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 Abstract. An electromagnetic radiation is basically considered to be a 
transverse wave propagating through an accessible media whether it is an 
optical fibre or a thin film depending on its propagating conditions. In analyzing 
its propagation, utilized specific cross-section areas have become an important 
base of understanding its extinction parameters. The term cross-section in this 
work applies only to boundary conditions within which particles interact within 
electromagnetic spectra through absorption or scattering. In such small volume 
contextual framework, nanotechnology reconsiders scattering cross-section 
coefficients. In this work, two different degenerate states were modeled and 
analyzed using a developed model of a laser cavity containing a media of 
length, L, with a gain of, k, per unit length which were mirrored to represent the 
upper and a lower level manifolds inhomogeneous broadening Stark levels 
respectively. The model developed created an impression that a laser medium 
is a coherent ensemble of particles or atoms whose bandwidth depends on how 
a laser is constructed. 

Keywords: Einstein coefficient; spontaneous emission; spectral line profile 
function; small-signal gain coefficient; population inversion; laser cavity. 

 
INTRODUCTION 

On a simplified basic fundamental scale, any EM 
wave propagating on an accessible media gain or 
lose energy as a result excitation of quantum con-
finement states at certain regions and thus a par-
ticle’s specific cross-section becomes an impor-
tant base for analyzing its extinction parameters 
[1, 16, 20]. Cross-sections here use boundary 
conditions within which absorbing or scattering 
a radiation takes place. Such cross sections are 
different for specific geometric cross sectional 
area of the particle making the overall area be a 
sum up to obtain a collective cross section area of 
many particles per unit quantum space volume 
[18]. In fact, such a volume is taken to be respon-
sible for scattering cross-section coefficient 
variations. Intuitively therefore, geometrical 
cross sectional area can be used to express scat-
tering cross-section in terms of the geometric 
cross-section using Equating (1): 

2rgeom   ,      (1) 

where r is the particle radius.  

When such a particle is assumed to be rela-
tively very small to a level where it is ap-
proaching Rayleigh wavelength scattering di-
ameter range, D, then Equating (2) applies: 
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This leads to a condition where particle scatter-
ing and absorption cross-sections can be general-
ized using Equating (3) for scattering cross-
sections: 
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and Equating (4) for geometrical cross-sections: 
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where nc is the complex index of refraction and 
K can be expressed as Equating (5): 
 

K = (nc2–1)/(nc2+2).     (5) 
 

It is therefore acceptable that the real index of 
refraction of the media affects the speed of the 
radiation while the imaginary index of refrac-
tion affects the amplitude of the light radiation. 
Thus, the total extinction cross-section, e, be-
comes the sum of the absorption and scattering 
cross-sections expressed in Equating (6) as: 
 

sae   .     (6) 

 

Such a simple approach explains the several 
characteristics exhibited by wide-band a gap 
optoelectronic material that makes them more 
useful for many applications as compared to 
lower band gap optoelectronic materials lim-
ited to light absorbing applications. Its believed 
that a device incorporating such a feature ex-
hibit switchable larger voltage capabilities [6] 
and brings its electronic transition energies 
within the range of the energy of visible light 
spectra. A system can be modeled to exhibit 
superposition of two independent and distin-
guishable quantum states [6]. Analyzing such a 
two-level quantum system becomes imperative 
to use the Hilbert space to describe it exhaus-
tively. This model has its model space anchored 
on a two independent states system for its 
simplicity as a quantum system as it adopts 
simple linear differential equations within lin-
ear algebra two-dimensional space [18]. 

 
MODEL DEVELOPMENT 

A small segment of medium is chosen and con-
sidered as having a refractive index, , and cross-
sectional area, A, between z, and, z + z for inci-

dent light intensity, I(z) which can be integrated 
over all frequencies of the specified chosen spec-
tra. For purposes of this model, propagation is 
assume to take place in one direction and ignores 
any non-directional spontaneous emission and 
model using Figure 1. 
 

 
Figure 1 – Model Dimensions 

 
The population densities in the left and right 
states as depicted by figure 1 are equated as nm 
and nn to represent lower and upper states re-
spectively so that the total change in power on 
propagating through the model figure 1 segment 
can be expressed as in Equating (7): 
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or in terms of the radiation density, U and Ein-
stein, B, coefficients as in Equating (8): 
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A laser ion that can be excited into a higher en-
ergy level and may spontaneously return to its 
ground state by releasing the acquired energy in 
the form of a photon [1]. Such stimulated emis-
sion is as a result of vacuum noise. In this model a 
laser ion is placed in a microcavity structure 
which will undergo modifications in structure 
under an optical field as depicted by Figure 2. In 
quantum level mechanics, an energy level is de-
generate only if it corresponds to either two or 
more different measurable states of a quantum 
system or if they give the same value of energy 
upon measurement which correspond to a par-
ticular energy level [17, 2]. 
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Based on a spectral line profile function depicted 
in Figure 2, intensity at a particular frequency, , 
can be expressed as using Equating (9): 
 

)()(),(  fzIzI  ,   (9) 
 

where )(f is the spectral line profile function.  

 
 

 

Figure 2 – Model of spontaneous emission 

 

Integrating Equating (9) we obtain Equat-
ing (10), where we have at orthogonal condi-
tions: 
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This implies that the intensity can be related to 
radiation density as Equating (11): 
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Substituting, U, the rate of loss of intensity can be 
expressed as Equating (12): 
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The function takes the form, Equating (13): 
 

ky
dx
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       (13) 

 

with its solution given in Equating (14): 

kxeyy  0       (14) 
 

Hence, we can identify an absorption coefficient, 
K, as in Equating (15): 
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which is a mathematically representative of a 
Hamiltonian space with the same energy eigen-
value for a system having more than one linearly 
independent eigenstates.  
 
Taking into account the degeneracy of these 
states, in relationship to A and B coefficients, the 
relationship can be written as in Equating (16): 
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which is an informal Füchbauer–Ladeberg for-
mula or equation.  

 
Assuming a normal sample of quantum particles 
under thermal equilibria, the lower state will 
have overwhelmingly larger population resulting 
into, k() being positive hence absorption while 
the upper state has k() negative and amplifica-
tion takes place. This defines k() as a small-
signal gain coefficient which is a requirement for 
all laser resonators or laser cavities. 
This model considered a laser cavity [4] contain-
ing a medium of length L with a gain of k per unit 
length that mirrors with reflectivities R1 and R2 
as depicted in figure 1 ignoring all other sources 
of losses. For only one round-trip in the laser cav-
ity, energy gain can be expressed as in Equating 
(17): 
 

)(22
21

 kLkl eeRRG ,    (17) 

where 
2

21
 eRR . 

 
Taking, k, is a function of wavelength, and con-
sidering only amplified frequencies such that 
Equating (16) becomes Equating (18): 
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and using Equating (19): 
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Then the threshold condition forms a skirt transi-
tion band that is summed up by Equating (20): 
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If there is no particle that is excited by absorp-
tion, then centre frequency absorption coefficient 
transition, 0 becomes Equating (21): 
 

0000 )()( nfk       (21) 

 

where n0 is the total number density of atoms. 
The consequence is that threshold condition 
simplifies further to Equating (22): 
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giving a fractional population inversion Equating 
(23):  
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np

0


       (23) 

 

Extinction coefficient is a significant parameter of 
a laser [6, 16]. Its intensity attenuation, I, accord-
ing to our model changes as it passes through the 
slab model Figure 1 with unit thickness, dz vary-
ing with absorption extinction coefficient, Ϭa, in 
inverse length as Equating (24): 

 

dI = -a I dz =-I d (24) 
 

where  is the change in the optical depth.  
 
This implies that once light passes through the 
model slab thickness length, L, intensity will vary 
as in Equating (25:) 

I(L) = I0 e
-aL  (25) 

 

where the intensity of the light entering the slab 
is I0. Therefore it will relate to the extinction coef-
ficient as in Equating (26): 
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The dependence of extinction coefficient along 
the path has a dependence on frequency [15]. 

The radiative transfer after passing through a 
length, L, through the model slab, relates to light 
intensity as in Equating (27): 
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RESULTS AND DISCUSSIONS 

Optical confinement is virtually intended to in-
crease gain length of radiation prior to emission 
from a laser device achieved by increasing that 
gain path length. This path length depends on the 
properties of the laser beam in question [13]. Po-
sition and curvature of alter and equally optimize 
laser performance [11] or laser quality factor, Q 
in terms of frequency and bandwidth as in Equat-
ing (29): 


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A laser oscillator is banded between two extreme 
values. It is built from a trend indicator within 
overbought or oversold conditions [8, 4, 5]. Any 
resulting energy loss can be quantified as in 
Equating (30): 
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The number of photons remaining in the model 
cavity at time, t, can be given by Eq Equat-
ing (31): 

t

ePtP 


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where,  is the round-trip time of a photon in the 
cavity.  
The characteristic time for a photon remaining in 
the cavity can be expressed as in Equating (32): 

 


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By comparing the round-trip time of a photon 
with a quality factor Q, we can obtain Equat-
ing (33): 
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or Equating (34): 
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In a nut shell, the bandwidth of the laser [12] is 
finally simplified by Equating (35): 
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MODEL TESTING 

Case One: Using transition for HeNe laser 
Assuming that the lifetime of an upper level tran-
sition for certain laser at 632.8 nm is 1107 s, 
the degree of population inversion that result 
into a gain coefficient of 0.07 m1 with its upper 
and lower states are equal at a refractive index of 
1, then, the line profile function can be obtained 
from Equating (36) and Equating (37) respec-
tively: 
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At a lifetime of 1107 s with an Einstein coeffi-
cient of 1107 s1 we obtain a frequency of 
0.5 THz, a transition frequency, 

71028.6)( f Hz 1 and the density of popu-

lation inversion becomes 7.821011 m3 which 
shows that there must be 7.821011 m3 more 
atoms in their upper state than in the lower.  

 
Case Two: Un-pumped laser cavity 
Supposing that we have an un-pumped laser cav-
ity of 0.5 m long experiencing a 2 % loss per 
round trip, then applying this model in Figure 1, 
we can apply the relation:  
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Finally resulting into a bandwidth of: 
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Case Three: Threshold condition for Laser action 

In a simple two-level quantum system [19, 10, 9], 
at a population inversion condition Nn > Nm that 
liberates a strong stimulating field that prevents 
spontaneous states, a black body mode density, 
we get Equating (38): 
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Performing best fit and substituting within en-
ergy condition h is 5 eV, at a higher temperature 
of 1000 K [3] which in essence, approximate kT 
value to 0.086 eV, we obtain (39): 
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This shows that a laser media [7] can be simpli-
fied as a coherent ensemble of particles or atoms 
whose bandwidth laser line depends on how its 
constructed. 
 
CONCLUSION  

A quantum system approach was used to de-
scribe and analyze an energy level as a degener-
ate state that corresponds to different measur-
able states of a quantum system. Two different 
degenerate states of a quantum mechanical sys-
tem were modeled by considering a laser cavity 
containing a medium of length L with a gain of k 
per unit length and each constituted by different 
inhomogeneous broadening Stark levels. A model 
was developed for a laser device by increasing its 
gain path length and the result insinuated that a 
laser medium is a coherent ensemble of particles 
whose bandwidth laser line depends on how a 
laser is designed and constructed. 
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