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gw-prime submodules

Submódulos gw-primos

Zehra Bilgin1,a, Kürsat Hakan Oral2,b, Ünsal Tekir2,c

Abstract. In this work, gw-prime submodules of a module over a commuta-
tive ring with identity are defined. This class of submodules is a generalization
of weakly prime submodules. After examining general properties of gw-prime
submodules, their relation with valuation modules are investigated.
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Resumen. En este art́ıculo, definimos los submódulos gw-primos de un
módulo sobre un anillo conmutativo con identidad. Esta clase de submódulos
es una generalización de los submódulos débilmente primos. Después de exa-
minar las propiedades generales de los submódulos gw-primos, buscamos su
relación con los módulos de valuación.
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1. Introduction

Throughout this paper all rings are assumed to be commutative with identity.
Let M be an R-module. A submodule P of M is said to be prime if whenever
am ∈ P for a ∈ R and m ∈ M , either m ∈ P or aM ⊆ P . In recent years,
several generalizations of prime submodules are obtained, see [1, 6, 7, 11, 13].
Among those generalizations, the concept of weakly prime submodules distin-
guishes itself with its useful properties. Weakly prime submodules are first
introduced by Behboodi and Koohy in [6] and since then studied extensively
by many authors as [2, 3, 5]. A submodule N of an R-module M is called a
weakly prime submodule if for every subset K of M and x, y ∈ R the inclusion
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xyK ⊆ N implies xK ⊆ N or yK ⊆ N . For a generalization of weakly prime
submodules the reader is referred to [12], in which weakly prime submodules
are mentioned as classical prime submodules.

In this paper, we define gw-prime submodules as a generalization of weakly
prime submodules. An R-module M is said to be a gw-prime module if when-
ever abK = 0 for a, b ∈ R and K a submodule of M , either a2K = 0 or b2K = 0
holds. A submodule N of M is a gw-prime submodule if M/N is a gw-prime
R-module. This definition can be interpreted as such: A submodule N is a
gw-prime submodule if and only if for each a, b ∈ R and each submodule K of
M , the inclusion abK ⊆ N implies a2K ⊆ N or b2K ⊆ N .

In Section 2, the concepts of gw-prime module and submodule are intro-
duced and their general properties are investigated. In Corollary 2.3, we give
a further equivalent condition for being a gw-prime submodule. Namely, a
submodule N of M is a gw-prime submodule if and only if for every m ∈ M
and a, b ∈ R the inclusion abm ∈ N implies a2m ∈ N or b2m ∈ N . Moreover,
the behaviour of gw-prime submodules under localization and taking direct
products are studied.

In Section 3, the relation between gw-prime submodules and valuation
modules is examined. An R-module M is said to be torsion free if for each
0 6= m ∈M and r ∈ R, the equation rm = 0 implies r to be a zero-divisor. Let
R be an integral domain with quotient field K and M a torsion-free R-module.
For y = r

s ∈ K and x ∈ M , write yx ∈ M if there exists m ∈ M such that
rx = sm. The module M is called a valuation module in [10], if for each y ∈ K,
either yM ⊆ M or y−1M ⊆ M holds. In Theorem 3.2, a sufficient condition
is given for a torsion-free module over an integral domain to be a valuation
module. Namely, if every principal submodule of a torsion-free module over
an integral domain is gw-prime, then the module is a valuation module. The
question when a converse is possible is asked and answered in affirmative in the
cases of torsion-free uniserial modules and multiplication modules. Following
[10], an R-module M is called uniserial if its submodules are totally ordered
by inclusion. In Proposition 3.4, it is shown that every submodule of a torsion-
free uniserial module is gw-prime. An R-module M is called a multiplication
module if each submodule N of M is of the form IM for some ideal I of R,
see [8]. In Corollary 3.6, valuation multiplication modules are characterized in
terms of gw-prime submodules.

In Section 4, gw-prime submodules of the R-module R are investigated and
a characterization of valuation rings is acquired.

2. gw-prime submodules

In this section we define gw-prime modules and submodules, and examine some
of their general properties.

Definition 2.1. An R-module M is called a gw-prime module if whenever
abK = 0 for a, b ∈ R and K a submodule of M , either a2K = 0 or b2K = 0

Bolet́ın de Matemáticas 24(1) 19-27 (2017)



gw-prime submodules 21

holds. A submodule N of M is called a gw-prime submodule if M/N is a
gw-prime R-module.

Proposition 2.2. Let M be an R-module. M is a gw-prime module if and
only if for each m ∈M and a, b ∈ R the equation abm = 0 implies a2m = 0 or
b2m = 0.

Proof. The necessity part is clear. For the sufficiency part, let K be a sub-
module of M and a, b ∈ R satisfying abK = 0. Then for each k ∈ K, we have
abk = 0. By assumption, for each k ∈ K we have either a2k = 0 or b2k = 0.
Set

A =
⋃
k∈K
a2k=0

{k} and B =
⋃
k∈K
b2k=0

{k}.

Observe that A and B are submodules of M and K = A ∪ B. Then either
A ⊆ B or B ⊆ A must hold. Without loss of generality, assume A ⊆ B. Then
K = B, and so, for each k ∈ K the equality b2k = 0 holds. Thus we obtain
b2K = 0.

Observe that a submodule N of M is a gw-prime submodule if and only
if for each a, b ∈ R and each submodule K of M , the inclusion abK ⊆ N
implies a2K ⊆ N or b2K ⊆ N . As a corollary to the preceding proposition we
equipped with one more equivalent condition for being a gw-prime submodule.

Corollary 2.3. Let M be an R module and N a submodule of M . Then N
is a gw-prime submodule if and only if for each m ∈ M and each a, b ∈ R,
abm ∈ N implies a2m ∈ N or b2m ∈ N .

Throughout the text, the preceding statement and the formal definition of gw-
prime submodule will be used interchangeably.

Following [6], a submodule N of an R-module M is called a weakly prime
submodule if for every subset K of M and x, y ∈ R the inclusion xyK ⊆ N
implies xK ⊆ N or yK ⊆ N . We note that every weakly prime submodule is
a gw-prime submodule.

Now, we give some general properties of gw-prime submodules.

Proposition 2.4. Let N be a submodule of an R-module M .

i. If N is a gw-prime submodule, then rad((N : M)) is a prime ideal.

ii. If φ : K → M is an R-module homomorphism and N is a gw-prime
submodule, then φ−1(N) is a gw-prime submodule of K.

iii. If φ : M → K is an R-module epimorphism and N is a gw-prime submod-
ule of M containing Kerf , then φ(N) is a gw-prime submodule of K.

iv. If N is a gw-prime submodule and K is a submodule of M contained in
N , then N/K is a gw-prime submodule of M/K.

Bolet́ın de Matemáticas 24(1) 19-27 (2017)
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v. If K ′ is a gw-prime submodule ofM/N then K ′ = K/N for some gw-prime
submodule K of M .

Proof. i. Assume that N is a gw-prime submodule. Let x, y ∈ R satsifying
xy ∈ rad((N : M)). Then we have xnynM ⊆ N for some n ∈ N. Since N is
gw-prime, either x2nM ⊆ N or y2nM ⊆ N . That means x ∈ rad((N : M)) or
y ∈ rad((N : M)). Hence rad((N : M)) is a prime ideal.

ii. Let x, y ∈ R and k ∈ K such that xyk ∈ φ−1(N). Then φ(xyk) ∈ N .
Since φ is an R-module homomorphism, we have xyφ(k) ∈ N . Since N is
gw-prime we obtain x2φ(k) ∈ N or y2φ(k) ∈ N . This implies x2k ∈ φ−1(N)
or y2k ∈ φ−1(N). Hence φ−1(N) is a gw-prime submodule.

iii. Let x, y ∈ R and k be an element of K such that xyk ∈ φ(N). Then,
there exists n ∈ N satsifying φ(n) = xyk. Since φ is an epimorphism, there
exists m ∈ M such that φ(m) = k. Then, we have φ(xym) = φ(n). This
implies n − xym ∈ kerf ⊆ N . Thus, we obtain xym ∈ N . Since N is a
gw-prime submodule, either x2m ∈ N or y2m ∈ N . Therefore, we get x2k =
x2φ(m) = φ(x2m) ∈ φ(N) or y2k ∈ φ(N).

iv. and v. follow from part (ii) and (iii) with the natural epimorphism
φ : M →M/N .

Proposition 2.5. Let M be an R-module and N a submodule of M . Let S
be a multiplicatively closed subset of R. If N is a gw-prime submodule, then
S−1N is a gw-prime submodule of S−1M .

Proof. Suppose that N is a gw-prime submodule and S a multiplicatively
closed subset of R. Let a

s ,
b
t ∈ S

−1R and m
u ∈ S

−1M satisfying a
s
b
t
m
u ∈ S

−1N .
Then there is an n ∈ N and y, z ∈ S such that yzabm − ystun = 0. This
implies yzabm ∈ N . Since N is a gw-prime submodule either y2z2a2m ∈ N or
b2m ∈ N . In the former case we obtain(a

s

)2 m
u

=
y2z2a2m

y2z2s2u
∈ S−1N,

and in the latter case we get(
b

t

)2
m

u
=
b2m

t2u
∈ S−1N.

Thus, we conclude that S−1N is a gw-prime submodule of S−1M .

Recall that a submodule N of an R-module M is said to be primary if
whenever rm ∈ N either m ∈ N or rn ∈ (N : M). In this case P = (N : M) is
a prime ideal of R and N is called P -primary. The previous proposition has a
converse for primary submodules.

Corollary 2.6. Let M be an R-module and N a P -primary submodule of M
for a prime ideal P of R. Then N is a gw-prime submodule if and only if
NMP is a gw-prime submodule of MP .
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Proof. Necessity part follows from Proposition 2.5. For the sufficiency, assume
that NMP is a gw-prime submodule of MP . Since N is P -primary we have
NMP ∩M = N . Then, applying Proposition 2.4(ii) with the homomorphism
φ : M →MP , we get N gw-prime.

In the following results we investigate gw-prime property for direct products
of modules.

Proposition 2.7. Let M1 and M2 be R-modules and N1 and N2 proper sub-
modules of M1 and M2, respectively.

i. N = N1 ×M2 is a gw-prime submodule of M = M1 ×M2 if and only if
N1 is a gw-prime submodule of M1.

ii. If N = N1 ×N2 is a gw-prime submodule of M = M1 ×M2 then N1 is a
gw-prime submodule of M1 and N2 is a gw-prime submodule of M2.

Proof. (i) and (ii): Apply Proposition 2.4(ii), (iii) with the natural projection
homomorphisms π1 : M1 ×M2 →M1 and π2 : M1 ×M2 →M2.

Proposition 2.8. Let R = R1 × R2 and M = M1 ×M2 where M1 is an R1-
module and M2 is an R2-module. Let N1 and N2 be proper submodules of M1

and M2, respectively.

i. N = N1 ×M2 is a gw-prime submodule of M if and only if N1 is a gw-
prime submodule of M1.

ii. If N = N1 × N2 is a gw-prime submodule of M then N1 is a gw-prime
submodule of M1 and N2 is a gw-prime submodule of M2.

Proof. (i) Assume that N is a gw-prime submodule of M . Let a, b ∈ R1 and
m ∈ M1 such that abm ∈ N1. Then (a, 1)(b, 1)(m, 0) = (abm, 0) ∈ N and
hence (a2m, 0) ∈ N or (b2m, 0) ∈ N . This implies a2m ∈ N1 or b2m ∈ N1.
Therefore N1 is a gw-prime submodule of M1. Conversely assume that N1

is a gw-prime submodule of M1. Let (a1, a2), (b1, b2) ∈ R and (n,m) ∈ M
satisfying (a1, a2)(b1, b2)(n,m) ∈ N . Then a1b1n ∈ N1. Since N1 is gw-prime,
a21n ∈ N1 or b21n ∈ N1. This implies (a1, a2)2(n,m) ∈ N or (b1, b2)2(n,m) ∈ N .
Thus N is a gw-prime submodule of M .

(ii) Assume that N is a gw-prime submodule of M . Let a, b ∈ R1 and
m ∈ M1 such that abm ∈ N1. Then (abm, 0) = (a, 1)(b, 1)(m, 0) ∈ N . Since
N is gw-prime (a2m, 0) = (a, 1)2(m, 0) ∈ N or (b2m, 0) = (b, 1)2(m, 0) ∈ N .
Therefore a2m ∈ N1 or b2m ∈ N1. The assertion for N2 follows similarly.

3. gw-Prime Submodules and Valuation Modules

In this section, we investigate the relation between gw-prime submodules and
valuation modules.

Bolet́ın de Matemáticas 24(1) 19-27 (2017)
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Recall that a submodule N of am module M is said to be principal if
N = Rm for some m ∈ M . The following proposition shows that to decide
whether all submodules of a given module are gw-prime or not, it is enough to
examine only the principal submodules.

Proposition 3.1. Let M be an R-module. Then every principal submodule of
M is gw-prime if and only if every submodule of M is gw-prime.

Proof. Assume that every principal submodule of M is gw-prime. Let N be
a submodule of M and xym ∈ N for x, y ∈ R and m ∈M . Then xym = n for
some n ∈ N , and hence xym ∈ Rn. Since Rn is gw-prime, either x2m ∈ Rn ⊆
N or y2m ∈ Rn ⊆ N . Thus, N is a gw-prime submodule. The other part is
clear.

In [10], valuation modules over integral domains are introduced. Let R
be an integral domain with quotient field K and M a torsion-free R-module.
For y = r

s ∈ K and x ∈ M , write yx ∈ M if there exists m ∈ M such that
rx = sm. Then M is a valuation R-module if for each y ∈ K, one of the
inclusions yM ⊆M and y−1M ⊆M holds.

Theorem 3.2. Let R be an integral domain and M a torsion-free R-module.
If every principal submodule of M is gw-prime, then M is a valuation module.

Proof. Let K be the quotient field of R and y = a
b ∈ K. For m ∈M , assume

that ym 6∈ M . Then for all n ∈ M , we have am 6= bn. The set L = Rabm
is a principal, hence gw-prime submodule. Then Ra2m ⊆ L or Rb2m ⊆ L.
If Ra2m ⊆ L, then there exists c ∈ R such that a2m = cabm. Since M is
torsion-free and R is an integral domain, we get am = cbm, a contradiction.
Therefore, the inclusion Rb2m ⊆ L must hold. Then, we have b = ra for some
r ∈ R. Thus, y−1 = b

a = r and hence y−1M = rM ⊆M .

The converse of Theorem 3.2 is not true in general as can be seen in the
following example:

Example 3.3. Let M be the Z-module Z(p), where p is a prime number and
Z(p) = {ab ∈ Q : p does not divide b}. For y = r

q ∈ Q with (r, q) = 1 and

m = a
b ∈M , if ym 6∈M then p divides q. Since (r, q) = 1 we have p not divide

r. Hence y−1M ⊆ M . Therefore, the Z-module M is a valuation module.
Observe that

(
6
1

)
is a submodule of M , however, it is not gw-prime since

2.3
(
1
1

)
⊆
(
6
1

)
and neither 4

(
1
1

)
⊆
(
6
1

)
nor 9

(
1
1

)
⊆
(
6
1

)
. Hence

(
6
1

)
is not a

gw-prime submodule.

Now, we are to investigate when we could obtain a converse for Theorem
3.2. The following propositions shows that if the set of submodules of a module
is totally ordered by inclusion, then every submodule is gw-prime. Following
[9], an R-module M is called uniserial if its submodules are totally ordered by
inclusion. Note that a torsion-free uniserial module is a valuation module, see
[10].
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Proposition 3.4. If M is a torsion-free uniserial R-module then every sub-
module of M is gw-prime.

Proof. Let L and N be submodules of M and x, y ∈ R such that xyL ⊆ N .
Assume x2L 6⊆ N . Since M is uniserial we have N ⊆ x2L. Then xyL ⊆ x2L.
Since M is torsion-free we have yL ⊆ xL. Thus y2L ⊆ xyL ⊆ N .

An R-module M is called a multiplication module if each submodule N of
M is of the form IM for some ideal I of R, see [8]. It is proved in [10, 2.7] that
the set of submodules of a valuation multiplication module are totally ordered
by inclusion. Thus as a corollary to the preceding proposition, we observe in
the following results that a converse for Theorem 3.2 is possible in the case of
multiplication modules.

Corollary 3.5. If M is a valuation multiplication R-module, then every sub-
module of M is gw-prime.

As a result, we have the following corollary characterizing valuation multi-
plication modules over an integral domain.

Corollary 3.6. Let M be a torsion-free multiplication module over an integral
domain R. The following are equivalent:

i. M is a valuation module.

ii. Every submodule of M is gw-prime.

iii. Every principal submodule of M is gw-prime.

The following proposition shows that a principal submodule which is a
valuation module in its own right must be a gw-prime submodule.

Proposition 3.7. Let R be an integral domain andM a torsion-free R-module.
Let m ∈ M . If Rm is a valuation R-module, then it is a gw-prime submodule
of M .

Proof. Let m ∈M and assume that Rm is a valuation R-module. For a, b ∈ R
and k ∈ M , suppose that abk ∈ Rm. Then abk = sm for some s ∈ R.
Set y = a

b ∈ K where K is the quotient field of R. Then ym ∈ Rm or
y−1Rm ⊆ Rm. The latter inclusion implies that y−1m ∈ Rm. Therefore, we
obtain a2k = yabk = ysm ∈ Rm or b2k = y−1abk = y−1sm ∈ Rm. Hence Rm
is a gw-prime submodule of M .

The following corollary is a consequence of Theorem 3.2 and Proposition
3.7.

Corollary 3.8. Let R be an integral domain andM a torsion-free R-module. If
every principal submodule of M is a valuation R-module, then M is a valuation
module.
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4. Application of gw-Prime Structure to Rings

In this section we define gw-prime ideal in a ring R which corresponds to gw-
prime submodule in the R-module R.

Definition 4.1. An ideal I of R is called a gw-prime ideal if for any a, b, c ∈ R,
whenever abc ∈ I either a2c ∈ I or b2c ∈ I.

We note that ring theoretic analogues of the above results are valid for gw-
prime ideals. For example, gw-prime ideals have prime radicals, and gw-prime
property is preserved under ring homomorphisms, preimages of ring homomor-
phisms, localizations and direct sums. In addition, interesting results arise in
the case of valuation domains. As a corollary to Proposition 3.1, Theorem 3.2
and Proposition 3.4, we have the following characterization of valuation rings.

Theorem 4.2. Let R be an integral domain. The following are equivalent:

i. R is a valuation ring.

ii. Every principal ideal of R is gw-prime.

iii. Every ideal of R is gw-prime.

In [4], a similar characterization of valuation rings is obtained by using 2-
prime ideals. An ideal I of a ring R is said to be a 2-prime ideal if for a, b ∈ R
whenever ab ∈ I either a2 ∈ I or b2 ∈ I holds. Observe that every gw-prime
ideal is a 2-prime ideal. However the converse is not true in general as the
following example shows:

Example 4.3. In [4, 4.8], it is shown that I = (x4, x2y, xy2, y4) is a 2-prime
ideal of the ring R = k[x, y]. However, it is not a gw-prime ideal since

xy(x+ y) = x2y + xy2 ∈ I

but neither x2(x+ y) = x3 + x2y nor y2(x+ y) = xy2 + y3 is in I.
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[12] Ü. Tekir, H. Mostafanasab, and K. H. Oral, Classical 2-absorbing sub-
modules of modules over commutative rings, Eur. J. Pure Appl. Math. 8
(2015), no. 3, 417–430.

[13] N. Zamani, φ-prime submodules, Glasg. Math. J. 52 (2010), no. 2, 253–
259.
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