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Fuzzy sets. A way to represent ambiguity and
subjetivity

Conjuntos difusos. Una forma de representar la imprecisión y la
subjetividad

José Rubén Niño Quevedo1,a

Abstract. Mathemathical modeling seeks to describe in a formal way a
phenomenom but we can encounter two inconveniences, namely, the com-
plexity and the uncertainty by vagueness. In order to take vagueness into
consideration, the fuzzy set theory formalized by Zadeh in 1965 intends to
give a mathematical treatment to the subjective topics. Additionally, it is
considered as an important tool for getting a better understanding of some
real situations. This is why we are motivated to give in this paper some of the
basics notions of this branch of mathematics which has been in a continuous
development for the latest fifty years.
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Resumen. La modelación matemática busca describir de manera formal un
fenómeno pero podemos encontrar dos inconvenientes, a saber, la complejidad
y la incertidumbre por “ambigüedad”. Para considerar la ambigüedad, la
teoŕıa de los conjuntos difusos formalizada por Zadeh en 1965 pretende dar
un tratamiento matemático a los temas subjetivos. Adicionalmente, se le
considera una herramienta importante para obtener un mejor entendimiento
de algunas situaciones reales. Éste en el por qué se motivó a presentar, en este
escrito, algunas de las nociones básicas de esta rama de las matemáticas que
ha estado en continuo desarrollo durante los últimos cincuenta años.
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1. Introduction

When it is heard the word fuzzy in mathematics, for instance fuzzy logic, fuzzy
arithmetic, fuzzy algebra, fuzzy analysis, fuzzy differntial equations, people
often joke about it by saying that it is unclear, probably it is no elaborated
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ajrninoq@unal.edu.co
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enough, it is blurry or foggy but “Fuzzy sets theory have never been an invita-
tion to fuzzy thinking!” [32]. Fuzzy math is suitable for imprecision and aprox-
imate reasoning because it is an effort to formalize the capability to perform a
wide variety of mental tasks without any measurements or any computations
[3]. Fuzzy sets were presented in 1965 by Lofti Zadeh [25] in order to give a
representation of vague or imprecise concepts expressed in natural languages.
Their theory is frecuently confused with probability theory but, the speciality
of the fuzzy sets is to capture the idea of partial membership [9] and so, they
can be seen like a generalization of the classic sets.

In the mathematical modeling of real world phenomena, the idea is to build
transparent models to help people to understand, to get results or conclusions,
even to justify the decisions taken. It is known that if the complexity of system
increases then our ability to make precise its behaviour decrease [25] and, it
is quite probable that we must face with the complexity and our inability to
exactly differentiate the involved events in the situation, i.e., there are states
which are described in fuzzy terms and where non-crisp boundaries or a sub-
jective judgment is more appropiate because statistical tools are insufficient
for building an accurate probabilistic representation [8]; however, nowdays it
is possible to consider statistical analysis and fuzzy variables simultaneausly
[4, 12]. In these cases, a fuzzy model is adequate because it allows us to
convert complex systems into simpler ones and, in several cases, to avoid the
complex mathematical modeling.

Fuzzy sets let us to deal with mathematical measure of a wide variety of
phenomena and applications tied to human thinking [25]. At first, the impact
of fuzzy sets started with the fuzzy logic which provides an approximate but
effective way to describe the systems that are not easy to give a precise descrip-
tion. Then, it turned out that problems which considered concepts without a
clear definition or were restricted by bivalued logic were successfully modeled
through fuzzy sets and fuzzy logic techniques [17]. Nowdays, Fuzzy sets theory
has been applied in a huge number of fields and now is a very important field of
investigation, as much their mathematical implications as their practical appli-
cations [3, 31, 18] at the point of become in a suitable tool to deal with complex
or non-linear processes, when it is wanted to represent, even to operate with,
concepts which have imprecision or uncertainty like imitating human pattern
recognition, judgement or common sense [5]; however, fuzzy sets theory have
disadvantages too: Once the rules and membership functions are determinated,
they remain fixed and accuracy is improved only by trial and error [14].

The main objective of this paper is to present the fundamentals of fuzzy
sets theory because it is wanted to show that fuzzy mathematics is not fuzzy
and it might be used for the mathematical representation and modeling of
uncertainty. The document has four sections. The second section introduces
the notion of linguistic variable; the third one presents basic notions about
fuzzy sets and in the last section, fuzzy numbers, their arithmetic and topology
are considered. The autor apologizes for English mistakes and grammar errors
in the present document.
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2. Linguistic Variables

The treatment of precision when the complexity is cosidered implies to explore
the use of what might be called linguistic variables, that is, variables whose
values are not numbers but words or sentences in a natural or artificial language
[29]. A linguistic variable is regarded to degrees of membership and this idea
is the centre of fuzzy modeling which, in many cases, reduces the complexity
of the model [3, 11, 18, 30, 31], for example in models where the system being
considered involves multiple-experts.

Introducing linguistic values for the quantification of a variable is motivated
by the possibility of “computing with words” [10, 13, 33], i.e., using words or
sentences rather than numbers because these linguistic characterizations are,
in general, less specific than numerical ones [26]. Sometimes these (fuzzy) lin-
guistic terms are composed of two parts: A fuzzy predicate or base (a word
or sentence either you can say to affirm or negate an object or which meaning
can contain ambiguity: young, smart, small, tall, low, etc.) and hedges (mod-
ifiers that change the meaning of the predicate: very, likely, unlikely, extremely,
almost, quite, more or less, mostly, few, all, usually, so on).

Based on both the Zadeh’s definition [26, 27, 28] and the definition given
by Bede [1], a linguistic variable can be defined as follows.

Definition 2.1. A linguistic variable x is a linguistic term characterized by
the quintuple

x := (x, U, T (x),M,G)

where,

• x is the name of the linguistic variable (linguistic term).

• U is the universe of discourse, that is, where the characteristics of the
variable can be defined (Also it is denoted by X).

• T (x) is the set of labels of linguistic values of x.

• M : T (x) → F(U) is a function called semantic rule (This function
assigns to each label in T (x) a mathematical object which will be called
a fuzzy (sub)sets of U).

• G is named syntactic grammar. It produces linguistic values for x from
composition of fuzzy sets and a certain type of functions called hedges.

Hedges may be interpreted as a composition between a given function and
a basic membership function [1] since they are formalized through functions
h : [0, 1]→ [0, 1] that satifies h(0) = 0 and h(1) = 1.
The following example clarifies the previous definition.

Example 2.2. The linguistic term “Human age” can be transform in a lin-
guistic variable if the quintuple (Humanage, T, U,G,M) is considered. Here:

x = is Human age.
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U = [0, 120] is the universe of discourse for Human age.
T (x) = {old, young, very old, very young, very very young, ...} is the set

with the linguistic values taken into account for Human age.
M : T (x) −→ F(U) is a function such that M(young) = Y and M(old) =

O, where Y = (0, 18, 40) and O = (35, 60, 80) (These representation correspond
to fuzzy triangular numbers and will be discussed later).

G : The syntax rules can be expressed as follows: If y ∈ T (x) and very has
associated the function h = x2, then very young, with membership function
h(M(y)), belongs to T (x).

From Definition 2.1 and Example 2.2 we can see that a linguistic variable
works as a kind of translator that assigns to linguistic terms afuzzy sets
[1]. Fuzzy sets offer a natural interaction between linguistic representations
and numerical ones [9], they provide a suitable tool for handling imprecise or
ambiguous words.

The following two sections are basically based on the ideas we found in
the books written by Bede’s [1], Lakshmikantham’s [15], Dubois’ [9], and Lee’s
[16]. Basic definitions, theorems and concepts are presented in order to give a
background about fuzzy sets and particularly the fuzzy numbers.

3. Fuzzy Sets

The notion of set is one of the most important ones, used frequently in every
day life as well as in mathematics [29]. Therefore, it is important to understand
what a fuzzy set is. Fuzzy sets are based on classical sets, from now we call
them Crisp (sets). The term ‘crisp’ means not fuzzy and it was introduced by
Buckley [2]; so, here in the present text, a crisp number is just a real number,
a crisp matrix is a matrix whose elements are real numbers, a crisp solution to
a problem is a solution involving crisp sets, crisp numbers, crisp functions and
so on.

Example 3.1 (Crisp Sets). LetX := [0, 10] be the referential universe. Then,
the following are (crisp) subsets of X

• A := [3, 5].

• B := {2, 3, 5, 7}.

• C := [0, 10] ∩ N.

• D :=
[
0, π2

]
∪
{

3
2π,

5
2π
}

.

In order to define a fuzzy set it is necessary to consider a referential universe
and a function. Its formal definition is the following.

Definition 3.2. Let X be a referential universe. We say that the pair (F, F (x))
is a fuzzy (sub)set of X if F is a subset of X endowed with a fuction

F : X −→ [0, 1] (1)

x 7−→ F (x)
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The function F is usually called membership function and sometimes it is
denoted by µ

F
. The grade of membership of x in the fuzzy set F is denoted

by F (x) and the collection of all fuzzy subsets of X by F(X).

The value F (x) clasify the element x as: A total included member (if F (x) =
1), a no included member (if F (x) = 0) and a fuzzy member (if 0 < F (x) < 1).
To ilustrate the previous definition and this observation, the following example
is given.

Example 3.3 (Fuzzy Sets). Let X := [0, 10] be the referential universe.
Then, the following are (fuzzy) subsets of X

• The pair (A,A(x)), where
A := [3, 5] and

A(x) :=



0.3 x = 3

0.2 x ∈ (3, 4)

0.7 x = 4

0.5 x ∈ (4, 5)

0.901 x = 5

0 otherwise.

The pair (C,C(x)) where•
C := [0, 10] ∩ N and

C(x) :=


1 x = 0
1
x (0, 10] ∩ N
0 x /∈ [0, 10] ∩ N.

• The pair (B,B(x)) where
B := {2, 3, 5, 7} and

B(x) :=

{
1 x ∈ B
0 in other case.

• The pair (D,D(x)) where
D :=

[
0, π2

]
∪
{

3
2π,

5
2π
}

and

D(x) :=


cos(x) x = 0

1 x ∈ (0, π2 )

| sin(x)| in other case.

Figure 1: Graph of A(x).
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Figure 2: Graph of B(x).

Figure 3: Graph of C(x).

Figure 4: Graph of D(x).

Although the membership is important for crisp sets, its meaning is different
in the fuzzy context because the idea behind fuzzy sets is to capture
the idea of partial membership. In practice, what is really important
is to represent correctly the knowledge provided by an expert and capture the
meaning he intends to give to his own words [9], it implies that the membership
function might change from one person to another and that accuracy to be
improved by trial and error [14].

Remark 3.4. The domain of a fuzzy set can be any class and its codomain can
be extended to any lattice or poset [1] and the collection F(X) is an analogous
of the crisp power set, indeed, F(X) = [0, 1]X .

Remark 3.5. The notation (F, F (x)) was employed by Zadeh in order to refer
to a fuzzy subset F [25] but {(x, F (x))}

x∈X can be used too. If it is wanted to
emphasize the cardinality of the referential universe use the following notation:
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A finite set we will An enumerable set A continuous set

denote it by we will denote it by we will denote it by

F (x1)

x1
+ · · ·+ F (xn)

xn
.

∑
n∈N

F (xn)

xn
.

∫
F (x)

x
.

Remark 3.6. Fuzzy sets can be characterized by its membership function; there-
fore, hereinafter fuzzy sets will be dealt as functions F : X → [0, 1], where
X is a referential universe and will be denote them simply by F instead of
(F, F (x)). The empty set is defined by the map ∅(x) = 0 and we will denote it
by ∅ and the total set X is defined by the map X(x) = 1 and will be denoted
by X.

Remark 3.7. Every crisp set is also a fuzzy set! (see Example 3.3). So, it
is natural to think that fuzzy sets are a kind of generalization of crisp sets and
the membership functions might be treated as generalizations of the traditional
characteristic function of a crisp subset of X.

The following is an useful concept to work with fuzzy sets.

Definition 3.8. Let A be a fuzzy set of X, then we define for α ∈ [0, 1], an
α−cut of A as the crisp set

Aα := {x ∈ X | A(x) ≥ α}

and, a strong α−cut of A as the crisp set

Aα+ := {x ∈ X | A(x) > α}.

The support of A is defined as the crisp set A0+ and the core of A as the
crisp set A

1
.

Note that we have that Aγ ⊆ Aα ⊆ Aβ whenever 1 > β > α > γ > 0,
as it can be seen in Figure 5 but it does not imply that the α−cuts must be
connected as it is shown in Figure 6

Figure 5: Fuzzy set α−cuts.
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Figure 6: Non connected fuzzy set α−cuts.

The following example shows another difference between crisp sets and fuzzy
ones.

Example 3.9. Considering the sets given in Example 3.1 and Example 3.3,
we have that in the crisp case the core, the support and all the α−cuts coincide
but, in the Fuzzy case:

• The 0.5− cut is:
A0.5 = [4, 5].
B0.5 = {2, 3, 5, 7}.
C0.5 = {0, 1, 2}.
D0.5 = [0, 56π] ∪ [ 76π,

11
6 π] ∪ [ 136 π,

17
6 π] ∪ [ 196 π, 10].

• Support:
A0+ = [3, 5].
B0+ = {2, 3, 5, 7}.
C0+ = [0, 10] ∩ N.
D0+ = [0, 10] \ {π, 2π, 3π}.

• Core:
A1 = ∅.
B1 = {2, 3, 5, 7}.
C1 = {0, 1}.
D1 = [0, π2 ] ∪ { 32π,

5
2π}.

Now we will talk about the basic connectives and some operations we can
apply on fuzzy sets.

3.1. Basic Connectives

Connectives over fuzzy sets are defined and studied through pointwise opera-
tions over the interval [0, 1], but defining this kind of operators depends on the
membership functions nature. The following are some important operations
found out in literature and they are considered as generalizations of those in
crisp sets.

Definition 3.10. Let A,B ∈ F(X), the following are operations over fuzzy
sets of X.
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• Inclusion For all x ∈ X, A ⊆ B := A(x) ≤ B(x).

The iguality among two fuzzy subsets A,B is valid if and only if for all
x ∈ X, A(x) = B(x).

• Intersection For all x ∈ X, A ∧B(x) := min{A(x), B(x)}.

• Union For all x ∈ X, A ∨B(x) := max{A(x), B(x)}.

• Complementation For all x ∈ X, Ac(x) := 1−A(x).

The following example can help the reader to understand the latest defini-
tion.

Example 3.11. Considering again the sets given in Example 3.1 and Example
3.3, we have that in the Crisp case: B ⊂ C, A∩B = {3, 5} and A∪B = [3, 5]∪
{2, 7}. However, in the Fuzzy case: B * C because C(2) = 0.5 < 1 = B(2).

• Intersection. • Union.

A ∩B(x) =


0.3 x = 3

0.901 x = 5

0 in other case.

A ∪B(x) =



1 x ∈ {2, 3, 5, 7}
0.2 x ∈ (3, 4)

0.7 x = 4

0.5 x ∈ (4, 5)

0 otherwise.

We can observe that many properties for the crisp sets are preserved for
fuzzy ones but the laws of contradiction and excluded middle (“tertio non
datur”) do not hold for fuzzy sets [1], since that

A ∧Ac(x) 6= ∅ and A ∨Ac(x) 6= X.

For example, if we take in account the fuzzy set A from the Example 3.3, we
can observe that ∅ 6= A ∧ Ac because A ∧ Ac(3) = 0.3 and X 6= A ∧ Ac since
that A ∨Ac(3) = 0.7.

In general, it is no difficult to see that are true for every fuzzy set:

0 ≤ A ∧Ac(x) = min{A(x), 1−A(x)} ≤ 0.5

and
0.5 ≤ A ∨Ac(x) = max{A(x), 1−A(x)} ≤ 1.

Aditionally, there are operations that depend on the membership function.
These operations are unary operations that modify the membership function
of the Fuzzy Set. In practice they are known as hegdes and the most common
are Concentration type and Dilatation type. The first one can be related
to words like ‘very . . . ’ and reduces the membership grades like A

C
(x) := A(x)2

does; the second one can be related to words like ‘probably . . . ’ and increases
the membership grades like A

D
(x) :=

√
A(x) does.

In addition, we must remark that Zadeh proposed extensions which are
important tools in fuzzy set theory and its applications.

Bolet́ın de Matemáticas 24(1) 57-88 (2017)
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Definition 3.12 (First Zadeh’s Extension Principle of f). Given a func-
tion f : X −→ Y , where X and Y are crisp sets, it can be extended to a
(fuzzy) function F : F(X) −→ F(Y ) such that V = F (U), where

V (y) :=

{
sup{U(x) | x ∈ X and f(x) = y} f−1(y) 6= ∅,
0 otherwise.

(2)

The first Zadeh’s extension principle serves for extending a real-valued function
into a corresponding fuzzy function. Now, two examples are presented to clarify
how the ZEP-1 works.

Example 3.13. Let X = {a, b, c, d} and Y = {1, 2, 3}. Now, consider the
function f : X → Y given by f(a) = f(b) = 1, f(c) = f(d) = 2. Then
the fuzzy set B(x) = 1

a + 0.4
b + 1

c + 0.7
d in F(X) is extended to the fuzzy set

F (B) ∈ F(Y ) with values:
- F (B)(1) = max{B(x) | x ∈ f−1(1)} = max{B(a), B(b)} = max{1, 0.4} = 1,
- F (B)(2) = max{B(x) | x ∈ f−1(2)} = max{B(c), B(d)} = max{1, 0.7} = 1,
- F (B)(3) = 0, because f−1(3) = ∅.

Hence,

F (B) =
1

1
+

1

2
,

that corresponds to the crisp subset {1, 2} of Y .

Example 3.14. Let f : [0, 10] → [0, 1] given by f(x) = 1 − x
10 and the fuzzy

set A(x) = x
10 in F([0, 10]). Then, for all z ∈ [0, 1],

F (A)(z) = sup{A(x) | f(x) = z} = sup
{ x

10
| 1− x

10
= z
}

= 1− z.

The second Zadeh’s extension principle is a two dimensional case of the
first one, i.e., it allows a crisp mapping f : X × Y −→ Z, where X, Y , and Z
are nonempty sets, to be extended to a mapping on fuzzy sets and it is very
important because it allows us to extend operations between real numbers to
the fuzzy case.

Definition 3.15 (Second Zadeh’s Extension Principle of f). Given f :
X × Y → Z and A and B fuzzy sets, of X and Y respectively, it is possible to
build a function f : F(X)×F(Y ) −→ F(Z) by:

g(A,B)(z) :=

 sup
z=f(x,y)

min{A(x), B(y)} z ∈ Ranf,

0 z /∈ Ranf.
(3)

Remark 3.16. Zadeh’s extension is well defined for any fuzzy set A ∈ F(X).
Indeed, when f−1(y) 6= ∅, the set {A(x) | x ∈ X, f(x) = y} is non-empty and
bounded and so, it has a least upper bound.

The following subsection is about how to convert crisp into fuzzy and vicev-
ersa and these ideas were taken from Uhrig’s and Pedrycz’ books [20, 23].
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3.2. Fuzzification and Defuzzification

Fuzzification is a kind of process of changing a real scale value into a fuzzy
value (that is to give a membership function to a set (or universe)) and it is
usually done by experience and analysis; so, a wrong fuzzification of the input
variables might cause instability and error of the modeled system [23]. Types
of fuzzifiers are singleton fuzzifier, characteristic fuzzifier, triangular
fuzzifier, trapezoidal fuzzifier, gaussian fuzzifier (see Definitions 4.10,
4.11 and 4.12).

On the other hand, defuzzify consists of replacing the fuzzy variable for a
crisp one [21]. In order to do that we can use different techniques. The most
useful are:

• Maximum Defuzzification Technique (MDT): This method gives
the output with the highest membership function. If the fuzzy set has
membership function µ then the picked element x∗ satisfies for all x in
the universe:

µ(x∗) ≥ µ(x).

• Centroid Defuzzification Technique (CoG - Center of Gravity):
This method purposed by Sugeno in 1985 is the most commonly used
technique and it is very accurate [21]. If U ∈ F(X)

x∗ =

∫
W
µi(x)xdx∫

W
µi(x)dx

,

where W := U0 .

• Weighted Average Defuzzification Technique (WAD): It is other
of the most frequently used in fuzzy applications since it is one of the more
computationally efficient methods. Unfortunately, it is usually restricted
to symmetrical output membership functions [21]. We can defuzzify by
doing:

x∗ =

∑
µi(x)xdx∑
µi(x)dx

• Center of Area (CoA):. If U ∈ F(R) then this number is defined as
the point of the support of U that divides the area under the membership
function into two equal parts. If that number is a then it satisfies:∫ a

−∞
U(x)dx =

∫ ∞
a

U(x)dx.

• Expected value and expected interval (EV and EVI). If U is a
continuous fuzzy number then the expected value is given by

EV (U) :=
1

2

∫ 1

0

(U−r + U+
r )dr.
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and the expected interval is

EV I(U) :=

[∫ 1

0

U−r dr,

∫ 1

0

U+
r dr

]
.

The expected value is the midpoint of the expected interval [21].

The Figure 7 shows an idea where is located the chosen point to represent the
defuzzification.

Figure 7: Points that represent some of the defuzzification processes.

4. Fuzzy Numbers

Fuzzy numbers are special fuzzy subsets of the real numbers which are of great
importance in fuzzy systems. That is why in this section the fuzzy numbers
are defined, described and characterized. In applications, continuous fuzzy
numbers are used and, among various shapes of them, triangular (shaped) fuzzy
numbers and the trapezoidal (shaped) fuzzy numbers are the most popular
ones.

Definition 4.1. A fuzzy number is an element of F(R) whose membership
function U : R→ [0, 1] satisfies the following:

1. Exists x
0
∈ R such that U(x

0
) = 1. (Normality).

2. Given x, y ∈ R and t ∈ [0, 1]

U(tx+ (1− t)y) ≥ min{U(x), U(y)}. (Fuzzy Convexity).

3. For any x0 ∈ R, it holds that

U(x
0
) ≥ lim

x→x±
0

U(x). (Upper Semi-Continuity.
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4. U+
0

= {x ∈ R|U(x) > 0}R is a compact set. (Compact Support).

The set of all fuzzy numbers will be denoted by FC(R)

According to the definition of fuzzy number given above, the fuzzy set
represented by the Figure 8 is a fuzzy number. To see example of fuzzy sets
which are not fuzzy numbers see Figure 4.

Figure 8: Fuzzy Number.

Remark 4.2. Another ways to define the upper-continuity are [6]:

• For any non-decreasing sequence α
1
≤ α

2
≤ · · · ≤ α

n
≤ . . . whose limit

is α,

Uα = lim
n→∞

n⋂
i=1

Uα
i
. In particular,Uα =

⋂
β<α

U
β
.

• For all ε > 0, exists δ > 0 such that if |x−x0| < δ then U(x)−U(x0) < ε

Remark 4.3. Every real number is a fuzzy number, i.e. R ⊂ FC(R), In
effect, R can be identified as

R = {χ
x
| x ∈ R} where χ

x
(y) :=

{
1 x = y,

0 x 6= y.

Furthermore, fuzzy numbers generalize closed intervals and the following set
may be taken into account:

IR = {χ
[a,b]
| [a, b]is an usual closed interval in R}.

Before giving the characterizations of fuzzy numbers, the following lemma is
presented.

Lemma 4.4. If U is fuzzy convex, then Uα is convex for each α ∈ I.

Proof. [9] Let U be fuzzy convex and x, y ∈ U
0

for some α ∈ (0, 1], so U(x) ≥ α
and U(y) ≥ α. Then, for any λ ∈ [0, 1],

U(λx+ (1− λ)y) ≥ min{U(x), U(y)} ≥ α.

So, λx + (1 − λ)y ∈ Uα. Hence, for all α ∈ (0, 1], Uα is a convex subset of
R.
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4.1. Characterization of Fuzzy Numbers Theorems

The following theorems are employed to characterize the fuzzy numbers and
their proofs can be seen in the Bede’s book [1].

Theorem 4.5 (Stacking Theorem). If U ∈ FC(R) is a fuzzy number and
for α ∈ [0, 1] the sets Uα are its α−cuts, then:

(i) Uα is a closed interval, i.e., for any α ∈ [0, 1]:

Uα = [U
−

α , U
+

α ],

where U
−

α := inf Uα and U
+

α := supUα.

(ii) If 0 ≤ α ≤ β ≤ 1, then Uβ ⊂ Uα.

(iii) For any sequence αn which converges from below to α ∈ (0, 1] we have:⋂
n≥1

Uαn = Uα.

(iv) For any sequence αn which converges from above to 0 we have:⋃
n≥1

Uαn = U
0
.

Proof. Let U ∈ FC(R) be a fuzzy number and Uα, for α ∈ [0, 1], its α−cuts,
then:

(i) First, note that every set Uα is nonempty and bounded since U1 6= ∅ and
the fact U+

0
is a compact set in R implies U+

0
is bounded. Let U be a

fuzzy number and α ∈ (0, 1]. If a, b ∈ Uα, then U(a) ≥ α and U(b) ≥ α.
Then from the fuzzy convexity, if x ∈ [a, b] the x ∈ Uα since

U(x) ≥ min{U(a), U(b)} ≥ α.

As a conclusion Uα contains any closed interval [a, b] and so Uα is a convex
set. All is left to be proven is that Uα is closed.

From Upper Semicontinuity, if U(x0) < α then there is an open interval
W with x

0
∈ W such that U(x) < α, for all x ∈ W . Then, the set

{x|U(x) < α} is open and then its complement is a closed set, i.e., Ur is
closed. Therefore, Uα is a closed interval for any α ∈ [0, 1] because on the
real line, closed convex sets are closed intervals.

(ii) if 0 < α1 ≤ α2 ≤ 1 then, if x ∈ Uα
2

then U(x) ≥ α2 ≥ α1 and so,
x ∈ Ualpha

1
. Onthe otherhand, if α1 = 0 or α2 = 0, the the result is

immediate.
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(iii) Consider a non-decreasing sequence (α
n
) such that converges to α. Then

Uαn ⊆ Uα
n−1

, is a descending sequence of closed intervals Uαn =

[U
−

αn
, U

+

αn
]. By the Nested Interval Theorem[22], we can achieve U

−

αn
, U

+

αn

converge that is U
−

αn
→ a, U

+

αn
→ b and consequently

[a, b] =
⋂
n∈N

Uαn .

So, it is enough to show that U(a) ≥ α and U(b) ≥ α. Suppose that
U(a) < α, then since U is upper semicontinuous, there is a neighborhood
W of a, such that U(x) < α. This implies the existence of a rank N ∈ N
with U(U

−

αn
) < α for any n ≥ N . Then since αn → r we obtain that there

exists n ∈ N such that U(U
−

αn
) < αn which is a contradiction. Then it

follows that U(a) ≥ α. Similarly we can show that U(b) ≥ α so, U(x) ≥ α
and then [a, b] ⊆ Uα. Additionally, from (ii), we have Uα ⊆ Uαn and it
applies Uα ⊆ [a, b]. Then finally we get [a, b] = Uα, that is,

Uα =
⋂
n∈N

Uαn .

(iv) Since U
0

is a closed set and
⋃
n≥1

Uαn ⊆ U
0
, we have that

⋃
n≥1

Uαn ⊆ U
0
.

Reciprocally, x ∈ U0 implies that there is a sequence {xn}n∈N ⊆ {x ∈
R | U(x) > 0} that converges to x. Without loss of generality we may
assume that xn ∈ Uαn ⊆

⋃
n≥1

Uαn . Then, we obtain x ∈
⋃
n≥1

Uαn .

So, we have completely proved ths Stacking Theorem.

The following theorem is the reciprocal of the Theorem 4.5.

Theorem 4.6 (Negoita - Ralescu Characterization Theorem). Given a
family of subsets {Mα}α∈[0,1] that satisfies the following conditions:

(i) Mα is a non-empty closed interval for any α ∈ [0, 1].

(ii) If 0 ≤ α ≤ β ≤ 1, we have Mβ ⊂Mα.

(iii) For any sequence αn which converges from below to α ∈ (0, 1] we have:⋂
n≥1

Mαn
= Mα.

(iv) For any sequence α
n

which converges from above to 0 we have:⋃
n≥1

Mαn = Mα.
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Then there exists a unique U ∈ RFuzzy, such that Uα = Mα, for any α ∈ [0, 1].

The following is a characterization through monotonous functions.

Theorem 4.7 (L - U Representation Theorem). Let U be a fuzzy num-

ber and let Uα = [U
−

α , U
+

α ] = {x | U(x) ≥ α}. Then the functions U
−
, U

+

:
[0, 1] −→ R, defining the endpoints of the α−cuts, satisfy the following condi-
tions:

(i) U
−

(α) := U
−

α ∈ R is a bounded, non-decreasing, left-continuous function
in (0, 1] and it is right-continuous at 0.

(ii) U
+

(α) := U
+

α ∈ R is a bounded, non-increasing, left-continuous function
in (0, 1] and it is right-continuous at 0.

(iii) U
−

1
≤ U+

1
.

Proof. For a given U ∈ RFuzzy, and given 0 ≤ α
1
≤ α

2
≤ 1, from the Stacking

Theorem 4.5 we obtain Uα
2
⊆ Uα

1
. Then we have, for all 0 ≤ α1 ≤ α2 ≤ 1:

U
−

α
1
≤ U

−

α2
≤ U

−

1
≤ U

+

1
≤ U

+

α2
≤ U

+

α1
,

which implies immediately the monotonicity properties and (iii). Left conti-
nuity at α ∈ (0, 1] follows from property (iii) of the Stacking Theorem 4.5.
Indeed, let α0 ∈ (0, 1] be fixed and (αn) a increasing sequence converging to
α0, i.e., αn → α0 . Then from the property (iii) of the Stacking Theorem 4.5
we obtain ⋂

n∈Z+

Uαn = Uα0
,

which immediately implies U
−

αn
→ U

−

α0
and U

+

αn
→ U

+

α0
, i.e., both functions

are left continuous at arbitrary α0 ∈ (0, 1]. In order to prove right continuity
at 0 we consider a decreasing seguence (α

n
) such that converges to 0. We have

U0 = {x | U(x) > 0} =
⋃
n∈Z+

{x | U(x) ≥ αn} =
⋃
n∈Z+

Uαn .

The functions U
−
, U

+

: [0, 1] −→ R, defining the endpoints of the α−cuts,
are denoted in the context of fuzzy numbers by L and R respectively. Addi-
tionally, the reciprocal of the Theorem 4.7 is the next result.

Theorem 4.8 (Goetschel - Voxman Characterization Theorem). Let

us consider the functions U
−
, U

+

: [0, 1] −→ R, that satisfy the following con-
ditions:

(i) U
−

(α) := U
−

α ∈ R is a bounded, non-decreasing, left-continuous function
in (0, 1] and it is right-continuous at 0.
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(ii) U
+

(α) := U
+

α ∈ R is a bounded, non-increasing, left-continuous function
in (0, 1] and it is right-continuous at 0.

(iii) U
−

1
≤ U+

1
.

Then there is a fuzzy number U ∈ RFuzzy that has U
−

α , U
+

α as endpoints of its
α−cuts, Uα.

4.2. Types of Fuzzy Numbers

Several types of fuzzy numbers which are often used in applications are de-
scribed below, we start by giving the most general fuzzy number then particular
cases of them are shown.

Definition 4.9. A L-R Fuzzy Number is a fuzzy set U : R → [0, 1] whose
membership degree fulfill the following rule:

U(x) =



0 x < a−0

L
(
x−a−0
a−1 −a

−
0

)
a−0 ≤ x < a−1

1 a−1 ≤ x < a+1

R
(
a+0 −x
a+0 −a

+
1

)
a+1 ≤ x < a+0

0 a+0 ≤ x,

(4)

where L,R : [0, 1] −→ [0, 1] are two continuous, increasing functions fulfilling
L(0) = R(0) = 0, L(1) = R(1) = 1 and a−0 ≤ a

−
1 ≤ a

+
1 ≤ a

+
0 are real numbers.

The level sets of a L-R Fuzzy Number are given by

Uα = [a−
0

+ aL−1(α), a+
0
− aR−1(α)], where α ∈ [0, 1].

L-R fuzzy numbers are considered important in the theory of fuzzy sets and they
are very useful in applicatons. Symbolically, we write U = (a−0 , a

−
1 , a

+
1 , a

+
0 )

L,R
,

where [a−1 , a
+
1 ] is the core of U , and a := a−1 − a

−
0 and a := a+0 − a

+
1 which are

called the left spread and the right spread respectively [1].
Particular cases of L-R fuzzy numbers are trapezoidal, triangular and gaussian
fuzzy numbers. Reader can see their shapes in Figure 10.

Definition 4.10. A Triangular Fuzzy Number (TFN) is characterized by
the membership function:

U(x) =


0 t < a
t−a
b−a a ≤ t < b
c−t
c−b b < t ≤ c
0 c < t.

(5)

It is noted by three numbers a < b < c where the base of the triangle is the
interval [a, c] and its vertex is at x = b.
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Figure 9: Graphical representation of a L-R fuzzy number.

Definition 4.11. A Trapezoidal Fuzzy Number (TrFN) is characterized
by the membership function:

U(x) =



0 t < a
t−a
b−a a ≤ t < b

1 b ≤ t ≤ c
d−t
d−c c < t ≤ d
0 d < t.

(6)

It is noted by four numbers a < b < c < d where the base of the trapezoid is
the interval [a, d] and its top is over [b, c] and the endpoints of the α−level sets
are given by

U
−

α := a+ α(b− a) and U
+

α := d− α(d− c).

Definition 4.12. Gaussian Fuzzy Numbers (GFN) is characterized by
the membership function:

U(x) =



0 x < x
1
− aσ

l

exp{− (x−x
1
)2

2σ2

l

} x
1
− aσ

l
≤ x < x

1

exp{− (x−x
1
)2

2σ2

r

} x
1
≤ x < x

1
+ aσ

r

0 x
1

+ aσ
r
≤ x,

(7)

where x
1

is the core of the fuzzy number, σ
l
, σ

r
are the left and right spreads

and a > 0 is a tolerance value.

Gaussian fuzzy numbers often are used in fuzzy control systems.

Remark 4.13. It does not matter if the universe of discourse is restricted to a
closed compact interval, because all the fuzzy sets that fulfill normality, fuzzy
convexity and upper-semicontinuity become in a fuzzy number.
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Figure 10: Types of fuzzy numbers the reader can use in applications.

4.3. Fuzzy Arithmetic

Let U and V be two fuzzy numbers then, it is natural to think about their
arithmetic. Fuzzy numbers would be little use if there no answer for questions
related to these issues [24]. Fortunately, from the Zadeh’s extension principle we
can connect fuzzy sets with operations and tools of the classical mathematics.

Thus, to define the membership grade of x of the fuzzy aritmethic opera-
tions, from the ZEP, the following formula arises:

U(x) ? V (y) = sup
x?y=z

min{U(x), V (y)},

where ? ∈ {+,−,×,÷,∨(max),∧(min)}. It is necessary to keep in mind that
these fuzzy operations are not just pointwise operations. The ZEP is a very
general result which help to define a fuzzy arithmetic of fuzzy numbers but it
can be applied to many other situations, in fact, it can be applied to any crisp
relation of function in mathematics to provide an anlogous fuzzy one [24].

Since a fuzzy number U is charactized by having a closed interval as support,
i.e. U0 = [U−0 , U

+
0 ] and by using a quadruple (U−0 , U

−
1 , U

+
1 , U

+
0 ) to represent

itself, it is possible to combine both ideas with interval arithmetic in order to
give a best understanding for fuzzy arithmetic.

From the interval analysis we have the following definitions.

Definition 4.14 (Arithmetic of Interval Operations). Given [a, b] and
[c, d] in the set IR and λ ∈ R,then [24]:

(i) [a, b] + [c, d] := [a+ c, b+ d].

(ii) [a, b]− [c, d] := [a− d, b− c].

(iii) λ · [a, b] =

{
[λa, λb] λ ≥ 0

[λb, λa] λ < 0

(iv) [a, b]× [c, d] := [minA,maxA], where A := {ac, ad, bc, bd}.

(v) [a, b]÷ [c, d] := [a, b]× [ 1d ,
1
c ] = [minB,maxB], where B := {ac ,

a
d ,

b
c ,

b
d}.

As long as zero does not belong to [c, d] when we divide by this interval.
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Hence, we can now characterizeW = U?V through their α−cuts, that is, for
all α ∈ [0, 1], Wα = Uα ?Vα, where ? = {+,−,×,÷} is an arithmetic operation
between intervals. The following example explains how fuzzy arithmetic works.

Example 4.15. Let A,B ∈ FC(R) be TFN characterized by the following
membership functions

U(x) :=


0 x ≤ −1; x > 3
x+1
2 x ∈ [−1, 1]

3−x
2 x ∈ (1, 3].

V (x) :=


0 x ≤ 1; x > 5
x−1
2 x ∈ (1, 3]

5−x
2 x ∈ (3, 5].

Graphically, this two fuzzy sets are

Figure 11: TFN A and B.

Their α−cuts are of the form:

Uα := [2α− 1, 3− 2α] and Vα := [2α+ 1, 5− 2α].

Hence:

• Addition is given by:

Uα + Vα = [4α, 8− 4α].

• Subtraction is given by:

Uα − Vα = [4α− 6, 2− 4α].

• Multiplication is given by:

Uα × Vα = [−4α2 + 12α− 5, 4α2 − 16α+ 15].

• and, division is:

Uα ÷ Vα =

[
2α− 1

2α+ 1
,

3− 2α

2α+ 1

]
.

Bolet́ın de Matemáticas 24(1) 57-88 (2017)



Fuzzy Sets. A way to model subjetivity 77

Pictures of these operations are shown in Figure 12, Figure 13, Figure 14,
Figure 15.

Figure 12: Adition of TFN.

Figure 13: Subtraction of TFN.

Figure 14: Multiplication of TFN.
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Figure 15: Division of TFN.

Remark 4.16. Addition of fuzzy numbers satifies commutativity, associativity,
the existence of a neutral element but None of U ∈ FC(R) − R has an
opposite in FC(R) (with respect to - w.r.t. - the operation +). Then, a
conclusion is that the space of fuzzy numbers is not a linear space.

The next definitions are alternative forms to define the subtractions and
are very useful to define differentiability in FC(R).

Definition 4.17. The Hukuhara difference (H-difference 	H) is defined
by

U 	H V = W ⇐⇒ U = V uW,

being u the standard fuzzy addition.

The Hukuhara difference rarely exists, so several alternatives and general-
izations were proposed like the generalized Hukuhara differentiability [1].

Definition 4.18 ((gH−difference)). Given two fuzzy numbers U, V ∈ FC(R),
the generalized Hukuhara difference (gH−difference) is the fuzzy num-
ber W , if it exists, such that

U 	gH V = W ⇐⇒ U = V uW or V = U −W.

Another type of difference used is the next one.

Definition 4.19 ((g−difference)). The generalized difference (g−diffe-
rence) of two fuzzy numbers U, V ∈ FC(R) is given by its level sets as

(U 	g V )α =
⋃
β≥α

U
β
	gH V

β
,

for all α ∈ [0, 1] where the gH−difference, 	gH , is with interval operands U
β

and V
β

and it is well defined in this case.

We must note that for any fuzzy numbers U, V ∈ FC(R) the g−difference
U 	g V exists and it is a fuzzy number.
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4.4. Topology of Fuzzy Numbers and Fuzzy Analysis

The objective of this section is to endow the set of fuzzy numbers with some
metrics. Fuzzy sets and fuzzy numbers are more complicated objects than real
vectors or real numbers, and we will see that metric distance and the topological
development is closer to function spaces like C([a, b]) or Lp([a, b]) than for Rn
[15]. Consequently, sophisticated functional analytic techniques can be applied
to problems of fuzzy analysis [1].

This section is based on ideas which are found in the books written by Bede,
Lakshmikantham and Dubois [1, 9, 15]. In order to understand the metric space
of the fuzzy numbers some definitions and ideas are presented.

The most well known, and also the most employed metric in the space of
fuzzy numbers is the Hausdorff distance for fuzzy numbers which is based on
the classical Hausdorff-Pompei distance between compact convex subsets of
Rn [15]. From Zadeh’s extension principle we obtain for FC(R) the following
definition.

Definition 4.20. Given U, V ∈ F(R) and x, c ∈ R; if we consider the functions
f : R×R→ [0, 1] and gc : R −→ [0, 1] defined as f(x, y) := x+y and gc(x) := cx
respectively, the following operations can be defined:

U
∼
+ V (x) := sup

a+b=x
min{U(a), V (b)}. (8)

c
∼· U(x) :=

{
U(x/c) c 6= 0

χ{0}(x) c = 0.
(9)

Unfortunately, if the space of fuzzy numbers, FC(R), is endowed with this
operations then it does not be a linear space.

4.4.1. The space En

We start this section by defining the space which will be used through all this
subsection.

Definition 4.21. Let us denote by En the space of all fuzzy subsets U of Rn
which satisfy the following:

(i) U maps Rn onto I := [0, 1];

(ii) U
0

is a bounded subset of Rn;

(iii) Uα is a compact subset of Rn, for all α ∈ I;

(iv) U is fuzzy convex, that is, for all s, t ∈ Rn and λ ∈ I

U(λs+ (1− λ)t) ≥ min{U(s), U(t)}.
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Note that when n = 1 we have En = FC(R). Moreover, the characterization
theorems (Theorem 4.5, Theorem4.6, Theorem4.7, Theorem4.8) as well the
properties for the sum and scalar multiplication of FC(R) can be extended to
En [15]. So, we are going to use them without any warning. To finish this
subsubsection, we are going to define the following useful set.

Definition 4.22. For any nonempty subset K of Rn define the subset

En(K) = {U ∈ En | U
0
⊂ K}.

4.4.2. The Hausdorff Metric

Metrics for elements in FC(R) are needed for the calculus of fuzzy functions.

Definition 4.23. Let x ∈ Rn and A a nonempty subset of Rn.
The distance from x to A is:

d(x,A) := inf
a∈A
‖ x− a ‖ . (10)

Now, if A and B be two nonempty subsets of Rn we will define:

Definition 4.24. The Hausdorff separation of B from A by

d
HS

(B,A) = sup
b∈B

d(b, A). (11)

We must to note that in general,

d
HS

(A,B) 6= d
HS

(B,A).

In consequence, we define:

Definition 4.25 (Crisp Hausdorff distance). Given A and B nonempty
subsets of Rn then we defines the Hausdorff distance between A and B by

d
H

(A,B) = max{d
HS

(A,B), d
HS

(B,A)}. (12)
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Additionaly, the Hausdorff distance when A = [a1, a2] and B = [b1, b2] are
intervals is [9, 15]:

dH(A,B) = max{|a1 − b1|, |a2 − b2|}. (13)

From this, an extension for Lipschitzian condition is the following.

Definition 4.26 (Lipschitzian Fuzzy Set). A fuzzy set U ∈ En is called a
Lipschitzian fuzzy set if it is a Lipschitz function of its membership grade
in the sense that

d
H

(Uα, Uβ ) ≤ K|α− β| (14)

for all α, β ∈ I and some fixed finite constant K.

An example of the previous definition is the next one.

Example 4.27. A triangular fuzzy number U ∈ FC(R) = E1 is characterized
by an ordered triple (U

l
, Um , Uu) ∈ R3 with U

l
≤ Um ≤ Uu such that U0 =

[U
l
, U

u
] and U1 = {U

m
}, and

Uα = [U
m
− (1− α)(U

m
− U

l
), U

m
+ (1− α)(U

u
− U

m
)]

for any α ∈ I. In addition

d
H

(Uα), U
β
) = |α− β|max{(U

m
− U

l
), (U

u
− U

m
)},

so all the triangular fuzzy numbers are Lipschitzian, where, in this case, the
constant is K := max{(Um − Ul), (Uu − Um)}.

Then we define the distance between fuzzy numbers as follows.

Definition 4.28 (Fuzzy Hausdorff distance). Let
D
FH

: FC(R)×FC(R) −→ R+ ∪ 0 be a function defined by,

D
FH

(U, V ) := sup
r∈[0,1]

d
H

(Ur, Vr)

= sup
r∈[0,1]

max{|U−r − V −r |, |U+
r − V +

r |}.

where Ur = [U
−

r , U
+

r ], Vr = [V
−

r , V
+

r ] belong to IR and d
H

is the classical
Hausdorff-Pompeiu distance between real intervals. Then D

FH
is called the

Fuzzy Hausdorff distance between fuzzy numbers. Another notation for
this metric is given in the next section.

An Lp− type distance can also be defined.

Definition 4.29 (Lp distance). Let 1 ≤ p <∞. We define the Lp distance
between fuzzy numbers as

Dp(U, V ) :=

(∫ 1

0

d
H

(Ur, Vr)
pdr

) 1
p

=

(∫ 1

0

max{|U
−

r − V
−

r |, |U
+

r − V
+

r |}pdr
) 1
p

.
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The next theorems give a property of the Hausdorff distance and Lp distance
between fuzzy numbers.

Theorem 4.30 (Diamond-Kloeden). The spaces (FC(R), D
FH

) and are
metric spaces.

Proof. (i) Note that D
FH

(U, V ) = sup
r∈[0,1]

max{|U−r − V −r |, |U+
r − V +

r |} ≥ 0.

Also, D
FH

(U, V ) = 0 if and only if for r ∈ [0, 1] we have that U−r = V −r
and U+

r = V +
r . Additionaly, it is not difficult to see that D

FH
(U, V ) =

D
FH

(V,U). Finally, for the triangle inequality we have

|U−r − V −r | ≤ |U−r −W−r |+ |W−r − V −r | ≤ DFH
(U,W ) +D

FH
(W,V )

and

|U+
r − V +

r | ≤ |U+
r −W+

r |+ |W+
r − V +

r | ≤ DFH
(U,W ) +D

FH
(W,V )

which implies

D
FH

(U, V ) ≤ D
FH

(U,W ) +D
FH

(W,V ).

As a conclusion (FC(R), D
FH

) is a metric space.

(ii) Let us check that Dp satisfies the definition of to be a metric. Since that
d
H

is a metric, we have

(a)

Dp(U, V ) =

(∫ 1

0

d
H

(Ur, Vr)
p

dr

) 1
p

≥ 0.

(b) Given U, V ∈ FC(R), then

Dp(U, V ) =

(∫ 1

0

d
H

(Ur, Vr)
p

dr

) 1
p

=

(∫ 1

0

d
H

(Vr, Ur)
p

dr

) 1
p

= Dp(V,U).

(c) Given U, V ∈ FC(R),

Dp(U, V ) = 0⇐⇒
(∫ 1

0

d
H

(Ur, Vr)
p

dr

) 1
p

= 0

⇐⇒
∫ 1

0

d
H

(Ur, Vr)
p

dr = 0

⇐⇒ d
H

(Ur, Vr) = 0 for all r ∈ [0, 1]

⇐⇒ Ur = Vr for all r ∈ [0, 1]

⇐⇒ U = V.
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(d) Consider U, V,W ∈ FC(R),

Dp(U, V ) =

(∫ 1

0

d
H

(Ur, Vr)
p

dr

) 1
p

≤
(Triangular
Inequality)

(∫ 1

0

(d
H

(Ur,Wr) + d
H

(Wr, Vr))
p

dr

) 1
p

≤
(Minkowski
Inequality)

(∫ 1

0

d
H

(Ur,Wr)
p

dr

) 1
p

+

(∫ 1

0

d
H

(Wr, Vr)
p

dr

) 1
p

= Dp(U,W ) +Dp(W,V ).

4.4.3. Other Metrics on FC(R)

The most commonly used metrics on FC(R) involve the Hausdorff distance
between the level sets of the fuzzy sets [7, 15, 9]. In this subsection, only are
given some of the metrics we found in texts about Fuzzy Analysis.

Definition 4.31. For A,B ∈ En, then:

(i) Supremum metric (Hausdorff Metric).

D∞(A,B) = sup
0≤α≤1

max{L(α), R(α)},

where, L(α) = |a1(α)− b1(α)| and R(α) = |a2(α)− b2(α).

(ii) Integral distance. When n = 1,

D∫ (A,B) :=

∫ b

a

|A(x)−B(x)|dx,

where [a, b] is an interval contining A0 ∩B0.

(iii) Minkowski distance. For n = 1,

D
Mw

:=

(∑
x∈R
|A(x)−B(x)|w

) 1
w

(iv) Lp metric. For 1 ≤ p <∞,

Dp(A,B) =

(∫ 1

0

dH(Aα, Bα)pdα

) 1
p
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With these metrics FC(R) is a metric space and it has the following properties
[15].

Theorem 4.32. (FC(R), D∞) is a complete metric space.

Theorem 4.33. (FC(R), Dp) is not a complete metric space.

Proposition 4.34. The closed unit ball of (FC(R), D∞),

B∞[0, 1] := {u ∈ E1 | D∞(u, 0) ≤ 1}

is not separable.

Proof. For a given t ∈ [0, 1] we define

Ut(x)


0 x /∈ [0, 1]

t x ∈ [0, 12 )

2(1− t)x+ 2t− 1 x ∈ [ 12 , 1].

The level sets of Ut can be written as

(Ut)r

{
[0, 1] 0 ≤ r < t[
r+1−2t
2(1−t) , 1

]
t ≤ r ≤ 1.

Then the Hausdorff-Pompeiu distance ”level-wise” between two elements Ut
and Us of the sequence, t < s is given as

D
H

((Ut)r , (Us)r ) =


0 0 ≤ r < t
r+1−2t
2(1−t) t ≤ r < s
r+1−2t
2(1−t) −

r+1−2s
2(1−s) s ≤ r ≤ 1.

We have

D∞(Ut, Us) = sup
r∈[t,s]

r + 1− 2t

2(1− t)
≥ 1

2
>

1

3
.

So the open balls B(Ut,
1
3 ) are disjoint and uncountably many. So a countable

dense subset if there would exist, would need to have an element in each such
ball, which is impossible. So, the closed unit ball in (E1, D∞) is not separable.

Corollary 4.35. (FC(R), D∞) is not a separable space.

Theorem 4.36. The space FC(R), D
p
) is a separable space.

Theorem 4.37. D∞−convergence implies Dp−convergence, for 1 ≤ p < ∞.
The converse is false.

We have found that in fuzzy analysis literature the Hausdorff distance be-
tween the fuzzy numbers is usually used. Some autors say that it is suitable
because, with this metric, the structure of the metric space (FC(R), D∞) is
complete and it is near to the structure of a Banach space [1]. Although we
have neither a linear space structure nor a Banach space, several properties
which hold in Banach spaces also hold in (FC(R), D∞), see [1].
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4.4.4. Norm of a Fuzzy Number

Let us denote ‖ U ‖
F

= D∞(U, 0), for all U ∈ FC(R) the norm of a fuzzy
number. Remember that FC(R) is not a linear space.

Proposition 4.38 (Anastassiou-Gal). ‖ · ‖
F

has the following properties:

(i) U = 0 iff ‖ U ‖
F

= 0.

(ii) ‖ λ · U ‖
F

= |λ| ‖ U ‖
F

, for all λ ∈ R and U ∈ FC(R).

(iii) ‖ λ · (U uV ) ‖
F
≤‖ λ ·U ‖

F
+ ‖ λ ·V ‖

F
, for all λ ∈ R and U, V ∈ FC(R).

(iv) | ‖ U ‖
F
− ‖ V ‖

F
| ≤ D∞(U, V ), for all U, V ∈ FC(R).

(v) For any a and b having the same sign and any U ∈ FC(R) we have

D∞(a · U, b · U) = |b− a| ‖ U ‖
F
.

(vi) D∞(U, V ) =‖ U 	
gH
V ‖

F
, for all U, V ∈ FC(R).

Proof. Let U be a fuzzy number, since ‖ U ‖
F

= D∞(u, 0) and D∞ is a metric,
we have that

(i)
‖ U ‖

F
= 0⇐⇒ D∞(U, 0) = 0⇐⇒ U = 0.

(ii) For all λ ∈ R and U ∈ FC(R) we have

‖ λ · U ‖
F

= D∞(λ · U, 0) = D∞(λ · U, λ · 0) = |λ|D∞(U, 0) = |λ| ‖ U ‖
F
.

(iii) For all U, V ∈ FC(R),

‖ U u V ‖
F

= D∞(U u V, 0)

≤
Theorem 4.30

D∞(U, 0) +D∞(V, 0)

=‖ U ‖
F

+ ‖ V ‖
F
.

(iv) For all U, V ∈ FC(R),

D∞(U, 0) ≤ D∞(U, V ) +D∞(V, 0)

and
D∞(V, 0) ≤ D∞(U, V ) +D∞(U, 0).

Hence,
D∞(U, 0)−D∞(V, 0) ≤ D∞(U, V )

and
D∞(V, 0)−D∞(U, 0) ≤ D∞(U, V ).

So,
|D∞(U, 0)−D∞(V, 0)| ≤ D∞(U, V ),

and therefore,
| ‖ U ‖

F
− ‖ V ‖

F
| ≤ D∞(U, V ).
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(v) Let U ∈ FC(R), and a > b > 0. Then we have

D∞(a ·U, b ·U) = D∞([b+ (a− b)] ·U, b ·U) = D∞(b ·U + (a− b) ·U, b ·U).

Since D∞ is invariant to translations we get

D∞(a · U, b · U) = D∞((a− b) · U, 0) = |b− a| ‖ V ‖
F
.

(vi) Given U, V ∈ FC(R), Let W = U 	
gH
V be their gH−difference, then

U = V uW

and

D∞(U, V ) = D∞(V uW,V )

=
Theorem 4.30

D∞(W, 0)

=‖W ‖
F

=‖ U 	
gH
V ‖

F

5. Conclusions

Fuzzy sets theory tries to formalize the capability to perform a wide variety of
physical and mental tasks and it is suitable for dealing with imprecision and
aproximate reasoning and has become in a very important field of investigation,
as much their mathematical implications as their practical applications, which
have been successfully applied in the world. Here, some of the basics notions of
this branch of mathematics were given and it can be inferred that the notion
of fuzzy number is an important concept for fuzzy calculus and fuzzy modeling
since it allows us to manage different kind of problems like decision making
problems and to deal with certain differential equations [15, 19].
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