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Abstract. Electron acceleration by a chirped laser pulse is studied numerically in the presence of helical 

magnetic wiggler in vacuum. The type of chirp is linear and positive. It is shown that for specific value of 

chirp parameter, inverse free-electron resonance condition can be maintained for longer duration and electron 

can gain much higher energy. It is shown that chirp parameter, the initial phase of laser and laser intensity 

have a strong influence on the electron acceleration. 
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1. INTRODUCTION 

Recent developments in laser technology provide 

the possibility for fulfillment of experimental tests 

about electron acceleration designs with laser 

(Singh, 2004) (Bingham, Mendonca, & Shukla, 

2004). The interaction of inverse free-electron 

laser (IFEL) as a laser acceleration process in the 

vacuum was suggested in 1970 with a high 

acceleration Gradient (Palmer, 1972) (Courant, 

Pellegrine & Zakowicz, 1985). Producing the first 

inverse free-electron laser, the first experimental 

work was begun at Colombia University in 1990 

(Wernick & Marchal, 1992), and it was continued 

using laser pulse CO2, power around GW and 

nanosecond pulse durability in Brookhaven 

National Laboratory (Van Steenbergen, 

Sandweiss, & Fang, 1996). 

2.ELECTRON DYNAMICS 

In the inverse free-electron laser, the snip of 

electron and laser beam is diffused in the magnetic 

field, called wiggler, in the vacuum space. 

Wiggler results in a frequency in the electron path 

in a transverse direction. In case the magnetic 

field of the laser pulse involves a component in 

the direction of the electron, due to the sign of the 

laser pulse magnetic field (the relative phase of 

the electron), the field can accelerate the electron 

or be accelerated by that. In order to obtain and 

exchange the energy during the wiggler, the 

resonance condition (Marshal, 1985) (Roberson& 

Sprangle, 1989) in the free-electron laser 𝛾2 =
(1 + 𝐾2)𝜆𝑤 2𝜆𝑙⁄  should be satisfied, where 𝜆𝑙, 

𝜆𝑤, 𝐾 = 𝑒𝐵𝑤𝑘𝑤 2𝜋𝑚𝑐⁄  are the laser wavelength, 

wiggler wavelength, and wiggler parameter, 

respectively. 𝐵𝑤, 𝑚, 𝑐 are the magnetic wiggler 

amplitude, electron mass and the speed of light, 

respectively. 

One of the main constraints of this acceleration 

scheme is the dephasing of the electron compared 

to the laser pulse. the resonance condition of the 

free-electron laser cannot be maintained for a long 

time if the energy of the electron increases. This 

problem can be solved in two different ways: the 

duration and (or) the amplitude of the magnetic 

field slowly changes (Singhand & Tripathi, 2004) 

(Moore, 1988), or that the laser pulse would be 

used with a variable frequency (Hartemann, 

Landahl, Troha, et al., 1999). In this paper, the 

interaction between electron and a chirped laser 

pulse in the presence of Wiggler was studied 

numerically and it was showed that the chirped 

laser pulse results in the preservation of the 

resonance condition for a longer period of time, 

indicating the fact that electron energy can be 

effectively changed before phase disappears in the 

interaction.  

There are various ways to produce chirped pulses, 

including using solid-state laser systems and free-

electron laser oscillators, electromagnetic pulses 

reflected from the front side of the relativity 

ionized air and pulse propagation through the 

plasma channel, to name a few (Khachatryan, Van 

Goor & Boller, 2004) (Khachatryan, Van Goor, 

Verchuur & Voller, 2005) (Gordon, Hafizi, 

Hubbard, Penano, Sprangle & Ting, 2003) 

(Hajima, & Nagai, 2003).  

In this study, the equations of relativity motion of 

a single electron are numerically stimulated using 

fourth order Runge-Kutta method. 

3.MATHEMATICS EQUATIONS 

Given laser pulse with circular polarization is 

released alongside �̂�. The components of the 

magnetic field of the pulse laser are expressed as 

follows: 

𝐸𝑥 = 𝐸0 cos(𝜔(𝜁) + 𝜑0)𝑓(𝑧
− 𝑐𝑡)                                    (1) 

𝐸𝑦 = 𝐸0 sin(𝜔(𝜁) + 𝜑0) 𝑓(𝑧

− 𝑐𝑡)                                    (2) 

Where 𝐸0 is the magnetic field amplitude, 𝜑0 the 

initial phase of the field, 𝜔(𝜁) = 𝜔0 + 𝑏𝜁 

momentary frequency, 𝜁 = 𝑧 𝑐⁄ − 𝑡 reparded 

time, 𝑏 chirped parameter, and 𝜔0 the frequency 

in 𝜁 = 0. 

Gaussian for laser pulse is given as follows: 

𝑓(𝑧 − 𝑐𝑡)

= 𝑒𝑥𝑝 [−
((𝑧 − 𝑧0𝑝) − 𝑐𝑡)

2

𝜎𝑝
2

]                            (3) 

Where 𝑧0𝑝 is the initial location of the laser pulse 

peak and 𝜎𝑝 the laser pulse length. 

The components of the magnetic fields of the laser 

pulse were obtained using Maxwell's equations. 

∇⃗⃗ × �⃗� 

= −
1

𝑐

𝜕�⃗� 

𝜕𝑡
                                                                       (4) 

One-dimensional Wiggler is given as: 

�⃗� 𝑤
= 𝐵𝑤(�̂� cos(𝑘𝑤𝑧)
− �̂� sin(𝑘𝑤𝑧))                                 (5) 

 



Where 𝐵𝑤is the amplitude and 𝑘𝑤 the magnetic 

Wiggler wave number. 

To study dynamic of electron motion in these 

fields, a three-dimensional simulation is 

constructed for a particle by using relativistic 

equation of Newton-Lorentz. 

𝑑

𝑑𝑡
(𝛾𝑚0𝑣 )

= −𝑒 (�⃗� +
𝑣 × �⃗� 

𝑐
)                                       (6) 

 

𝑚0, 𝑒, 𝑣 are the mass of rest, electron charge, and 

electron velocity respectively. �⃗�  is the Laser pulse 

electric field and �⃗� = �⃗� 𝑤 + �⃗� 𝑙  where �⃗� 𝑤 is the 

Wiggler magnetic field and �⃗� 𝑙 is the magnetic 

field produced by the laser pulse. 

In this study, the followings became 

dimensionless: the quantities 𝑥, 𝑦, 𝑧, 𝜎𝑝 with the 

laser wave number, the electric and magnetic 

fields with 𝑒 𝑚0𝑐𝜔0⁄ , and 𝑡 with 𝜔0. The 

following dimensionless variables are used in the 

equations. 

𝑒𝐸0

𝑚0𝑐𝜔0

→ 𝑎,        
𝑒𝐵

𝑚0𝑐𝜔0

→ 𝑏,          
𝑣𝑖

𝑐
→ 𝛽𝑖 

 

𝑝𝑖

𝑚0𝑐
→ 𝑝𝑖 ,             𝜔0𝜁 → 𝜉,               

𝑏

𝜔0
2 → �́� 

 

Using these variables, dimensionless equations of 

motion become as follows. 

𝑑𝛽𝑥

𝑑𝜏

=
1

𝛾
[𝑎𝑥(𝛽𝑥

2 − 1) − 𝛽𝑧𝑏𝑦

+ 𝑎𝑦𝛽𝑥𝛽𝑦]                               (7) 

𝑑𝛽𝑦

𝑑𝜏
=

1

𝛾
[𝑎𝑦(𝛽𝑦

2 − 1) − 𝛽𝑧𝑏𝑥

+ 𝑎𝑥𝛽𝑥𝛽𝑦]                               (8) 

𝑑𝛽𝑧

𝑑𝜏
=

1

𝛾
[𝛽𝑦𝑏𝑥 − 𝛽𝑥𝑏𝑦

+ 𝛽𝑧(𝑎𝑥𝛽𝑥

+ 𝑎𝑦𝛽𝑦)]                         (9) 

And the energy changes would be written as 

follows. 

𝑑𝛾

𝑑𝜏
= −(𝑎𝑥𝛽𝑥

+ 𝑎𝑦𝛽𝑦)                                                               (10) 

 

The equations were solved by fourth order Runge-

Kutta method and in any energy desirable 

moment, the electron velocity and position was 

obtained. 

4.NUMERICAL RESULTS 

In this section, we will examine the stimulation 

results of the interaction between electron and 

chirped laser pulse in the presence of the magnetic 

wiggler.  

Here, the laser pulse CO2 with the peak intensity 

about 3.05 × 1015 𝑊 𝑐𝑚2⁄ , the wavelength 𝜆𝑙 =
10.6𝜇𝑚 and the pulse duration 𝑡𝑝 = 5𝑃𝑠 were 

used. Dimensionless parameters for the laser 

pulse involve the characteristics 𝜏𝑝 = 1000 and  

𝑎 = 0.5. The amplitude of wiggler field and its 

wavelength is 10𝐾𝐺 and 𝜆𝑤 = 0.477𝑐𝑚 

respectively. The primary given conditions is that 

in the moment 𝑡 = 0 the initial location of 

electron is in (𝑥0, 𝑦0, 𝑧0) = (0,0,1700) and the 

peak location of the laser pulse is in 𝑧0𝑝 = −𝜏𝑝. 

The electron primary energy is 𝛾0 = 10 and the 

transverse components of the electron velocity are 

also zero. 

 

 

Figure 1: electron normalized energy in term of the 

normalized z coordinate 

In figure 1, electron energy is plotted by location 

in which the chirped parameter is �́� = −0.002. 



The chirped parameter is optimized in the interval  

(−0.1, −0.001); which for this optimal value, the 

phase between electron and laser pulse is 

preserved for a longer period of time and the 

electron gets much more energy from pulse. 

In figure 2, electron energy is plotted by the 

chirped parameter which, as you can see, its 

optimal point is in -0.002.  

 

Figure 2: electron normalized energy in terms of the 

dimensionless chirped parameter 

In figure 3, the electron final energy is plotted in 

terms of the initial phase of the laser. It is 

observed that the electron final energy is very 

sensitive to the relative phase of the laser pulse, 

because, due to the electric field phase of the laser 

pulse toward the electron, it is possible for the 

laser pulse to get energy from electron and then, 

anti-acceleration or laser process would happen. 

 

 

Figure 3: the electron energy in terms of the initial 

phase of the field 

In figure 4, the electron final energy is plotted in 

terms of the laser pulse. It is observed that by 

increasing the intensity of the laser pulse, 

electrons with higher energies can be achieved. 

 

Figure 4: the electron normalized energy in terms of 

the intensity of the laser pulse 

5. CONCLUSION 

Due to the acceleration condition in the free-

electron laser, the increased electron energy 

during interaction with the laser pulse causes 

phase conditions to meet between electron and 

pulse for a short period of time. Therefore, the 

phase conditions, with a chirped pulse, maintains 

for a longer time and as a result of that, electron 

gain energy is considerable. 
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