

QUID 2017, pp. 624-640, Special Issue N°1- ISSN: 1692-343X, Medellín-Colombia

PARTITIONING MOBILE APPLICATION BY CLOUD COMPUTING USING A LINEAR

PROGRAMMING ALGORITHM IN THE GRAPH

(Recibido el 15-06-2017. Aprobado el 04-09 2017)

Mostafa Ahmadi Meshkani

Department of Computer

engineering, kashan Branch,

Islamic Azad University,

Kashan, Iran1

Ahmadi6468@gmail.com*1

Mohammad Hadi Yousefi

Department of Mechatronics,

kashan Branch, Islamic Azad

University, Kashan, Iran2

Mhu320@yahoo.com2

Mohammad Javad Rashidi

Department of Mechatronics,

kashan Branch, Islamic Azad

University, Kashan, Iran3

mjavadrashidi@yahoo.com3

Resumen: En el campo de la computación en nube, la falta de la misma capacidad para los dispositivos,

así como la falta de conocimiento claro sobre el número de dispositivos utilizados conducir a no utilizar

algoritmos prácticos con facilidad, por lo que el uso de algoritmo óptimo es adecuado cuando cualquier

dispositivo no puede ir Más allá de su capacidad máxima. También, en este trabajo, se ha considerado la

estabilidad de la partición. De hecho, un subgrafo debe ser seleccionado en términos de conectividad de

modo que si un número de enlaces están desconectados, su estabilidad no se perderá y el programa se

ejecutará correctamente. En este trabajo, se presentó un método para dividir el gráfico de tareas de una

aplicación. Dado que el problema de la partición gráfica a gran escala es de la dureza NP, el algoritmo

genético fue propuesto como una estructura selectiva en el método propuesto. En el algoritmo genético,

tres criterios, incluyendo el costo, el tiempo de respuesta y la energía se utilizaron como un objetivo

combinado. El uso de la programación lineal influye efectivamente en el rendimiento óptimo del

algoritmo genético. Los resultados del método propuesto muestran una reducción precisa del consumo de

energía y un tiempo de respuesta del 0,5% y del 3%, respectivamente.

Palabras clave: Algoritmo genético, programación lineal, particionamiento de gráficos, cloud computing

Abstract: In the field of cloud computing, lack of same capacity for devices as well as the lack of clear

knowledge on the number of used devices lead to not use of practical algorithms easily, so using optimal

algorithm is proper when any device fails to go beyond its maximum capacity. Also, in this paper, the

stability of partitioning has been considered. In fact, a subgraph must be selected in terms of connectivity

so that if a number of links are disconnected, its stability will not be missed and the program will run

correctly. In this paper, a method was presented for partitioning the task graph of an application. Since the

problem of large-scale graph partitioning is of the NP-hardness, the genetic algorithm was proposed as a

selective structure in the proposed method. In the genetic algorithm, three criteria including cost, response

time, and energy were used as a combined target. Use of linear programming effectively influences the

optimal performance of the genetic algorithm. The results of the proposed method show accurate

reduction in energy consumption and the response time by 0.5% and 3%, respectively.

KEYWORDS: Genetic algorithm, linear programming, graph partitioning, cloud computing

1. INTRODUCTION

Today, the extension of knowledge

boundaries is dependent on the development of

computational technologies. As a starting point

for these technologies, we can refer to computer

network emergence in which only a few

computers were connected. Subsequently, these

small networks were connected to each other and

created the Internet that the networks were

shared on the Internet by which the concept of a

global spreadsheet was created through which

information was shared among users. Cloud

computing is a new way of providing computing

resources and a model for providing service over

the Internet. In fact, cloud computing provides

the ability to save on IT resources and boost

computing power, so that processing power

becomes an ever-reaching tool.

Mobile cloud computing is a combination

of cloud computing, mobile computing and

wireless networks that provide rich computing

resources for mobile users, network operators,

and cloud computing providers. The main

purpose of mobile cloud computing is to run

powerful mobile applications on a large number

of mobile devices. . In the mobile cloud

computing, processing is done in the cloud, data

is also stored in the cloud, and mobile serves as a

medium for displaying the information. With

cloud computing maturing, mobile cloud loading

has been become a hopeful way to reduce the

runtime and battery life of mobile devices. Its

main idea is to boost the run by transferring

heavy computing from mobile devices to cloud

servers, and then getting results from them

through wireless networks. Loading is an

effective way to overcome the limited resources

and features of mobile phones since it can rid

them of massive computing and increase the

performance of mobile applications. Loading all

of the computing components of an application

remotely is not always necessary or effective. In

mobile cloud computing, the cell phone should

intelligently determine which part of the software

should be computed on the mobile or loaded into

the cloud. When mobile computing is

increasingly interacting with the cloud, a number

of methods, for example, Maui [1] and Clone

Cloud [2], are provided with the aim of loading

some parts of the mobile software in the cloud.

In order to achieve a good performance, it must

be decided that which parts of the software

should be loaded into a remote cloud, and which

parts of that should be run locally on mobile

devices, so that the total execution cost have

been be minimized. The main costs for mobile

loading systems are the cost of local computing

and remote execution, and communication costs

mean additional communication between the

mobile device and the cloud remotely. The

computing can naturally be described as a graph

whose crest represents computational costs, and

its edge reflects communication costs [3]. By

partitioning the vertices of a graph, we can

divide computing among the local mobile

processors and remote cloud servers. The

traditional algorithm for graph partitioning (for

example, [4], [5], [6], and [7]) cannot be used

directly in mobile loading systems, because they

ignore the weight of each node and only consider

the margin weight of the graphs.

Cloud computing is the deepest distributed

computing technology that is rapidly penetrating

in various aspects of human life, aimed at

providing easy access to integrated clusters and a

unit of computing resources (storage, processing

and storage) on demand, which can be dispersed

as conditional elastic with minimal investment,

complexity and interaction. [8]. Users use the

computing and resources stored in the cloud, and

It is possible to access them at any time and

place by any device connected to the Internet

without the need for additional costs or condition

and, for example, the photos, songs and personal

documents in the cloud is available without any

time or place restrictions [9].

Mobile cloud computing is a technology

that directs diverse clouds and network resources

toward unlimited capability, storage and access

without considering the time and space for many

mobile devices by the Internet [10]. Cloud

computing brings the user's attention to integral

computing by reducing or eliminating confusion,

unusual actions, inaccurate and out-of-frame

results [11], which provides the users of mobile

cloud computing with greater benefits over

mobile computing and cloud computing. [12]

Researchers use diverse design patterns in

mobile cloud computing to design and optimize

cloud resources on smartphones as a suggested

framework for processing distributed

applications on smartphone [13] for example,

clone cloud [14].

2. MATERIALS AND METHODS

The challenges for graph partitioning

include:

Partitioning software is very important for

designing an affordable and efficient adaptive

load system. Some critical issues about the

partitioning problem are:

Weighing: When some parts of the

software are chosen as transfer mode, we need the

weight scale of each piece of used software,

including memory, processing time, and

bandwidth usage. Communication overhead is

introduced by telecommunications between a

mobile device and a cloud server.

Real-time compatibility: since the

bandwidth of existing networks in wireless

environments is different, the partitioning

algorithms presented in previous articles

assuming a fixed bandwidth for a mobile

operating system are inappropriate. Partitioning

algorithms must match the network and device

changes. Since network conditions can be only

measured at runtime, the partitioning algorithm

should be an online process and in real time.

Partition Efficiency: Partitioning

decisions for simple applications (for example, an

alarm clock) are not difficult in real time, but

some complex applications (for example, speech /

face recognition) that contains a lot of methods,

require a very efficient algorithm for real-time

partitioning.

2.1. Software partitioning architecture

To solve these challenges, the workflow

of an environment-adaptive partitioning process

is presented. It starts with a program design that

can be divided into multiple tasks through static

and dynamic analysis technologies. After that,

we design a weighted compound graph called

WCG for mobile software. Then, the partitioning

operation of the graph is performed.

By extracting outputs of this algorithm,

we can get initial partitioning results for response

time or optimization of energy consumption.

During the implementation process, if the mobile

environment changes, and these changes reach or

exceed a certain threshold, the software graph

will be partitioned again according to the new

parameters. So, ultimately, elastic partitioning

can be understood as a condition-conscious and

adaptive environment one. Here, in the context

of a mobile environment, it does not only include

mobile computing resources inside the device,

battery level, CPU, memory, etc., but also

includes a mobile external environment, such as

network connectivity and Internet speed. After

partitioning, it loads automatically the distributed

applications requiring remote implementation to

a cloud server and does the rest locally on a

mobile device according to partitioning results.

Therefore, this problem whether the certain parts

of an application is loaded into the cloud or not

depends on the following factors: the CUP speed

of the mobile device, the network bandwidth, the

size of the data transfer, and the speed of the

cloud server. Given these factors, we create a

WCG with regard to computational and

communication costs, and we design a new

partitioning algorithm, especially for mobile

loading systems.

2.2. Software Task Classification

Different applications are created in a

mobile device by some processes, each of which

consists of several different tasks. Since all

software tasks are not suitable for remote

implementation, they must be checked and

detected:

Non-transferable tasks: Some tasks must

be unconditionally run locally on a mobile

device, or because the transmission of the data

demands extraordinary time and energy or

because these tasks must access the local

components (camera, GPS, UI, accelerometer or

other sensors, etc.) [1]. Tasks that may cause

security issues when uploaded in a different

location (e.g., e-commerce) should not be loaded.

Local processing consumes the battery power of

the mobile device, luckily, there is no

communication or delay cost.

Loadable tasks: Some components of this

software are flexible, which can either be

processed locally on a mobile device processor,

or remotely in a cloud infrastructure. Many tasks

can be included in this category, and the decision

for loading depends on whether the

communication costs are greater than the

difference between local and remote costs. We

do not need to make a decision about loading for

the loadable components. However, for loadable

decisions, since loading all tasks of an

application into the cloud remotely in any

circumstances is not necessary or effective, it is

worth to examine which tasks need to be done

locally on the mobile device and which tasks

needs to be done remotely on the cloud based on

available networks, time loading responses, or

energy consumption. The mobile device must

adopt a loading decision based on the outcome of

a dynamic optimization problem.

2.3. Partitioning models

A weighted graph can be constructed for a

variety of applications, but one of the important

problems in this regard is the selection of the

topology for desired graph. Construction of a

weighted graph for software partitioning is of

importance. The mobile software can be

displayed as a list of partial tasks, and designed

in different topologies as shown in Figure 1.

Where each node represents a task in the

software running either on mobile device or on

the cloud space for further execution [15].

Figure 1. Different topologies for the task flow

graph

Examining different types of topologies in

Figure 1, we have:

(a) Only an active node: represents a

whole application (without partitioning). Such

topology is often moderated by the full load plan,

which can also be viewed as an example of

server software. In this case, the entire program

is transmitted to a remote server, including the

complete code transfer and program mode. The

main drawback of this type of topology is the

low flexibility and execution speed of high

volume tasks.

 (b) Linear Topology: represents an

orderly list of tasks as sectional. Each task is

executed by receiving output data generated by

another task as input data [16].

(c) Loop-based topology: This structure

is used for a loop-based application, in which

many features are recognized by repeating an

executable loop, such as all online social

applications. The process flow is characterized

by a graph that consists of a given cycle.

(d)Tree topology: This topology displays

the tasks in a hierarchical manner and uses the

tree for this structure. Primitive node is the

module program or main function.

(e) Layer topology: Represents a

topology based on a network of tasks.

The partitioning layout should be able to

achieve a proper partitioning for loading the

computing as local and remote execution.

Different partitions can lead to various costs, and

the total cost due to loading depends on several

factors, including device operating system,

networks, clouds, and workload. Therefore, this

program may have different optimized partitions

for diverse mobile environments and workloads.

2.4. constructing the graph combining

weighted tasks

There are two types of cost for loading

systems: 1- computing cost that is run on

software tasks locally or remotely (including cost

of memory, processing time, etc.), and 2-

communicational costs for task interactions (in

concern with the movement of data and

necessary messages). Even this work can dictate

a lot of cost on the mobile device and the cloud

in terms of running time and energy

consumption. Because cloud servers due to

having a powerful configuration typically run

faster than mobile devices, they can save energy

and improve the performance when loading some

parts of the computing to a remote server.

However, when their vertices are assigned to

different parties, the interaction between them

leads to additional communicational costs.

Therefore, we try to find the optimal assignment

of vertices for graph partitioning and loading of

computing through transaction of computational

costs with communicational costs. Graph naming

is widely used to describe the dependency of data

in a computing, in which each vertex represents a

task, and each of the edges represents the call

relationship from the caller to the receiver.

Figure 2. CG graph structure

Figure 2 shows a graph for combination of

weighted tasks consisting of six tasks.

Computational cost is shown by the vertices,

while communication cost is expressed by the

edge. The dependence of the tasks of a program

and its associated cost has been determined as a

distant graph. If the graph G = (V, E) is

considered graph in which the vertices V = (v1,

v2, ..., vN) represent that the number of software

tasks is N and the edge e (vi, vj) ∈ E indicate the

number of requests and data access between the

nodes Vi and Vj, in which the vertices Vi and Vj

are neighbors.

The structure used in the proposed method

called WCG is shown in Figure 3.

Figure 3. WCG Graph structure

Each vertex v ∈ V has weight containing

two cost, which is represented by equation (1).

(1)

Where and

represents the computational cost of executing

task V locally on a mobile device and remotely

on the cloud, respectively. The edge set E ⊂ V ×

V represents the communicational cost among

tasks. The weight of an edge w (e (vi, vj)) is as

follows:

(2)

Which it includes the input and output

communicational cost when the Vi and Vj tasks

are executed on different sides, and it depends

closely on the bandwidth of the network (upload

of the bandwidth B, upload and download of the

bandwidth) and transmitted data. A decision is

made on a sample loading by a cut in WCG,

which divides the vertices into two distinct sets;

one represents the tasks performed on the mobile

device and the other is loaded onto the remote

server. Hence, considering the optimal loading

decision is equivalent to the WCG partitioning so

that cost, energy, and response time are

minimized. Red dot –line in Figures 1 and 2 is a

possible partitioning cut showing the division of

the computational workload between the mobile

device and the cloud.

VL and VC are sets of vertices in which VL

is a set of local tasks executed locally, and VC is

a collection of tasks for the cloud, i.e. those tasks

loaded directly into the cloud. We have VL ∩ VC

= ∅ and VL ∪ VC = V.

2.5. Partitioning Algorithm for Off-Line

proposed loading

In this section, the GALP_OP algorithm is

introduced for the WCG weighted graph having

an arbitrary topology. The GALP_OP algorithm

considers a WCG graph as an input in which

each node represents the operation / computation

of a program and their interrelationships are

considered as the edges. Each node has two

costs: the first one is the cost of doing the

operation locally (for example, on a mobile

phone), and the second one is the cost of doing it

elsewhere (for example, in the cloud). The

weight of the edge represents the ratio of

communication cost to that of loading computing

cost. It is assumed that the cost of

communication between operations in the same

place is negligible. The result includes

information about costs and reports that should

be done locally and then uploaded.

2.5.1. The steps of the GALP_PO method

The GALP_OP algorithm can be divided

into two stages as follows.

2.5.2. Merge

Definition: If ,

therefore, s and t can be merged into the

following form:

1) Select the s and t nodes.

2) The s and t nodes are replaced by the

new node Xs,t. Therefore, all edges were

previously attached to s or t node are now

connected to X node, except the edges between s

and t nodes.

3) The output edges of s and t reaching a

common node are integrated together and form

an edge. The weight of the X node is equal to the

sum of the weights of s and t nodes. Algorithm 1

shows the structure of the merge operation.

Figure 4 shows the merge process of two

nodes in a graph.

Alghorithm1- The structure of the merge

operation

Figure 4. Merge of two nodes of a graph

2.5.3. Process of Genetic Algorithm

In this section, the steps of the proposed

method are examined step-by-step and based on

the genetic algorithm for partitioning the graph.

The structure of the suggested method for

selecting nodes that can be moved to the cloud

space is as follows.

The first step: generating the initial

population

The second step: measuring the value of

the initial population using the fitness or

adaptation function

The third step: Combining two sets

having higher value

The fourth step: Random displacement

of a node in the structure of partitioned graph

The fifth step: Choosing the best nodes as

a new generation

The sixth step: Choosing the best

chromosome as the best partitioning suggestion

2.5.3.1 Production of initial population

The table of nodes for WCG weighted

graph in each column represents the node of the

graph hold as Table 1.

Table 1. Structure view of the indicators’ set

Node n Node 2 Node 1

So, the genetic algorithm uses a bit array

for the population. It means that each

chromosome is composed of a number of zero

and one values. The number of chromosome

genes depends on the number of graph nodes.

For example, if a dataset has 10 nodes, each

chromosome will have 10 genes, which is zero or

one. If the gene is one, the task associated with

this node will be run as local and if it is zero, that

is, the node-specific task will be run in the cloud.

The selecting of the genes is done randomly. For

example, if the nodes 2, 3, 4, 5, 7, and 10 are

selected, the generated chromosome will be as

shown in Table 2.

Table 2. An example for the structure of the

generated chromosome

0 1 1 0 1 0 0 0 0 1

2.5.3.2 Valuation of the population

In each chromosome, there are a number

of nodes having zero value and a number of them

has the value of one. Between each zero node

and one node, there is a cutting in the graph that

means the edge is broken between the zero node

and the one node and so divided into two parts.

So, Iv is considered for being zero or one

between each zero node and one node, IE is

considered as a cut in the edge. According to

these definitions, three indicators of cost, energy,

and response time are important in evaluation of

each chromosome.

2.5.3.2.1 Cost

Partitioning of the mobile software to find

the optimal partitioning solution will minimize

running costs in order to get the best balance

between response time, energy and transmission

and delay costs. For the cost in the proposed

structure, we follow Equation 3.

(3

)

Where, the total cost - the sum of

computing costs (local and remote) and the

reduced communication cost affects the margins.

The nodes of cloud server and the mobile device

belong to different partitions. The value of IV in

the above equation is calculated as follows.

(4

)

We are looking to find a good cut in the

WCG by which some tasks of the program is

running on the mobile side and the rest is

running on the cloud. The optimum cut

minimizes or maximizes the objective function

while it eliminates the resource restriction of the

mobile device. The objective function represents

the overall purpose of a partition, and this, for

example, may minimize the energy consumption

and the amount of transferred data and its

execution in less than an hour.

2.5.3.2.2 Response time

Communication costs depend on the size

of data transmission and network bandwidth,

while computational costs are affected by the

time of computing. If the minimum response

time is chosen as an objective function, we can

calculate the total amount of spent time in

loading as the following way.

5

Where: is the computing

time for task V on the mobile device when it runs

locally.

F: The acceleration factor is the ratio of

the implementation speed in the cloud server to

that of in the mobile device. Because computing

capacity of cloud infrastructure is stronger than

the mobile device, it always has a value greater

than one (F> 1).

: is the computing time of task V in the

off-line cloud server.

The time to load information into the cloud is

also obtained by the following equation.

(6)

Which is the amount of transmitted

or received data. BW is a wireless bandwidth to

communicate with the cloud.

In this scheme, linear programming should

provide a partitioned graph that minimizes the

total response time. The response time stored in

the partitioning scheme with regard to the layout

without partitioning is calculated as follow:

(7)

2.5.3.2.3 Energy consumption

Through Equation 7, the total amount of

energy consumed by the mobile device due to

loading is calculated.

(8

)

In which:

: determines the energy

consumption of work V on a mobile device when

it runs locally.

: determines energy

consumption of work V on a mobile device when

it is loaded in the cloud.

: is the consumed

energy used to connect the mobile device and the

cloud.

, and are mobile energy in idle /

rest, computing / implementation and sending

and receiving the information states,

respectively. Similarly, if the minimum energy

consumption is selected as the objective

function, we can calculate the total energy

consumed by the mobile device due to loading as

follows:

(9)

2.5.3.2.4 Minimum sum of weight of time, cost

and energy using linear programming

If the response time, cost and energy

consumption are combined, we can consider the

objective function of linear programming as the

following model for partitioning.

(10

)

Finally, the objective function is written

with the linear programming structure as follows.

(11

)

Minimize :

Subject :

2.5.3.3 Cross-Over Operator

In the proposed method, the cross-over

operator uses the random two-point method. In

this way, the random number t is generated. t is

considered as the first point and Length-T is

considered as the second point. Then, according

to the rule in Fig. 5, the parental genes are

combined and they produce new offspring or

chromosomes.

Figure 5. Describing how the cross-over operator

functions

Since the chromosome coding in the

problem is priority-based and based on random

numbers, the one-cutting-point operator cannot

be used alone because it is possible the repetition

occurs in the generation of newborns in the

chromosomes. To avoid this, we use an operator

called weighted-written operator, which is

actually a modified version of one-cutting-point

operator for particular states. In this operator

based on the one-cutting-point operator, a point

is randomly considered over the two

chromosomes chosen as the parent ones, and the

chromosomes are split into two parts from that

point.

2.5.3.3.4 Mutation Operator

In the actual encoding, the mutation

operator leads to random generation of a new

value in a particular position on the chromosome.

As a result of these random changes in the

chromosome population, more regions of the

exploration space are investigated and untimely

convergence (local abruptness) of the algorithm

is prevented. An example of a true mutation

operator is the random or uniform mutation.

Assuming that C = (C1, C2, …, Cn) is a

chromosome, and Ci is a gene subjected to

mutation, then a new random value in the range

of the desired gene will be replaced instead of Ci

gene in the new chromosome.

In the proposed method, the mutation

operator is performed on A % of the new

generation. In this algorithm, the mutation is

random, too, so that ‘t” number is randomly

generated. In this regard, t is considered as the

first point and n-t is considered as the second

point and the related gene is replaced. Figure 6

shows how the mutation operator functions.

Figure 6. Description for the way of mutation

operator’s functioning

After taking mentioned steps, the new

generation with higher value (less error rate) is

used for repetition and generating the next

generation. In this method, the condition for

completing the genetic algorithm is that the

number of generations should be reach to a given

value.

2.5.3.5 Selecting the next generation

Tournament method has been used for

selection. In this method, the best chromosomes

having higher value are chosen for the next

generation.

2.5.3.6 Selecting the best chromosome

The best chromosome is selected as the

best structure for partitioning the graph.

3. RESULTS

In this section, the results of implementing

the proposed method for partitioning the

application graph are examined. Matlab software

has been used in order to simulate the proposed

method, and we have used the features and tools

of this software.

3.1. Simulation parameters

Table 3 shows the characteristics of test

environment. The parameters of the Genetic

Algorithm are proposed in Table 4.

Table 3. Host properties

Processor

type

Main

memory

operating

system

Intel Core I7

3.2 GHZ
8 GB Windows 10

Table 4. Parameters of the Genetic Algorithm

Termin

ation

conditio

n

mutati

on

coeffic

ient

Selectio

n

operato

r

Numbe

r of

generat

ions

Initial

popula

tion

Number

of

generati

ons

0.1
Tourna

ment
100 100

Table 5 shows the energy consumption of

mobile device in three modes of sleep, ttransition

and processing.

Table 6 shows the cost of the three modes of

running on mobile, ttransition and running on the

cloud.

Table 5. Energy consumption

Processing

mode

Transition

mode
Sleep mode

7 j 3 j 1 j

Table 6. Cost

Run on

mobile

Transition

mode

Run on the

cloud

0.02 $ 0.5 $ 1 $

3.2. Evaluation Indicators

In each simulation, three factors have been

investigated include: response time, cost, and

energy consumption.

Response time: The actual response time

is the exact time difference between the time of

requesting of the job and the delivery time of the

conducted work to the user.

Average energy consumption:

Average energy consumption is the total amount

of energy consumed over to the number of tasks.

Cost: The cost is sum of cost for each task

plus the cost of data transfering.

3.3. The first test sample graph

In the evaluation, the tested graph has 15

tasks. The graph storage structure is as follows

(figure 7). In this structure, a 3D matrix is used

for the graph. Figure 7 shows the graph used in

the first experiment.

Figure 7. The first test graph

The first, the second and the third

dimensions are the input nodes, the destination

nodes and the weight of the edge between this

two nodes, respectively. The structure of this

matrix is as follows.

[1 1 2 2 3 4 5 6 6 8 9 12 12 12]

[2 3 4 5 6 7 8 9 10 11 12 13 14 15]

[0,29 0,2 600 1024,2 10206 0,001 675,2

10204 10206 0,001 19806 3 12000 12003]

The second matrix is also used to hold the

weight entered in each node as the runtime of the

task in the cloud.

[1555,30 137,80 1464,00 35,90 80,70 722,20

37,20 75,20 516,50 192,00 77,70 516,60 2,20

33,0 68,60]

3.4. First experiment

In this experiment, the bandwidth is 3

Mbps and the amount of increase in the speed of

processing in the cloud were considered 2 to 10

times more than local processing. The graph of

Figure 7 is used as a test graph. At first, the

function of the genetic algorithm is checked. For

this reason, the values of the fitness function are

checked over 100 generations. The more the

value of the fitness function approaches to zero,

the more favorable performance of the genetic

algorithm is achieved. In this simulation, the

mean value of the fitness function is 0.00154 and

the best or lowest value is 0.00130. In Fig. 8, the

black points represent the best value of the

fitness function and the blue points show the

mean value of the whole generation.

Figure 8. The values of the fitness function in the

graph partitioning

Figure 9. The sum of distance between each

generation of the population in the partitioning of

the graph

Figure 9 shows the total distance between

each generation of the population. The more this

distance be less, the more convergence of

responses will be better, and if the distance

between generations is zero, the algorithm ends.

In Figure 10, the best, worst, and average scores

for each generation are displayed. The more each

member of the generations has a higher value,

the more effect will have in next generation since

the Tournament selector operator has been used.

Figure 11 represents the selected nodes to run on

the cloud. Figure 12 and Figure 13 show the final

graph resulted from the partitioning by proposed

method and reference method, respectively.

Figure 10. The best, the worst, and the average

scores achieved for each generation

Figure 11. Selected nodes to run on the cloud

Figure 12. The final graph resulted from the

partitioning by proposed method

Figure 13. The final graph resulted from

the partitioning by the reference method

In Fig. 14, the yellow nodes are performed

locally, and the red nodes are performed as

offload and in the cloud. Figure 14 shows the

response time in three partitioning states

including the proposed method, completely local

method and completely in the cloud method.

Figure 14. Response time by changing the Speed

Up parameter

In Figure 14, because of the proper

function of the genetic algorithm, the partitioning

response time is lower for choosing the node or

tasks for running in the cloud. Specifically, the

time for executing tasks as locally does not

change by making change in the cloud speed, so

the local response time is constant. As the cloud

speed increases, the response time by the cloud is

reduced. But the challenge that should be

addressed is that whether the amount of

consumed energy is reduced too or not.

Figure 15. Consumption of energy by changing

the Speed Up parameter

Figure 15 shows the amount of energy

consumption in three partitioned modes

including the proposed method, completely local

method and completely in the cloud method. Due

to selecting suitable nodes for run in the cloud

environment and the holding the appropriate

nodes in the local system by the genetic

algorithm selector, the energy consumption is

lower. Specifically, executing the tasks locally

does not change with the change in cloud speed,

so the amount of local consumed energy is

constant.

3.5. Second experiment (comparing the results

of the graph)

In this experiment, the bandwidth is 3

Mbps and the amount of increase in the speed of

processing in the cloud were considered 2 to 10

times more than local processing. The graph of

Figure 7 is used as the test graph. The response

time of the proposed method and reference paper

was compared in partitioning mode. Figure 16

shows the response time in the proposed method

the reference paper.

In Figure 16, due to the proper function of

the genetic algorithm for choosing the node or

tasks for run in the cloud, the partitioning

response time is lower than the reference

method.

Figure 17 shows the energy consumption

in the proposed method and reference paper. It is

worth to note that the reference method

emphasizes on energy and cost. According to

Figure 17, it is clear that this two methods do not

differ significantly in terms of energy

consumption, but because of the proper function

of the genetic algorithm, the choice of nodes or

suitable tasks for run in the cloud, consumed

energy by proposed method is less than the

reference method.

Figure 16. Comparison of response time with

change in Speed Up parameter in proposed and

reference paper

Figure 17. Comparison of consumed energy by

changing the Speed Up parameter in the

proposed method and reference paper

3.6. The second test sample graph

The test graph in the next evaluations has

29 tasks. Figure 18 shows the graph used in the

first experiment.

Figure 18. Second test graph

3.7. Third experiment

In this experiment, the bandwidth is 3

Mbps and the amount of increase in the speed of

processing in the cloud were considered 2 to 10

times more than local processing. The graph of

Figure 18 is used as a test graph. At first, the

function of the genetic algorithm is checked.

Figure 19. The values of the fitness function in

the graph partitioning

For this reason, the values of the fitness

function are checked over 100 generations. The

more the value of the fitness function approaches

to zero, the more favorable performance of the

genetic algorithm is achieved. In this simulation,

the mean value of the fitness function is 0.00154

and the best or lowest value is 0.00130. In Fig.

19, the black points represent the best value of

the fitness function and the blue points show the

mean value of the whole generation.

Figure 20. The total distance between

generations of the population in the graph

partitioning

Figure 21. The Best, Worst, and Average scores

achieved for each generation

Figure 20 shows the total distance

between each generation of the population. The

more this distance be less, the more convergence

of responses will be better, and if the distance

between generations is zero, the algorithm ends.

In Figure 21, the best, worst, and average scores

for each generation are displayed. The more each

member of the generations has a higher value,

the more effect will have in next generation since

the Tournament selector operator has been used.

Figure 22 and Figure 23 show the final graph

resulted from the partitioning by proposed

method and reference method, respectively.

Figure 22. The final graph resulted from partitioning by the proposed method

Figure 23. The final graph resulted from the partitioning of the reference method

In Fig. 23, yellow nodes are performed

locally, and red nodes are performed in an

offload and in the cloud.

Figure 24 shows the response time in three

partitioning states including the proposed

method, completely local method and completely

in the cloud method.

In Figure 24, due to the proper function of

the genetic algorithm, the partitioning response

time for choosing the node or tasks for execution

in the cloud is lower. Specifically, the time for

executing tasks locally does not change with the

change in cloud speed, which is why the local

response time is constant. As the cloud speed

increases, the response time by the cloud is

reduced. But the challenge that should be

addressed is that whether the amount of

consumed energy is reduced too or not.

Figure 25 shows the energy consumption

in the three partitioned modes by the proposed

method, completely local method and completely

in the cloud method.

In Figure 24, due to the selecting suitable nodes

for run in the cloud environment and the holding

the appropriate nodes in the local system by the

genetic algorithm selector, the energy

consumption is lower. Specifically, executing

tasks locally does not change with the change in

cloud speed, which is why the amount of local

energy consumption is constant.

Figure 24. Response time by changing the Speed

Up parameter

Figure 25. Energy consumption by changing the

Speed Up parameter

3.8. Fourth Test (Comparing the results of

Graph 18 with the reference paper)

In this experiment, the bandwidth is 3

Mbps and the amount of increase in the speed of

processing in the cloud were considered 2 to 10

times more than local processing. The graph of

Figure 18 is used as the test graph. The response

time of the proposed method and reference paper

was compared in partitioning mode. Figure 26

shows the response time in the proposed method

the reference paper.

In Figure 26, due to the proper function of

the genetic algorithm for choosing the node or

tasks for run in the cloud, the partitioning

response time is lower than the reference

method.

Figure 27 shows the energy consumption

in the proposed method and reference paper. It is

worth to note that the reference method

emphasizes on energy and cost. According to

Figure 27, it is clear that this two methods do not

differ significantly in terms of energy

consumption, but because of the proper function

of the genetic algorithm for the choice of nodes

or suitable tasks for run in the cloud, consumed

energy by proposed method is less than the

reference method.

Figure 26. Comparison of response time with

change in Speed Up parameter in proposed and

reference methods

Figure 27. Comparison of energy consumption

by changing the Speed Up parameter in the

proposed method and reference methods

In this section, the results of the proposed

method were evaluated. Two experiments were

conducted with changing the speed of the cloud

respect to the local system. Comparing the

proposed method with the reference represented

that due to the use of the genetic algorithm and

the effect of the valuation function based on

three factors-cost, the response time and energy-

the performance of the proposed method is better

than the reference method. Specifically, the

proposed method reduces the response time and

consumed energy.

4. CONCLUSION

Mobile cloud computing is a combination

of cloud computing, mobile computing and

wireless networks that provide rich computing

resources for mobile users, network operators,

and cloud computing providers. The main

purpose of mobile cloud computing is to run

powerful mobile applications on a large number

of mobile devices.

In this paper, a method was presented for

partitioning the task graph of an application. The

purpose of this work was to optimum portioning

of tasks for local implementation and

implementing on the cloud platform. Since the

problem of large-scale graph partitioning is of

the NP-hardness, the genetic algorithm was

proposed as a selective structure in the proposed

method. In the genetic algorithm, three criteria

including cost, response time, and energy were

used as a combined target. Use of linear

programming effectively influences the optimal

performance of the genetic algorithm. The results

of the proposed method show accurate reduction

in energy consumption and the response time by

0.5% and 3%, respectively.

5. SUGGESTIONS

Use of other meta-heuristic algorithms

such as particle swarm and etc.

The effect of other parameters for quality service

(QOS) such as reliability and availability in the

fitness function.

6. REFERENCES

1. Elham Shamsi Nejad and Asadollah Shah

Ebrahimi and Alireza Hedayati, Resource

Allocation in Cloud Computing through

Valuation of Services, the National

Conference on Commercialization in Sari,

2013.

2. Farzaneh Motazaleh Hagh and Faramarz Safi,

Proposing an Efficient Algorithm for

Resource Allocation Based on Service Level

Agreement in the Cloud Computing System,

the 5th National Conference on Electrical

and Electronic Engineering, Iran, 2013.

3. M Seyyedi, P. Mohammad Poor, and.

Morgan, The Principles Governing Cloud

Computing and Service- Based Architecture

and Their Relationship at Architecture

Level, the First National Workshop on

Cloud Computing, Amirkabir University of

Technology, Tehran, 2012.

4. Ebrahimi, Farzaneh; Ahmad Farahi and

Akbar Farhudinejad, 2012; Review of

resource allocation and its importance in

cloud computing environment, the First

National Conference on Information

Technology and Computer Networks,

Payame Noor University, Tabas, 2012.

5. Elahe Dost Sadiq and Reza Asemi, A Review

of Timing Tasks in Cloud Computing, the

First National Conference on Modern

Approaches in Computer Engineering and

Data Recovery, Rudsar, 2013.

6. Ebrahim Behrooziannezhad and Rezvan Ali

Pourbeshvari, A Review of Resource

Allocation Methods in Cloud Computing

with the Aim of Reducing Time, National

Conference on Computer Engineering and

Information Technology, 2013.

7. Faramarz Safi and Hamidreza Sadrarhami, A

Review of Several Scheduling Algorithms in

Cloud Computing, National Conference on

Computer Engineering and Information

Technology Management, Tehran, Tolo

Farzin Science and Technology Co, 2014.

8. Mell P, Grance T. The NIST Definition of

Cloud Computing (Draft) U.S. Department

of Commerce,National Institute of Standards

and Technology; 2011.

9. Abolfazli S, Sanaei Z, Ahmed E, Gani A,

Buyya R. Cloud-based augmentation for

mobile devices: Motivation, taxonomies,

and open challenges. IEEE Communications

Surveys & Tutorials. 2013;

10. Sanaei Z, Abolfazli S, Gani A, Buyya RK.

Heterogeneity in Mobile Cloud Computing:

Taxonomy and Open Challenges. IEEE

Communications Surveys & Tutorials. 2013;

InPress

11. Sanaei Z, Abolfazli S, Gani A, Khokhar RH.

Tripod of Requirements in Horizontal

Heterogeneous Mobile Cloud Computing.

In: Proc. CISCO; 2012.

12. Alizadeh M, Hassan WH. Challenges and

opportunities of Mobile Cloud Computing.

In: 9th Interna-tional Conference in Wireless

Communications and Mobile Computing

Conference (IWCMC); 2013. p.660–666

13. Shiraz M, Gani A, Khokhar RH, Buyya R. A

Review on Distributed Application

Processing Frameworks in Smart Mobile

Devices for Mobile Cloud Computing. IEEE

Communications Surveys & Tutorials.

2012November;15(3):1294 – 1313

14. Chun BG, Ihm S, Maniatis P, Naik M, Patti

A. CloneCloud: Elastic execution between

mobile device and cloud. In: Proc.EuroSys.

ACM; 2011. p. 301–314.

15. J. Shneidman, C. Ng, D. C. Parkes, A.

AuYoung, A. C. Snoeren, A. Vahdat, and B.

N. Chun, "Why Markets Could (But Don't

Currently) Solve Resource Allocation

Problems in Systems," in HotOS, 2005.

16. D. C. Marinescu, “Chapter 6 – Cloud

Resource Management and Scheduling,”

Cloud Computing Theory and Practice, pp.

163-203, 2013.

17.

