lio.+x.0) = $9ita..05) = 9lpav o) = 59118, 0, + o) = 9ljdr 4, 424
Both pairs of couples at the beginning and the end are symmetric with these paraimne-
trizations.
The central arcs don't touch A and begin and end in common perpendiculars to A,

-

so making a § turn. they may be considered as arcs in  x I beginning at {0} x [ and
ending at {1} x [.

We transform [ x [ in S' x §' by identifing opposed sides and we complete the arcs
to simple closed curves k.7 by adding vertical segments in {0} x I = {1} x . These simple
closed curves are homologons to a meridian.

We considdr now:

=(pok,pol):5'xS5" - 5" x5
K =F'(A)

A=t e eS8

and follow the same reasonning as in lemma 1. Then we find a.b. such that pjokoa = pyolob.
As pyok{f) = 1 & p; ol(8) = 1. taking the restrictions of k and [ to the intervals
S' —(prok)~'(1)and S' = (py ol)~(1) we have pyokoa=p olob.

Also. as the arcs are piecewise differentiable and the tangent vectors are symmetric.

we see that the set H = {t|koa(t) =s0l0b(t)} D (0.1} is open. taking into account the
exponential map. and the commutative diagram:

T, = r,(;n )

exp | lexp
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r;zl";

H is closed because H = (kow.solob)~ (). so H is connected and not empty and
therefore is the whole interval.

This result givesin S' x S' : glig, 4,1 0@ = .-'g[{,-‘.” o b and glueing the couples of
loops at the beginning and the end we have a symmetnc parametrization.

We can asswne that the new parametrization may be written as go 3 where 3 makes
S' go back to draw the loops introduced by a and then changes the speed in these arcs
appropriately, such as we had to do in order to get gI[,,h;“ s Ol bq)

Consi‘c;ering goJ' instead of g. the desired parametrizationsare 3" = 3’03 , a” = a'0d
=08,

Now. we are going to study the variation of angle in the slided chord.

Let h: S' — J C R* be a simple closed curve. then a simple closed curve f : §' —
[ C §'x§'—A determines the sliding of the chord [h(p; 0 f(8))h(pa0o f(8))]. The variation
of the angle in this sliding is determined by

h(py o £(8)) = hips 0 £(8))
Th(p1 o £(8)) — hipz o FO)II

A(8) =

lemma 4;
El grado de la funcién A es 1.

Proof:

We observe that [ is homotopic to a curve like the one drawn in the picture in which
there are four straight arcs, each of them with one constant coordinate. The corresponding
slided chord moves only the origiri or only the end in every step. The degree of H depends
only on the homotopy type of ['. so we can calculate its degree for this particular sliding.
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We can also choose the origins and ends in every step.

As the curve J is compact we can consider its absolute extremes respect to the coor-
dinates x and y and call them 4. B,C. D in the sense of orientation of the curve so that it
completes a cvcle in the clockwise direction.

We consider the chord AD and we slide the origin A up to C in the sense of the curve.
getting CD in the first step. Then we slide D up to B in the same sense getting CB in
the second step. After that we slide C up to A getting A8 and finally we slide B up to D
coming again to AD.

As the curve is placed above the horizontal line through D, the angle in the first
step is only § as it is drawn in the picture, independently of the turns and rounds it has
made. In the same way the angles in the following steps are v, 3, a. and the total angle is
a+J3+9+d8=27. Sodeg A= 1

N

[

c

Juan Peran has given a proof of lemma 5 based on lemma 1: let uscall vV : C - {0} —

nl t‘hE"Tle e TEE e =
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This map verifies V(kz) = V(z) Yk € R and N(N(2)) = N(=).

Let us assume also that the origin is in interior of J.

Then, A(8) = N(hop, o f(8) = hopro f(8)).

Considering the curves in S' x §' : [ given by (Nohop,of,Nohop,of} and [*
given by (-Nchopyef.—Ncohepyo f) by lemma 1, these exist a,3: S' — S! such
that Nohop o foa=-Nohop,o fol wheredega = degd = L.

Then

hopjofoa-hopyofold

.i:;\'{hoplcfaa—hop—,oja;‘j}=N(“ﬁoplojoa""hcmofol‘j“

)

N(hopiofoa) _ N(hopyofog)

=N
(Thopofodl ~Themefoal

)

l 1

= NWthopio ool Gy Foml * Thomofoall

=N(hop o foa)
SodegH = 1.

A non trivial sliding (not going and coming back in the same way) preserving the
orientation of the chord is given by a non-nulhomotopic curve [ C §' x §' = A by means
of h x h:5'x §' — R* x RY. This curve is, therefore, homotopic to a multiple of A.
Considering S! x S' — & as a cylinder in R?, by the Jordan curve theorem we can choose
a loop homotopic to A inside [' which also gives a sliding.

We have pointed out that the breadth of a curve is less or equal than the width. so.
we only have to prove that the width is less or equal than the breadth.

Theorem 3:

Let f:S' —=TcS'xS'g:5" =T CS!xS! be slidings homotopic to A such
that
Il A(p1(£(8))) = h(p2( f(8))) l|=w > 0 and || h(p1(§(8))) — h(pa(§(8))) =5 >0

where h: S§' — R? is a Jordan curve and I'* is symmetric , then u < b.

Proof:

We interchange the tilde between the slidings and their aproximations. which are of
the form described in Theorem 1. in order to simplify the notation in this proof.

Given ¢. § € R™. we can construct f. g piecewise analitic slidings which are ¢ and ¢
aproximations to f and §. We can assume g symmetric. then by the previous lemmas we
have a", 3". +" so that

profoa’ =poged”
pzofoa” =progey”
god8)=scg03 (6 +7)
as in lemma 4.
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Denoting foa™ =(p.q) we would have go 3" =(p.p*). go 4" =(q".q).

Taking the origin of the parmnetrization such that go4"(0) = s 090 9"(7).we define
J:S!' = 8" x 5" as

p1oj(8)=piogod (d)=p(8) Y8¢e[0,2x]

p20(8) = progo7(d) = ¢"(8) ¥ €(0.7]

proj(@)=pcgoy(d-7)=q(8-x) VOE€Er2x]

The curve j is well defined.

If j meets Q. it must be p(#) = ¢*(8) or p*(d — x) = p(f) = ¢(6 — =). In either cases
we would have (w = e, w +¢)N(b+4,b—8) #0. As we can do it for every ¢ > 0 and for
every § > 0,we have w = b. If j doesn't meet A, lemma 4 applied to j gives variation of the
angle of j equal 27. Calling n(8) = var(j(8),j(8 + 7)), we have n(0) + n(=) = 2=, so either
both are r or one of them is bigger and other smaller than . In any case, by the mean
value theorem. there exists 8 such that n(#) = =, what means that the chords [p(8).¢"(8)]
and [p*(8),q(8)] have opposite direction . We have the situation represented in one of the
following pictures:

In the first picture the angles sum v + ¢ is 7. This picture shows that ¥, > /2 we
have || ¢*(8) — q(8) ||>]| p(8) —q(8) || i. e. b+ & > w—¢ for every ¢ and 4, therefore b > w.
When v, € 7 we consider the second picture which also shows that || p(8) — p*(8) ||>] .
p(8) —q(f) || i. e. w—¢ < b+ 6 for every € and §, and w < b, i.e. the same conclusion.

p*(8)=ple-7) ple

P*(8)sp(8.n) q1(8)
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