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Resumen: En el campo de la computación en nube, la falta de la misma capacidad para los dispositivos, 

así como la falta de conocimiento claro sobre el número de dispositivos utilizados conducir a no utilizar 

algoritmos prácticos con facilidad, por lo que el uso de algoritmo óptimo es adecuado cuando cualquier 

dispositivo no puede ir Más allá de su capacidad máxima. También, en este trabajo, se ha considerado la 

estabilidad de la partición. De hecho, un subgrafo debe ser seleccionado en términos de conectividad de 

modo que si un número de enlaces están desconectados, su estabilidad no se perderá y el programa se 

ejecutará correctamente. En este trabajo, se presentó un método para dividir el gráfico de tareas de una 

aplicación. Dado que el problema de la partición gráfica a gran escala es de la dureza NP, el algoritmo 

genético fue propuesto como una estructura selectiva en el método propuesto. En el algoritmo genético, 

tres criterios, incluyendo el costo, el tiempo de respuesta y la energía se utilizaron como un objetivo 

combinado. El uso de la programación lineal influye efectivamente en el rendimiento óptimo del 

algoritmo genético. Los resultados del método propuesto muestran una reducción precisa del consumo de 

energía y un tiempo de respuesta del 0,5% y del 3%, respectivamente. 

 

Palabras clave: Algoritmo genético, programación lineal, particionamiento de gráficos, cloud computing 

 

Abstract: In the field of cloud computing, lack of same capacity for devices as well as the lack of clear 

knowledge on the number of used devices lead to not use of practical algorithms easily, so using optimal 

algorithm is proper when any device fails to go beyond its maximum capacity. Also, in this paper, the 

stability of partitioning has been considered. In fact, a subgraph must be selected in terms of connectivity 

so that if a number of links are disconnected, its stability will not be missed and the program will run 

correctly. In this paper, a method was presented for partitioning the task graph of an application. Since the 

problem of large-scale graph partitioning is of the NP-hardness, the genetic algorithm was proposed as a 

selective structure in the proposed method. In the genetic algorithm, three criteria including cost, response 

time, and energy were used as a combined target. Use of linear programming effectively influences the 



 

optimal performance of the genetic algorithm. The results of the proposed method show accurate 

reduction in energy consumption and the response time by 0.5% and 3%, respectively. 
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1. INTRODUCTION 

Today, the extension of knowledge 

boundaries is dependent on the development of 

computational technologies. As a starting point 

for these technologies, we can refer to computer 

network emergence in which only a few 

computers were connected. Subsequently, these 

small networks were connected to each other and 

created the Internet that the networks were 

shared on the Internet by which the concept of a 

global spreadsheet was created through which 

information was shared among users. Cloud 

computing is a new way of providing computing 

resources and a model for providing service over 

the Internet. In fact, cloud computing provides 

the ability to save on IT resources and boost 

computing power, so that processing power 

becomes an ever-reaching tool. 

Mobile cloud computing is a combination 

of cloud computing, mobile computing and 

wireless networks that provide rich computing 

resources for mobile users, network operators, 

and cloud computing providers. The main 

purpose of mobile cloud computing is to run 

powerful mobile applications on a large number 

of mobile devices. . In the mobile cloud 

computing, processing is done in the cloud, data 

is also stored in the cloud, and mobile serves as a 

medium for displaying the information. With 

cloud computing maturing, mobile cloud loading 

has been become a hopeful way to reduce the 

runtime and battery life of mobile devices. Its 

main idea is to boost the run by transferring 

heavy computing from mobile devices to cloud 

servers, and then getting results from them 

through wireless networks. Loading is an 

effective way to overcome the limited resources 

and features of mobile phones since it can rid 

them of massive computing and increase the 

performance of mobile applications. Loading all 

of the computing components of an application 

remotely is not always necessary or effective. In 

mobile cloud computing, the cell phone should 

intelligently determine which part of the software 

should be computed on the mobile or loaded into 

the cloud. When mobile computing is 

increasingly interacting with the cloud, a number 

of methods, for example, Maui [1] and Clone 

Cloud [2], are provided with the aim of loading 

some parts of the mobile software in the cloud. 

In order to achieve a good performance, it must 

be decided that which parts of the software 

should be loaded into a remote cloud, and which 

parts of that should be run locally on mobile 

devices, so that the total execution cost have 

been be minimized. The main costs for mobile 

loading systems are the cost of local computing 

and remote execution, and communication costs 

mean additional communication between the 

mobile device and the cloud remotely. The 

computing can naturally be described as a graph 

whose crest represents computational costs, and 

its edge reflects communication costs [3]. By 

partitioning the vertices of a graph, we can 

divide computing among the local mobile 

processors and remote cloud servers. The 

traditional algorithm for graph partitioning (for 

example, [4], [5], [6], and [7]) cannot be used 

directly in mobile loading systems, because they 

ignore the weight of each node and only consider 

the margin weight of the graphs. 

Cloud computing is the deepest distributed 

computing technology that is rapidly penetrating 

in various aspects of human life, aimed at 

providing easy access to integrated clusters and a 

unit of computing resources (storage, processing 

and storage) on demand, which can be dispersed 

as conditional elastic with minimal investment, 

complexity and interaction. [8]. Users use the 

computing and resources stored in the cloud, and 

It is possible to access them at any time and 

place by any device connected to the Internet 

without the need for additional costs or condition 

and, for example, the photos, songs and personal 

documents in the cloud is available without any 

time or place restrictions [9]. 

Mobile cloud computing is a technology 

that directs diverse clouds and network resources 

toward unlimited capability, storage and access 

without considering the time and space for many 

mobile devices by the Internet [10]. Cloud 

computing brings the user's attention to integral 

computing by reducing or eliminating confusion, 

unusual actions, inaccurate and out-of-frame 

results [11], which provides the users of mobile 

cloud computing with greater benefits over 

mobile computing and cloud computing. [12] 

Researchers use diverse design patterns in 

mobile cloud computing to design and optimize 

cloud resources on smartphones as a suggested 

framework for processing distributed 

applications on smartphone [13] for example, 

clone cloud [14]. 

 

 

2.  MATERIALS AND METHODS 



 

The challenges for graph partitioning 

include: 

Partitioning software is very important for 

designing an affordable and efficient adaptive 

load system. Some critical issues about the 

partitioning problem are: 

Weighing: When some parts of the 

software are chosen as transfer mode, we need the 

weight scale of each piece of used software, 

including memory, processing time, and 

bandwidth usage. Communication overhead is 

introduced by telecommunications between a 

mobile device and a cloud server. 

Real-time compatibility: since the 

bandwidth of existing networks in wireless 

environments is different, the partitioning 

algorithms presented in previous articles 

assuming a fixed bandwidth for a mobile 

operating system are inappropriate. Partitioning 

algorithms must match the network and device 

changes. Since network conditions can be only 

measured at runtime, the partitioning algorithm 

should be an online process and in real time. 

Partition Efficiency: Partitioning 

decisions for simple applications (for example, an 

alarm clock) are not difficult in real time, but 

some complex applications (for example, speech / 

face recognition) that contains a lot of methods, 

require a very efficient algorithm for real-time 

partitioning. 

 

2.1. Software partitioning architecture 

To solve these challenges, the workflow 

of an environment-adaptive partitioning process 

is presented. It starts with a program design that 

can be divided into multiple tasks through static 

and dynamic analysis technologies. After that, 

we design a weighted compound graph called 

WCG for mobile software. Then, the partitioning 

operation of the graph is performed. 

 

 
 

By extracting outputs of this algorithm, 

we can get initial partitioning results for response 

time or optimization of energy consumption. 

During the implementation process, if the mobile 

environment changes, and these changes reach or 

exceed a certain threshold, the software graph 

will be partitioned again according to the new 

parameters. So, ultimately, elastic partitioning 

can be understood as a condition-conscious and 

adaptive environment one. Here, in the context 

of a mobile environment, it does not only include 

mobile computing resources inside the device, 

battery level, CPU, memory, etc., but also 

includes a mobile external environment, such as 

network connectivity and Internet speed. After 

partitioning, it loads automatically the distributed 

applications requiring remote implementation to 

a cloud server and does the rest locally on a 

mobile device according to partitioning results. 

Therefore, this problem whether the certain parts 

of an application is loaded into the cloud or not 

depends on the following factors: the CUP speed 

of the mobile device, the network bandwidth, the 

size of the data transfer, and the speed of the 

cloud server. Given these factors, we create a 

WCG with regard to computational and 

communication costs, and we design a new 

partitioning algorithm, especially for mobile 

loading systems. 

 

2.2. Software Task Classification 

Different applications are created in a 

mobile device by some processes, each of which 

consists of several different tasks. Since all 

software tasks are not suitable for remote 



 

implementation, they must be checked and 

detected: 

Non-transferable tasks: Some tasks must 

be unconditionally run locally on a mobile 

device, or because the transmission of the data 

demands extraordinary time and energy or 

because these tasks must access the local 

components (camera, GPS, UI, accelerometer or 

other sensors, etc.) [1]. Tasks that may cause 

security issues when uploaded in a different 

location (e.g., e-commerce) should not be loaded. 

Local processing consumes the battery power of 

the mobile device, luckily, there is no 

communication or delay cost. 

Loadable tasks: Some components of this 

software are flexible, which can either be 

processed locally on a mobile device processor, 

or remotely in a cloud infrastructure. Many tasks 

can be included in this category, and the decision 

for loading depends on whether the 

communication costs are greater than the 

difference between local and remote costs. We 

do not need to make a decision about loading for 

the loadable components. However, for loadable 

decisions, since loading all tasks of an 

application into the cloud remotely in any 

circumstances is not necessary or effective, it is 

worth to examine which tasks need to be done 

locally on the mobile device and which tasks 

needs to be done remotely on the cloud based on 

available networks, time loading responses, or 

energy consumption. The mobile device must 

adopt a loading decision based on the outcome of 

a dynamic optimization problem. 

 

2.3. Partitioning models 

A weighted graph can be constructed for a 

variety of applications, but one of the important 

problems in this regard is the selection of the 

topology for desired graph. Construction of a 

weighted graph for software partitioning is of 

importance. The mobile software can be 

displayed as a list of partial tasks, and designed 

in different topologies as shown in Figure 1. 

Where each node represents a task in the 

software running either on mobile device or on 

the cloud space for further execution [15]. 

 

 

Figure 1. Different topologies for the task flow 

graph 

 

 

Examining different types of topologies in 

Figure 1, we have: 

(a) Only an active node: represents a 

whole application (without partitioning). Such 

topology is often moderated by the full load plan, 

which can also be viewed as an example of 

server software. In this case, the entire program 

is transmitted to a remote server, including the 

complete code transfer and program mode. The 

main drawback of this type of topology is the 

low flexibility and execution speed of high 

volume tasks. 

          (b) Linear Topology: represents an 

orderly list of tasks as sectional. Each task is 

executed by receiving output data generated by 

another task as input data [16]. 

(c) Loop-based topology: This structure 

is used for a loop-based application, in which 

many features are recognized by repeating an 

executable loop, such as all online social 

applications. The process flow is characterized 

by a graph that consists of a given cycle. 

(d)Tree topology: This topology displays 

the tasks in a hierarchical manner and uses the 

tree for this structure. Primitive node is the 

module program or main function. 

(e) Layer topology: Represents a 

topology based on a network of tasks. 

 

The partitioning layout should be able to 

achieve a proper partitioning for loading the 

computing as local and remote execution. 

Different partitions can lead to various costs, and 

the total cost due to loading depends on several 

factors, including device operating system, 

networks, clouds, and workload. Therefore, this 

program may have different optimized partitions 

for diverse mobile environments and workloads. 

 

2.4. constructing the graph combining 

weighted tasks 

There are two types of cost for loading 

systems: 1- computing cost that is run on 

software tasks locally or remotely (including cost 

of memory, processing time, etc.), and 2- 

communicational costs for task interactions (in 

concern with the movement of data and 

necessary messages). Even this work can dictate 

a lot of cost on the mobile device and the cloud 

in terms of running time and energy 

consumption. Because cloud servers due to 

having a powerful configuration typically run 

faster than mobile devices, they can save energy 

and improve the performance when loading some 



 

parts of the computing to a remote server. 

However, when their vertices are assigned to 

different parties, the interaction between them 

leads to additional communicational costs. 

Therefore, we try to find the optimal assignment 

of vertices for graph partitioning and loading of 

computing through transaction of computational 

costs with communicational costs. Graph naming 

is widely used to describe the dependency of data 

in a computing, in which each vertex represents a 

task, and each of the edges represents the call 

relationship from the caller to the receiver. 

 

 
Figure 2. CG graph structure 

 

 

Figure 2 shows a graph for combination of 

weighted tasks consisting of six tasks. 

Computational cost is shown by the vertices, 

while communication cost is expressed by the 

edge. The dependence of the tasks of a program 

and its associated cost has been determined as a 

distant graph. If the graph G = (V, E) is 

considered graph in which the vertices V = (v1, 

v2, ..., vN) represent that the number of software 

tasks is N and the edge e (vi, vj) ∈ E indicate the 

number of requests and data access between the 

nodes Vi and Vj, in which the vertices Vi and Vj 

are neighbors. 

The structure used in the proposed method 

called WCG is shown in Figure 3. 

 

 

 
Figure 3. WCG Graph structure 

 

 

Each vertex v ∈ V has weight containing 

two cost, which is represented by equation (1). 

 

(1)  
 

Where  and  

represents the computational cost of executing 

task V locally on a mobile device and remotely 

on the cloud, respectively. The edge set E ⊂ V × 

V represents the communicational cost among 

tasks. The weight of an edge w (e (vi, vj)) is as 

follows: 

(2) 

 
 

Which it includes the input and output 

communicational cost when the Vi and Vj tasks 

are executed on different sides, and it depends 

closely on the bandwidth of the network (upload 

of the bandwidth B, upload and download of the 

bandwidth) and transmitted data. A decision is 

made on a sample loading by a cut in WCG, 

which divides the vertices into two distinct sets; 

one represents the tasks performed on the mobile 

device and the other is loaded onto the remote 

server. Hence, considering the optimal loading 

decision is equivalent to the WCG partitioning so 

that cost, energy, and response time are 

minimized. Red dot –line in Figures 1 and 2 is a 

possible partitioning cut showing the division of 

the computational workload between the mobile 

device and the cloud. 

VL and VC are sets of vertices in which VL 

is a set of local tasks executed locally, and VC is 

a collection of tasks for the cloud, i.e. those tasks 

loaded directly into the cloud. We have VL ∩ VC 

= ∅ and VL ∪ VC = V. 

 

2.5. Partitioning Algorithm for Off-Line 

proposed loading  

In this section, the GALP_OP algorithm is 

introduced for the WCG weighted graph having 

an arbitrary topology. The GALP_OP algorithm 

considers a WCG graph as an input in which 

each node represents the operation / computation 

of a program and their interrelationships are 

considered as the edges. Each node has two 

costs: the first one is the cost of doing the 

operation locally (for example, on a mobile 

phone), and the second one is the cost of doing it 

elsewhere (for example, in the cloud). The 

weight of the edge represents the ratio of 

communication cost to that of loading computing 

cost. It is assumed that the cost of 

communication between operations in the same 

place is negligible. The result includes 



 

information about costs and reports that should 

be done locally and then uploaded. 

 

2.5.1.  The steps of the GALP_PO method 

The GALP_OP algorithm can be divided 

into two stages as follows. 

 

2.5.2.  Merge 

Definition: If , 

therefore, s and t can be merged into the 

following form: 

1) Select the s and t nodes. 

2) The s and t nodes are replaced by the 

new node Xs,t. Therefore, all edges were 

previously attached to s or t node are now 

connected to X node, except the edges between s 

and t nodes. 

3) The output edges of s and t reaching a 

common node are integrated together and form 

an edge. The weight of the X node is equal to the 

sum of the weights of s and t nodes. Algorithm 1 

shows the structure of the merge operation. 

Figure 4 shows the merge process of two 

nodes in a graph. 

 

 
Alghorithm1- The structure of the merge 

operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Merge of two nodes of a graph 

 

 

 

2.5.3.  Process of Genetic Algorithm 

In this section, the steps of the proposed 

method are examined step-by-step and based on 

the genetic algorithm for partitioning the graph. 

The structure of the suggested method for 

selecting nodes that can be moved to the cloud 

space is as follows. 

The first step: generating the initial 

population 

The second step: measuring the value of 

the initial population using the fitness or 

adaptation function 

The third step: Combining two sets 

having higher value 

The fourth step: Random displacement 

of a node in the structure of partitioned graph  

The fifth step: Choosing the best nodes as 

a new generation 

The sixth step: Choosing the best 

chromosome as the best partitioning suggestion 

 

2.5.3.1  Production of initial population 

The table of nodes for WCG weighted 

graph in each column represents the node of the 

graph hold as Table 1. 

 

Table 1. Structure view of the indicators’ set 

Node n .... Node 2 Node 1 

 

So, the genetic algorithm uses a bit array 

for the population. It means that each 



 

chromosome is composed of a number of zero 

and one values. The number of chromosome 

genes depends on the number of graph nodes. 

For example, if a dataset has 10 nodes, each 

chromosome will have 10 genes, which is zero or 

one. If the gene is one, the task associated with 

this node will be run as local and if it is zero, that 

is, the node-specific task will be run in the cloud. 

The selecting of the genes is done randomly. For 

example, if the nodes 2, 3, 4, 5, 7, and 10 are 

selected, the generated chromosome will be as 

shown in Table 2. 

 

Table 2. An example for the structure of the 

generated chromosome 

0 1 1 0 1 0 0 0 0 1 

 

 

2.5.3.2  Valuation of the population 

In each chromosome, there are a number 

of nodes having zero value and a number of them 

has the value of one. Between each zero node 

and one node, there is a cutting in the graph that 

means the edge is broken between the zero node 

and the one node and so divided into two parts. 

So, Iv is considered for being zero or one 

between each zero node and one node, IE is 

considered as a cut in the edge. According to 

these definitions, three indicators of cost, energy, 

and response time are important in evaluation of 

each chromosome. 

 

 

2.5.3.2.1  Cost 

Partitioning of the mobile software to find 

the optimal partitioning solution will minimize 

running costs in order to get the best balance 

between response time, energy and transmission 

and delay costs. For the cost in the proposed 

structure, we follow Equation 3. 

 

(3

) 

 
 

Where, the total cost - the sum of 

computing costs (local and remote) and the 

reduced communication cost affects the margins. 

The nodes of cloud server and the mobile device 

belong to different partitions. The value of IV in 

the above equation is calculated as follows. 

 

(4

) 
 

 

We are looking to find a good cut in the 

WCG by which some tasks of the program is 

running on the mobile side and the rest is 

running on the cloud. The optimum cut 

minimizes or maximizes the objective function 

while it eliminates the resource restriction of the 

mobile device. The objective function represents 

the overall purpose of a partition, and this, for 

example, may minimize the energy consumption 

and the amount of transferred data and its 

execution in less than an hour. 

 

2.5.3.2.2  Response time 

Communication costs depend on the size 

of data transmission and network bandwidth, 

while computational costs are affected by the 

time of computing. If the minimum response 

time is chosen as an objective function, we can 

calculate the total amount of spent time in 

loading as the following way. 

 

5 
 

 

Where:  is the computing 

time for task V on the mobile device when it runs 

locally. 

F: The acceleration factor is the ratio of 

the implementation speed in the cloud server to 

that of in the mobile device. Because computing 

capacity of cloud infrastructure is stronger than 

the mobile device, it always has a value greater 

than one (F> 1). 

: is the computing time of task V in the 

off-line cloud server. 

The time to load information into the cloud is 

also obtained by the following equation. 

 

(6) 
 

 

Which  is the amount of transmitted 

or received data. BW is a wireless bandwidth to 

communicate with the cloud. 

In this scheme, linear programming should 

provide a partitioned graph that minimizes the 

total response time. The response time stored in 

the partitioning scheme with regard to the layout 

without partitioning is calculated as follow: 

 

(7) 

 
 

2.5.3.2.3  Energy consumption 



 

Through Equation 7, the total amount of 

energy consumed by the mobile device due to 

loading is calculated. 

 

(8

) 
 

 

In which: 

: determines the energy 

consumption of work V on a mobile device when 

it runs locally. 

: determines energy 

consumption of work V on a mobile device when 

it is loaded in the cloud. 

: is the consumed 

energy used to connect the mobile device and the 

cloud. 

,  and  are mobile energy in idle / 

rest, computing / implementation and  sending 

and receiving the information states, 

respectively. Similarly, if the minimum energy 

consumption is selected as the objective 

function, we can calculate the total energy 

consumed by the mobile device due to loading as 

follows:   

 

(9) 

    
 

2.5.3.2.4 Minimum sum of weight of time, cost 

and energy using linear programming 

If the response time, cost and energy 

consumption are combined, we can consider the 

objective function of linear programming as the 

following model for partitioning. 

 

 

(10

) 
 

 

Finally, the objective function is written 

with the linear programming structure as follows. 

(11

) 

 

Minimize : 

 
 

Subject : 

 

 

 

 

 

2.5.3.3  Cross-Over Operator  

In the proposed method, the cross-over 

operator uses the random two-point method. In 

this way, the random number t is generated. t is 

considered as the first point and Length-T is 

considered as the second point. Then, according 

to the rule in Fig. 5, the parental genes are 

combined and they produce new offspring or 

chromosomes. 

 

 
Figure 5. Describing how the cross-over operator 

functions 

Since the chromosome coding in the 

problem is priority-based and based on random 

numbers, the one-cutting-point operator cannot 

be used alone because it is possible the repetition 

occurs in the generation of newborns in the 

chromosomes. To avoid this, we use an operator 

called weighted-written operator, which is 

actually a modified version of one-cutting-point 

operator for particular states. In this operator 

based on the one-cutting-point operator, a point 

is randomly considered over the two 

chromosomes chosen as the parent ones, and the 

chromosomes are split into two parts from that 

point. 

 

2.5.3.3.4  Mutation Operator  

In the actual encoding, the mutation 

operator leads to random generation of a new 

value in a particular position on the chromosome. 

As a result of these random changes in the 

chromosome population, more regions of the 

exploration space are investigated and untimely 

convergence (local abruptness) of the algorithm 

is prevented. An example of a true mutation 

operator is the random or uniform mutation. 

Assuming that C = (C1, C2, …, Cn) is a 

chromosome, and Ci is a gene subjected to 

mutation, then a new random value in the range 

of the desired gene will be replaced instead of Ci 

gene in the new chromosome.  

In the proposed method, the mutation 

operator is performed on A % of the new 



 

generation. In this algorithm, the mutation is 

random, too, so that ‘t” number is randomly 

generated. In this regard, t is considered as the 

first point and n-t is considered as the second 

point and the related gene is replaced. Figure 6 

shows how the mutation operator functions. 

 

 
 

Figure 6. Description for the way of mutation 

operator’s functioning 

 

 

 

After taking mentioned steps, the new 

generation with higher value (less error rate) is 

used for repetition and generating the next 

generation. In this method, the condition for 

completing the genetic algorithm is that the 

number of generations should be reach to a given 

value. 

 

2.5.3.5  Selecting the next generation 

Tournament method has been used for 

selection. In this method, the best chromosomes 

having higher value are chosen for the next 

generation. 

 

2.5.3.6  Selecting the best chromosome 

The best chromosome is selected as the 

best structure for partitioning the graph. 

 

 

3.  RESULTS 

In this section, the results of implementing 

the proposed method for partitioning the 

application graph are examined. Matlab software 

has been used in order to simulate the proposed 

method, and we have used the features and tools 

of this software. 

 

 

3.1.  Simulation parameters 

Table 3 shows the characteristics of test 

environment. The parameters of the Genetic 

Algorithm are proposed in Table 4. 

 

 

Table 3. Host properties 

Processor 

type 

Main 

memory 

operating 

system  

Intel Core I7  

3.2  GHZ 
8 GB Windows 10 

 

 

 

Table 4. Parameters of the Genetic Algorithm 

Termin

ation 

conditio

n 

mutati

on 

coeffic

ient 

Selectio

n 

operato

r 

Numbe

r of 

generat

ions 

Initial 

popula

tion 

Number 

of 

generati

ons 

0.1 
Tourna

ment 
100 100 

 

 

Table 5 shows the energy consumption of 

mobile device in three modes of sleep, ttransition 

and processing. 

Table 6 shows the cost of the three modes of 

running on mobile, ttransition and running on the 

cloud. 

 

Table 5.  Energy consumption 

Processing 

mode 

Transition 

mode 
Sleep mode 

7 j 3 j 1 j 

 

Table 6. Cost 

Run on 

mobile 

Transition 

mode 

Run on the 

cloud 

0.02 $ 0.5 $ 1 $ 

 

 

3.2.  Evaluation Indicators 

In each simulation, three factors have been 

investigated include: response time, cost, and 

energy consumption. 

Response time: The actual response time 

is the exact time difference between the time of 

requesting of the job and the delivery time of the 

conducted work to the user. 

Average energy consumption:

Average energy consumption is the total amount 

of energy consumed over to the number of tasks. 

Cost: The cost is sum of cost for each task 

plus the cost of data transfering. 

 

3.3.  The first test sample graph  

In the evaluation, the tested graph has 15 

tasks. The graph storage structure is as follows 

(figure 7). In this structure, a 3D matrix is used 

for the graph. Figure 7 shows the graph used in 

the first experiment. 

 



 

 
Figure 7. The first test graph 

 

The first, the second and the third 

dimensions are the input nodes, the destination 

nodes and the weight of the edge between this 

two nodes, respectively. The structure of this 

matrix is as follows. 

[1 1 2 2 3 4 5 6 6 8 9 12 12 12] 

[2 3 4 5 6 7 8 9 10 11 12 13 14 15] 

[0,29 0,2 600 1024,2 10206 0,001 675,2 

10204 10206 0,001 19806 3 12000 12003] 

The second matrix is also used to hold the 

weight entered in each node as the runtime of the 

task in the cloud. 

[1555,30 137,80 1464,00 35,90 80,70 722,20 

37,20 75,20 516,50 192,00 77,70 516,60 2,20 

33,0 68,60] 

 

 

 

3.4.  First experiment 

In this experiment, the bandwidth is 3 

Mbps and the amount of increase in the speed of 

processing in the cloud were considered 2 to 10 

times more than local processing. The graph of 

Figure 7 is used as a test graph. At first, the 

function of the genetic algorithm is checked. For 

this reason, the values of the fitness function are 

checked over 100 generations. The more the 

value of the fitness function approaches to zero, 

the more favorable performance of the genetic 

algorithm is achieved. In this simulation, the 

mean value of the fitness function is 0.00154 and 

the best or lowest value is 0.00130. In Fig. 8, the 

black points represent the best value of the 

fitness function and the blue points show the 

mean value of the whole generation. 

 

 
Figure 8. The values of the fitness function in the 

graph partitioning 

 

 

 
Figure 9. The sum of distance between each 

generation of the population in the partitioning of 

the graph 

 

Figure 9 shows the total distance between 

each generation of the population. The more this 

distance be less, the more convergence of 

responses will be better, and if the distance 

between generations is zero, the algorithm ends. 

In Figure 10, the best, worst, and average scores 

for each generation are displayed. The more each 

member of the generations has a higher value, 

the more effect will have in next generation since 

the Tournament selector operator has been used. 

Figure 11 represents the selected nodes to run on 

the cloud. Figure 12 and Figure 13 show the final 

graph resulted from the partitioning by proposed 

method and reference method, respectively. 

 

 



 

 
Figure 10. The best, the worst, and the average 

scores achieved for each generation 

 

 

 
Figure 11. Selected nodes to run on the cloud 

 

 

 
Figure 12. The final graph resulted from the 

partitioning by proposed method 

 
 

Figure 13. The final graph resulted from 

the partitioning by the reference method 

In Fig. 14, the yellow nodes are performed 

locally, and the red nodes are performed as 

offload and in the cloud. Figure 14 shows the 

response time in three partitioning states 

including the proposed method, completely local 

method and completely in the cloud method. 

 

 
Figure 14. Response time by changing the Speed 

Up parameter 

 

In Figure 14, because of the proper 

function of the genetic algorithm, the partitioning 

response time is lower for choosing the node or 

tasks for running in the cloud. Specifically, the 

time for executing tasks as locally does not 

change by making change in the cloud speed, so 

the local response time is constant. As the cloud 

speed increases, the response time by the cloud is 

reduced. But the challenge that should be 

addressed is that whether the amount of 

consumed energy is reduced too or not. 

 

 



 

 
Figure 15. Consumption of energy by changing 

the Speed Up parameter 

 

Figure 15 shows the amount of energy 

consumption in three partitioned modes 

including the proposed method, completely local 

method and completely in the cloud method. Due 

to selecting suitable nodes for run in the cloud 

environment and the holding the appropriate 

nodes in the local system by the genetic 

algorithm selector, the energy consumption is 

lower. Specifically, executing the tasks locally 

does not change with the change in cloud speed, 

so the amount of local consumed energy is 

constant. 

 

3.5. Second experiment (comparing the results 

of the graph) 

In this experiment, the bandwidth is 3 

Mbps and the amount of increase in the speed of 

processing in the cloud were considered 2 to 10 

times more than local processing. The graph of 

Figure 7 is used as the test graph. The response 

time of the proposed method and reference paper 

was compared in partitioning mode. Figure 16 

shows the response time in the proposed method 

the reference paper. 

In Figure 16, due to the proper function of 

the genetic algorithm for choosing the node or 

tasks for run in the cloud, the partitioning 

response time is lower than the reference 

method. 

Figure 17 shows the energy consumption 

in the proposed method and reference paper. It is 

worth to note that the reference method 

emphasizes on energy and cost. According to 

Figure 17, it is clear that this two methods do not 

differ significantly in terms of energy 

consumption, but because of the proper function 

of the genetic algorithm, the choice of nodes or 

suitable tasks for run in the cloud, consumed 

energy by proposed method is less than the 

reference method. 

 

 
Figure 16. Comparison of response time with 

change in Speed Up parameter in proposed and 

reference paper 

 

 
Figure 17. Comparison of consumed energy by 

changing the Speed Up parameter in the 

proposed method and reference paper 

 

3.6. The second test sample graph 

The test graph in the next evaluations has 

29 tasks. Figure 18 shows the graph used in the 

first experiment. 

 

 
Figure 18. Second test graph 

 

3.7.  Third experiment 

In this experiment, the bandwidth is 3 

Mbps and the amount of increase in the speed of 

processing in the cloud were considered 2 to 10 

times more than local processing. The graph of 



 

Figure 18 is used as a test graph. At first, the 

function of the genetic algorithm is checked.  

 

 
Figure 19. The values of the fitness function in 

the graph partitioning 

 

For this reason, the values of the fitness 

function are checked over 100 generations. The 

more the value of the fitness function approaches 

to zero, the more favorable performance of the 

genetic algorithm is achieved. In this simulation, 

the mean value of the fitness function is 0.00154 

and the best or lowest value is 0.00130. In Fig. 

19, the black points represent the best value of 

the fitness function and the blue points show the 

mean value of the whole generation. 

 

 

Figure 20. The total distance between 

generations of the population in the graph 

partitioning 

 

 
Figure 21. The Best, Worst, and Average scores 

achieved for each generation 

 

Figure 20 shows the total distance 

between each generation of the population. The 

more this distance be less, the more convergence 

of responses will be better, and if the distance 

between generations is zero, the algorithm ends. 

In Figure 21, the best, worst, and average scores 

for each generation are displayed. The more each 

member of the generations has a higher value, 

the more effect will have in next generation since 

the Tournament selector operator has been used. 

Figure 22 and Figure 23 show the final graph 

resulted from the partitioning by proposed 

method and reference method, respectively. 



 

 
Figure 22. The final graph resulted from partitioning by the proposed method 

 
Figure 23. The final graph resulted from the partitioning of the reference method 

 

In Fig. 23, yellow nodes are performed 

locally, and red nodes are performed in an 

offload and in the cloud. 

Figure 24 shows the response time in three 

partitioning states including the proposed 

method, completely local method and completely 

in the cloud method. 

In Figure 24, due to the proper function of 

the genetic algorithm, the partitioning response 

time for choosing the node or tasks for execution 

in the cloud is lower. Specifically, the time for 

executing tasks locally does not change with the 

change in cloud speed, which is why the local 

response time is constant. As the cloud speed 

increases, the response time by the cloud is 

reduced. But the challenge that should be 

addressed is that whether the amount of 

consumed energy is reduced too or not. 

Figure 25 shows the energy consumption 

in the three partitioned modes by the proposed 

method, completely local method and completely 

in the cloud method. 



 

In Figure 24, due to the selecting suitable nodes 

for run in the cloud environment and the holding 

the appropriate nodes in the local system by the 

genetic algorithm selector, the energy 

consumption is lower. Specifically, executing 

tasks locally does not change with the change in 

cloud speed, which is why the amount of local 

energy consumption is constant. 

 

 

 
Figure 24. Response time by changing the Speed 

Up parameter 

 

 

 
Figure 25. Energy consumption by changing the 

Speed Up parameter 

 

 

3.8.  Fourth Test (Comparing the results of 

Graph 18 with the reference paper) 

In this experiment, the bandwidth is 3 

Mbps and the amount of increase in the speed of 

processing in the cloud were considered 2 to 10 

times more than local processing. The graph of 

Figure 18 is used as the test graph. The response 

time of the proposed method and reference paper 

was compared in partitioning mode. Figure 26 

shows the response time in the proposed method 

the reference paper. 

In Figure 26, due to the proper function of 

the genetic algorithm for choosing the node or 

tasks for run in the cloud, the partitioning 

response time is lower than the reference 

method. 

Figure 27 shows the energy consumption 

in the proposed method and reference paper. It is 

worth to note that the reference method 

emphasizes on energy and cost. According to 

Figure 27, it is clear that this two methods do not 

differ significantly in terms of energy 

consumption, but because of the proper function 

of the genetic algorithm for the choice of nodes 

or suitable tasks for run in the cloud, consumed 

energy by proposed method is less than the 

reference method. 

 

 

 
Figure 26. Comparison of response time with 

change in Speed Up parameter in proposed and 

reference methods 

 

 

 
Figure 27. Comparison of energy consumption 

by changing the Speed Up parameter in the 

proposed method and reference methods 

 

In this section, the results of the proposed 

method were evaluated. Two experiments were 

conducted with changing the speed of the cloud 

respect to the local system. Comparing the 

proposed method with the reference represented 

that due to the use of the genetic algorithm and 

the effect of the valuation function based on 



 

three factors-cost, the response time and energy- 

the performance of the proposed method is better 

than the reference method. Specifically, the 

proposed method reduces the response time and 

consumed energy. 

 

 

4. CONCLUSION 

Mobile cloud computing is a combination 

of cloud computing, mobile computing and 

wireless networks that provide rich computing 

resources for mobile users, network operators, 

and cloud computing providers. The main 

purpose of mobile cloud computing is to run 

powerful mobile applications on a large number 

of mobile devices. 

In this paper, a method was presented for 

partitioning the task graph of an application. The 

purpose of this work was to optimum portioning 

of tasks for local implementation and 

implementing on the cloud platform. Since the 

problem of large-scale graph partitioning is of 

the NP-hardness, the genetic algorithm was 

proposed as a selective structure in the proposed 

method. In the genetic algorithm, three criteria 

including cost, response time, and energy were 

used as a combined target. Use of linear 

programming effectively influences the optimal 

performance of the genetic algorithm. The results 

of the proposed method show accurate reduction 

in energy consumption and the response time by 

0.5% and 3%, respectively. 

 

5. SUGGESTIONS 

Use of other meta-heuristic algorithms 

such as particle swarm and etc. 

The effect of other parameters for quality service 

(QOS) such as reliability and availability in the 

fitness function. 
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