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Introduction to finite 1W/-algebras
Introduccién a las W-algebras finitas

D. V. Artamonov!-2

Abstract. These are notes of lectures given at UN Encuentro 2016 at the
Colombia National University. We begin with the definition of infinite W-
algebras. Then we explain the motivation for the definition if finite W-
algebras. Then we present basic facts about the structure and representations
of finite W-algebras. In these lectures we follow the historical development of
the subject.

Keywords: W-algebras, Lie algebra, infinite W-algebras.

Resumen. Estas son notas de la conferencia dada en el UN Encuentro 2016
en la Universidad Nacional de Colombia. Comenzamos con la definicién de in-
finito W-algebras. A continuacién, explicamos la motivacién para la definicién
si finito W-algebras. Luego presentamos hechos basicos sobre la estructura y
representaciones de W-dlgebras finitas. En esta conferencia seguimos el desar-
rollo histérico del tema.

Palabras claves: W-dlgebras, algebra de mentira, infinito W-algebras.

1. What are IV-algebras?

The Virasoro algebra is an algebra of infinitesimal conformal mappings of C
into itself. In the conformal field theory there was discovered a canonical em-
bedding of the Virasoro algebra Vir into U’(g) i.e. into the completed universal
enveloping algebra for the affine Lie algebra corresponding to a semisimple Lie
algebra g. Zamolodchikov in [35] discovered an example of an infinite W-
algebra, which is a certain finitely generated associative subalgebras in U’(g)
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166 D. V. Artamonov

which is an extension of U(Vir). Later there were found other examples of
such extensions. All of them are very difficult, it is actually impossible to write
explicitly the generators and defining relations.

But it was discovered in [4], [14], [6] that the classical counterparts of W
algebras, which are some Poisson algebras, have a very simple description: they
are reductions of the the canonical Poisson structure on g}.

Now take g* instead of g} and perform a similar reduction. Then obtain a
Poisson algebra which is called the classical finite W-algebra. This construction
was discovered by Tjin in [33]. In [32] Tjin and Boer gave a construction of an
associative algebra which is a counterpart of this Poisson algebra, this is the
finite W algebra.

2. Infinite WW-algebras

Let g be a semisimple Lie algebra and g is the corresponding untwisted affine
Lie algebra.

In the conformal field theory there exists the Sugawara construction which
defines elements L, in U’(g), that give a realization of the Virasoro algebra
Vir. Hence we have also an embedding U(Vir) < U’(g).

The construction of the elements L,, is based on the second Casimir element
of the algebra g. What happens when one performs this construction using a
Casimir element of higher order?

It turn out that in this way one can obtain interesting objects called W -
algebras

2.1. Affine Lie algebras
2.1.1. Invariant bilinear form

Fix a semi-simple Lie algebra g. One can have in mind as an example the
following algebras

1. gl,, - the algebra of all n x n matrices over C.
2. sl, - the subalgebra {z € gl,,, tr(z)=0}.
3. 0, - the subalgebra {x € gl,,, z'+ 2 =0}.

There exists a symmetric non-degenerate invariant 2-form on the algebra g,
named the Killing form, it is defined by formula

B(z,y) = tr(adyady), z,y € g (1)
where ad, is an linear operator g — g, defined by the formula
zvrady(2) =[z,2], z€¢

In the formula (1) we take a trace of a composition of two operators of such
type. Explicitly this form can be written as follows.
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Introduction to finite W-algebras 167

1. For gl,, : B(z,y) = 2ntr(zy) — 2tr(z)tr(y)
2. For sl,, : B(x,y) = 2ntr(xy)
3. For o, : B(x,y) = (n — 2)tr(zy)

Proposition 2.1. For a simple Lie algebra this form is positive defined, non-
degenerate. In the case of a simple Lie algebras every other mon-degenerate
invariant bilinear form is proportional to the Killing form B(.,.).

Take a base I,, « = 1,...,m of the Lie algebra g. In the examples listed
above the natural choice of the base is the following.

1. For gl,, take the base E; ;. Then

B(E; j, Ey,;) = 2n0;10;,1 — 20; j0k,1 (2)

2. For sl, take the base Ei,j for i #‘] and Ei,i — Ei+1,i+1- Then

B(E; j, Ery) = 2n0;.0:1, @ #j, k#1,
B(Ei; — Eitiit1, Bry) =0, k#1,

s

B(Ei; — Eit1,i+1, Ejj — Ejy1,541) = —20i41,5 — 26j41.4.
3. For o, take the base I} ; = E; ; — E; ;. Then

B(Fi,j, FkJ) = 277,5]'7]651'71 — 27151'7]@(%'7[ (3)

2.1.2. A loop algebra
Introduce a notation for structure constants of the Lie algebra g:
Lo, 1] = fo 51y (4)

In this formula and everywhere below a summation over repeating indices is
suggested

Definition 2.2. The loop algebra g((t)) associated to g, is a Lie algebra gen-
erated by elements denoted as I}

T2 I8 = F 10 4 b, BT, To)e 5)
This algebra has a geometric interpretation.

a((t)) = {formal mappings S* — g},

where St is {z € C, |z| = 1}. If we take coordinate z = €*™¥ ¢ € [0,1] on
S' then a formal mapping is just a formal power series > > f,2". We can
define the following mappings

n —n—1
1 =1,z
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Note that since g =< I, > an arbitrary mapping S' — g can be represented

as follows
) =Y Fo (o)L,

Let us give an interpretation of the coefficient F*(z). This is a formal power
series F%(z) = F22~"~! whose coefficients F/¢ depend linearly on f. Thus
E2 are values of some linear function on the loop f(z) that is F& € g((t))*.
These functions have the following description. First of all let us note that
since we have a fixed non-degenerate bilinear form B we can identify g and g*,
If we have a fixed base I, in g then we obtain a dual base I? (see also
section 2.3.1), such that
B(I°,1,) = ba.p.
Note that
(1,17 = [P 1.
One can take a series [*(z) = > I*z~ "1

Lemma 2.3. F*(2) = I%(2)(f).

2.1.3. An affine Lie algebra

We define the affine Lie algebra as a central extension of the loop algebra.

Definition 2.4. The affine Lie algebra g, associated with g is a Lie algebra
generated by elements denoted as I}, where n € Z, and an element C subject
to relations

[C,I7] =0, ©)
12 I3 = £2 10 4 B, 15)C

In other words, the affine Lie algebra is a central extension of the loop
algebra.

2.2. Currents and Operator Product Expansions

Let us present a language that comes from the conformal field theory (see [17]).
Definition 2.5. Take a formal variable z and introduce a formal power series
I, (2) = Z PR 5 (7)
nez
It is called a current
Definition 2.6. Take a formal variable z and introduce a formal power series

Q(z):=> =" *Qy,

nez
_ § : k ni ng k
Qk - Ca?u-a}g]a’f e Ioézv Coz?mozg € (C

It is called a field of (conformal) dimension &
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It is a formal power series whose coefficients belong to U’(g). Here U’(g)
is a completion on the usual universal enveloping algebra U(g). The elements
of U'(g) are represented as series of type ) ¢l opr I ... [t such that for
every fixed N the number of summands including I}, with [t| < N is finite.

Let us be given power series A(z) = ., 2" A, and B(w) =) ., w"B,
whose coeflicients belong to some ring.

Definition 2.7. Take the product A(z)B(w) and expand it in z — w, a co-
efficient at (z — w)"™ can depend on w. Denote a coefficient at (z — w)™ as
(AB),,(w), thus one has

A(2)B(w) =) (2 — w)"(AB)n(w)

neZ
This expansion is called an operator product expansion. Shortly we write OPE.

Definition 2.8. The coefficient (AB)q(w) is called the normal ordered product.
It is denoted below as (AB)(w).

A formula for the singular part of operator product expansion for two fields
carries the same information as the set of commutation relations between two
arbitrary modes of expansions of these fields.

In particular one has the following result.

Theorem 2.9. The commutation relations (6) are equivalent to the following
relation
16, —mB(Ia, I5)C  fo gly(w)

Ia(z)lﬂ(w): (Z—'UJ)2 + (Z—’LU) + - (8)

2.3. The energy-momentum tensor

Let us identify the central element C' € U’(g) with a complex number k, denote
the result of factorization of U’(g) by this relation as U’(g)x. We call U’ (g)s
the completed universal enveloping algebra of level k.

2.3.1. The Casimir element of the second order

As in the previous section let I, be a base in g and let I be a dual base. This
is another base of g, such that

B(I.,1%) = 6°. 9)
For example
1. In the case g = gl,, if one takes I, = E; ; then I* = %E]Z

2. In the case g = o,, if one takes I, = F; then I® = ;- F};
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Now define an integer, called the dual Cozxeter number

9=1"""faps (10)
Explicitly, one has
1. For gl,, one has
g=2n
2. For 0,, one has
g=n

Definition 2.10. The element of the universal enveloping algebra

Ty =) 1.1 €Ul(g) (11)

is central. It is called the Casimir element of the second order.
Explicitly, one has

1. For gl,, one has

1
Ty = m lz]: EijEji

2. For 0, one has

T, = % > FijF

1<j

2.3.2. The energy-momentum tensor

Definition 2.11. By analogy with the formula (11) let us define a field of
conformal dimension 2:

1

Y Lad®)(2) € U'@)((2) (12)

(a7
This element is called the energy-momentum tensor.
This name comes from the Wess-Zumino-Witten theory.

Theorem 2.12. One has an OPE

c/2 T(w) oT (w) oo kdimg
Cowi  eow?  eow)
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Now take a decomposition

T(2)=) Lz "% Lo € U'@) (14)
Explicitly one has
L= IM*™ "4y 1omrn (15)
m>0 m<0

One can find an operator product expansion

T()T(w) = C/i)4 + (ZT(U:U))2 n ((ZT(% e, e= kdegg (16)

And using the OPE (18) one can find that the commutation relations for L,
are the following

Lemma 2.13.

3

[Ln, L] = (m = n)Lyn, + —(m> —m)dp,—n.

12
2.4. The Virasoro algebra and the Sugawara construction

Consider the differential operators L, = z”%. They satisfy the commutation
relations
[Lyn, L] = (m —n)Lyyn, n€Z (17)

This algebra is called the de Witt algebra. By definition this is a Lie algebra of
vector fields on C.

The Lie algebra of operators L, has a prominent central extension called
the Virasoro algebra

Definition 2.14. The Virasoro algebra is Lie algebra generated by elements
L,, and C subject to relations

[C, L,] =0,
[Ly, Ln) = (m —n)Lppyn + %(m?’ — M)0m,—n-
_c/2 T(w) oT (w) _ kdimg
T(z)T(w)—(27w)4 Cow?  Gow c= Ko (18)

One can prove that the OPE (18) is equivalent to the following commutation
relations for L,,

[Ly, Lin) = (m —n) Ly + 1 m® —m)6m. (19)

12(

Thus we obtain the following result
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Theorem 2.15 (The Sugawara construction). The elements L, and defined by
the formula (15) and k give an embedding of the Virasoro algebra into U’ (g)k.

Remark 2.16. The Virasoro algebra is infinite dimensional but it is finitely
generated as a Lie algebra. One can see that it is generated by k, L_5, L_1,
LOv L17 L2'

2.5. The Zamolodchikov’s W3 algerba

In the paper [35] Alexander Zamolodchikov obtained the following natural gen-
eralization of the Sugawara construction. We follow a mathematical paper [§]

For g = sl,, he took instead of the a cental element T» € U(g) a third-order
central element T35 = d“’ﬁv"fIaI,gI7 € U(g) and considered the corresponding
field

W(z) = d*?7 (La(Is1,))(2). (20)

Here we must specify the choice of the central element. We choose it such that
the tensor d*?7 is traceless (see formula (25) for the definition of traceless
tensors).

Then consider a decomposition

W=> Woz""% W,eU (@@ (21)
nZz

Explicitly, one has

W, =d*®7( > Irryrremthe N iy
m>0,k>n m<0,k>n
—m—k rn— —m—k Tn—
D S R S R0
m>0,k<n m<0,k<n

Then Zamolodchikov calculated the commutation relations between these ele-
ments and elements L,,. For this pupose the OPE was calculated

3IW(w) oW (w)
(z—w)*  (z-w)

T(2)W(w) =

From this OPE one gets that
[Ly, Win] = (20 — m)Wopm.

Also he calculated the OPE

c/3 2T (w) oT (w)
G-wP ' Gow)l (o wp

+ ;(25/\(10) + %6‘2T(w) + RY(w)))+

(z —w)?
1

(z —w)

W (z)W(w) =

+

(B0A(w) + 20T (w) + 5ORYw))
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where
16

T 22+ 5¢
and R* is some field that cannot be expressed through W, and T,,. But for
k=11in U'(g)x this field vanishes!

Then one has the following relations for the elements W,

A(w) = (TT)(w) ~ <5°T(w), § (22)

(W, W] = %m(nﬁ —1)(m? = 4)msno+
+(m =) (g + b 3)(m o+t 2) — S(m o+ 2)(n+ D)Lt

(23)
+ ﬁAernv

Am = Z(Lm—nLn)

n

3
- ﬁ(m +3)(m+2)Ly,

Definition 2.17. The Wj algebra is an associative algebra generated by the
elements W,,, L,, 1

1, L, =[1,W,] =0

(L Lin] = (0 = 1)L + 5 (m* = 1)8pn,

12
[L, Win] = (2n — m)Wm

(Wi, W) (m? — 1)(m* — 4)0mn.o+

L,
~ 360

1 1
+(m — ”)(B(m +n+3)(m+n+2)— g(m +2)(n +2)) Lingn+
+5Am+n7

A =S (EmnLa) = s (m 4 3)(m + 2L,

n

Thus this algebra is realized as an associative subalgebra in U’(g);.

Note that the last relation is non-linear due to the term A,,, thus W3 is not
a universal enveloping of Lie algebra.

The algebra W3 contains an associative subalgebra U(Vir). Usually one
say that W3 is an extension of Vir.

Remark 2.18. This subalgebra is finitely generated, since it can ge generated
by 07 L—27 L—17 L07 Lla L2; WO-

Remark 2.19. The name ”W-algebra” comes from the fact that the field W (z)
constructed in the present section in some early papers was denoted just in this
paper using the letter ”W”.

2.6. The general definition of a 1//-algebra

The general definition of the W-algebra is the following. Take the completed
universal enveloping algebra U’(g) of level k and a collection of fields W*(z)
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whose coefficients belong to U(g). Suppose that

(L Wil = (b = 1) = m)Wy,,
e B w) | T w)
LW () = i +

and the commutator of W,, and W, can be expressed through L,, W, (that is
no new elements of U(g) are needed)
Then we say that L,,, W, form a W-algebra

2.7. Examples of WW-algebras, the algebras Wy
2.7.1. A definition though higher order Casimirs

The first papers about W-algebras were written by physicists and they were
devoted to a search of examples of W algebras - see list of examples in [34]. In
particular in this list there are algebras Wy that direct generalizations of W3.
Let us give a definition of Wy following [8]. Take a Casimir element for the

algebra sl of type
TM — dah...7a1v1[al . I

an

M=2,...,N, (24)

where the tensor d**»~“M is traceless if a convolution of two arbitrary indices

vanishes:
dal,...,a,...,a,...aM — 0 (25)

One can always chose a central element in such a way. Consider the corre-
sponding field
TM(Z) — dOLl,...,OL]\/[ (I(,yl . I

[e3%

)z), M=2,...,N. (26)

The normal ordered product is not associative, but since the tensor d®i: M
is traceless the placement of brackets in this product is not essential.
Take it’s modes

Ta(z) = 305"V, (27)

The modes of Ths(z) M =2,..., N in the case k = 1 form a W-algebra called
the Wy algebra.

However the formulas for commutation relations for the modes of Th(z)
are too difficult to be written explicitly.

2.7.2. A description of Wy using the Miura transformation

Nevertheless there are more explicit construction of the Wy-algebra by means
of Miura transformation (see [8]).

Take ¢; be the set of set of weight of the vector representation of sly1,
normalized such that €;e; = d; ; — ﬁ Take simple roots o; = €; — €;41.
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Take a some abstract fields ¢(z) such that they satisfy the relations
d d 1

el - R 2
5P g o) = ~ o (28)
Take a product
N+1 d
rR=1] (o= —hy(2)), hy(2) = iei0p(2). (29)
j=1
Consider the decomposition
N+1 d
R=- ; Uz(Z)@ (30)

Then modes of U;(z) generate the Wy algebra.

2.7.3. The coset construction

Let us be given an affine Lie algebra g and it’s subalgebra h. We define an
associative subalgebra in U’(g)x

Definition 2.20. W(g,h) = fields with values in U’(g); that commute with
fields with values in U’(h)

Lemma 2.21. When this algebra is finitely generated it is a W -algebra.
For the pair
9Cag
the algebra
W(g,g) fork=1

is the Wy algebra (see [8]).
Also some recent explicit construction of Wy is given in section 13.3.

2.8. Representations of algebras Wy

The structure of irreducible representations of the Virasoro algebra is well-
understood.

We say that a representation V' of the Virasoro algebra is a representation
with a highest weight X if there is a vector v € V, such that

L,v=0, n>0,
Lov=X\v
By analogy, one defines a highest weight representation of the Wy-algebra
Lyow=0, TMv=0, n>0, (31)
Lov = M, TMv = \yo, (32)

In the case of Virasoro algebra it is known a lot about representation
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1. Every highest-weight module has a unique proper maximal submodule,
the factor by this module is irreducible

2. There exists an explicit criteria which says when the highest-weight mod-
ule is finite-dimensional.

3. The formula for the character of an irreducible highest-weight module is
know explicitly

For the W-algebras the second and third questions were intensively studied,
but there were found no good answers [8].

2.9. The Casimir algebras

One can also consider objects close to W-algebras - the Casimir algebras. They
are defined as follows.
We take Casimir elements

Ty =d* My oIy, (33)
of the considered Lie algebra and consider the corresponding fields
Ty(x) =d¥ (L, - Iy, )(2), M=2,....N (34)

Then for an arbitrary k we take a subalgebra in U’(g)x generated by modes of
these fields. It is called the Casimir algebra.

3. Classical infinite W algebras

In this section we define the classical analogues of Wy algebras. These are
Poisson algebras that are ”limits” of Wy algebras. Also one say that these
Poisson algebras are ”classical analogues” of Wy algebras. Controversially,
one says that the Wy algebras are quantization of classical Wy algebras.

It was was discovered that the classical Wy algebras are closely related to
integrable systems. We are going to describe this relations.

3.1. Poisson algebras

3.1.1. A definition of a Poisson algebra and a Poisson manifold

A Poisson algebra is an algebra A equipped with an additional operation called
the Poisson bracket
{,.}  A® A— A,

that satisfies the following properties
1. {fag} = _{gaf}a
2. {f+g,h} ={f.h} +{g,h}, {af. g} = a{f, g}, where a € A,
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3. {f’ {g>h}} + {h7 {fvg}} + {97 {h>f}} =0,
4. {f.ght ={f.gth+g{f,h}

Shortly, a Poisson algebra is an associative algebra with an additional Lie
bracket {.,.} which is a derivation with respect to the structure of an associative
algebra.

Definition 3.1. A Poisson manifold is a manifold M such that the algebra
C°° (M) has a structure of a Poisson algebra.

A nontrivial example is the following:

M = C?" with coordinates pi, ..., nsq1,---»n

_~~0f dg Of 99
{f,g} B ; 0q; Op; Op; 0¢;

3.1.2. Two important examples

Take the space g*, it has a canonical structure of a Poisson manifold.
Take a base I, in g. It also is a function on g* which acts on a element
f € g* by the ruler
Io(f) = f(1a). (35)

In the case when g is finite-dimensional one has
g" =g,

thus I, is a base in the space of linear function on g*.
If (1o, Ig] = ] 31 then

{Ia: I} = o 51y (36)

But since a Poisson bracket satisfies the Leibnitz ruler this equality defines
the Poisson bracket of two arbitrary polynomials in I, and then the Poisson
bracket

Actually this construction defines a structure of Poisson manifold on g* also
in the case of arbitrary g not necessary finite-dimensional. Indeed one has an
embedding g <— g**, thus a base element I, can be viewed as an element of
g**, acting according to the formula (35).

But the image of g is always dense in some sense, hence the Poisson bracket
on the image of g, defined in the formula (36), can be uniquely continued to
the whole g**.

This construction is called the Kirillov-Kostant Poisson structure on g*.

Now take an affine Lie algebra g, let us describe the explicitly Poisson
structure on g*.

Take a current I, (x), then it acts on a function on g* by the formula

Lo(2)(f) =Y f(I)z"""" (37)
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Proposition 3.2. According to Kirillov-Poisson structure one has

{Ia(2), 15(y)} = k'(x — y) B(La, Ip) + fo g1, (9)d (2 — v), (38)

3.2. A classical limit and a quantization
3.2.1. The deformation quantization

Let us be given a Poisson algebra A one can then take the formal power series

Af[n]].

Definition 3.3. We say (see [23]) that a structure o of an associative algebra
is a quantization of a Poisson algebra structure if for f,g € A

1. fod= fg+ Y e, Bi(f.g)h"*, where

2. Bi(f,g) is a bidifferential operator of order at most k.
3. fod—do f=ih{f g} +O(h?).

Definition 3.4. We say that A is a classical limit of A[[h]] and A[[Rh]] is a
quantization of A.

The following result takes place

Theorem 3.5 ([23]). An algebra of functions on any finite-dimensional Pois-
son manifold can be canonically quantized.

3.2.2. Example: the classical Virasoro algebra

This is a Poisson algebra generated by elements denoted as L,, n € Z and an
element 1, subject to relations

1
i{ Ly, Lin} = (N —m) Ly + —(n?

"
{L,,1} = 0.

- n)6m+n,0a

This algebra is a quantization of the Virasoro algebra in the following sense.
Take an h-Virasoro algebra, which is a C[[h]]-algebra generated by central ele-
ment 1 and L,, subject to relations

1
[Ln; Lm] = (n - m)hLm—i-n + —

12 (Tl3 - n)577L+7L,07

[Lp,1] =0.
For h = 1 we obtain the Virasoro algebra

Thus the classical Virasoro algebra is obtained as a classical limit of h-
Virasoro algebras
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3.2.3. Example: the classical W3 algebra
This is a Poisson associative algebra generated by elements denoted as L, W,,

n,m € Z and an element 1, subject to relations

{ Ly, L} = (0 — m) Loy + 1—02(713 — 1)Bmim.0;
{Ln,1} =0, {Lp, Wi} =(2n—m)Wpin,
16
i{Vp, Vin} = 5—(n —m)Apim + (0 —m) Ly
c

-(1—15(n+m+2)(n+m+3)—

1 c 2 2
— = — -1 —14
S0+ 2(m+2)) + 2o = 12 — Db

9]
Where An = Z Wn—me

m=—0o0

In the same manner the classical Wi-algebras are defined.

4. A relation between classical Wy algebras and
dual spaces to affine Lie algebras

Let us explain two facts

1. The classical Wy-algebras are isomorphic to Poisson algebras of differen-
tial operators (see [5])

2. The Poisson algebras of differential operators can be obtained using Hamil-
tonian reduction from the dual space of an affine Lie algebra with Kirillov-
Poison structure (see [14], [4]).

This whole picture was first outlined in [6].

Below we explain the main steps of this construction. Although we can
just formulate the conclusion that the classical Wy-algebras are reductions of
Kirillov-Poison structure we explaint in details these two steps since they give
relation of classical W-algebras to integrable systems.

4.1. Pseudodifferential operators

Definition 4.1. A pseudodifferential operator is an operator of the from

o0

d
L= up(2)0" +up_1(2)0" 4 +up(z) + kzl up(2)0%, 0= T (39)
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The composition of operators a(z)d and b(z)d" is defined as follows accord-
ing to the Leibnitz ruler

a(2)0 o (b(2)0") = a(2)0b(2)0" + a(2)b(2)d' ! (40)

This formula gives an analogous formula for any positive k:
k
a(z)0" e b(2)0" = Z Cla(z)(0'b(z))okF 1! (41)
t=1

In the case of negative [ and positive k these formulas are true by definitions.
To define a composition in the case of negative k by analogy with the formula
(40) we need a formula defining the action of a negative power of 9 onto b(z).
This action is defined as follows

oo

07'b(z) = (~1)"(9'b(2))0~" "

i=0
Also for (39) denote as L, the differential operator

Ly = un(2)0" +up_1(2)0" 1+ +up(2)

4.2. An integrable hierarchy
4.2.1. A definition of an integrable hierarchy
Let fix some differential operator L of type
L=0"+u, 1(2,t)0" ' 4+ +ug(z,t)
Proposition 4.2. There ezists a pseudodifferential operator L'/? such that
Y212 — g,

Consider a series equation for k =1,2,...

d k/2

—L =L L 42
SL=[ 1] (42)

It can be written explicitly as a compatible infinite system of PDE for u;(z,t).
This system is called an integrable hierachy.

4.2.2. Example: the Korteveg de Vries hierarchy
Take L = 02 + u and k = 3. Then one has explicitly

I
L2 =04 207 = 2072 +0(07%)

3 3
(L*?), =9° + ud + Zu/
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Thus (42) is written explicitly as

d 1 3
%(82 +u) = Zu'” + iuu’ (43)
Hence we obtain an equation
4iu =u" + 6un/ (44)
dt

This is the well-known Korteveg de Vries equation. If one takes other values of
k one obtains other equations of the KdV hierarchy.

4.2.3. Example: the Boussinesq equation

Take L = 0% +ud + v and k = 2. One has
1
LY3 =9+ gua—l +0(872),

2
(L)1 = 0+ 3u,

Thus
i(a?’ +ud+v) = (20" —u")o+ 0" — gu’" - guu’ (45)
dt 3 3
Hence we obtain a system of equations
d
au =20 —u"
iv — " _ zu/// N zuu/
dt 3 3
One can eliminate v and obtain the equation
d? 1 4
ﬁu = —g’u”/ — g(uu/)/ (46)

This is the well-know Boussinesq equation.

4.3. Two Hamiltonian structure associated with an
hierarchy

4.3.1. A Hamiltonian system

Let us give a definition of a hamiltonian system of equations in the finite-
dimensional case.
Let us be given a Poisson manifold M. Fix a function H. Now take local

coordinates x1, . .., &, in some open subspace of X (note that these coordinates
are some function on X) and consider a system of equations

d

= {zi, H}. (47)
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These equation define a flow z(t) = (z1(t),...,2m(¢)) which does not depend
on the choice of coordinates. This system is called Hamiltonian and the triple
(X,{.,.}, H) is called a Hamiltonian structure.

Now let us give an infinite-dimensional generalization. In the finite di-

mensional case one can write coordinates (z1,...,2,,) as a function u(z),
z = 1,2,...,m, such that u(1) = z1,...,u(m) = x,. Thus as an infinite-
dimensional generalization of coordinates (x1,...,z;,) we can consider func-
tions u(z), z € R or a collection of functions uy(2),...,u,(2).

Instead of functions f(z1,...,z,) € C®(X) we must take functional
F(uy,...,u,). Here is an example of a functional

F(ul,..,un):Af(z,ui(z),aui(z),...,8kui(z))dz.

For these functionals the term generalized functions is used. As usual in the
theory of generalized functions we can identify a function u;(z) with a functional

u(z) / wi(2)u(z)dz.

The functional of such type are dense in the space of all functionals. Hence to
define the Poisson bracket of two functional it is actually sufficient to define a
Poisson bracket of functional u;(z) and u;(w). Note that a Poisson bracket of
two functional is also a functional.

Fix a functional H. Instead of a system o ODE we consider a PDE

d

S ui(2) = {ui, H}(2). (48)

This equation is called Hamiltonian and the a pair ({.,.}, H) is called a Hamal-
tonian structure.

4.3.2. The Hamiltonian structure for an integrable hierarchy

The equations of the hierarchy (42) can be represented as Hamiltonian PDE,
that is in the form (48). Let us present a formula for the Poisson bracket and
for the functional H.

Remind that we are given an operator

L=0"+ un_l(z,t)anfl + - Fup(z, t)
Also introduce a functional
(on,ee o) = [ Yot (49)
i=1
Define the operation res by the formula

res(z X;0") =X 4
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And the operation T'r as follows

Put

Then for example
Tr(LV) = Tr(0™ 4+, 10"  + - 4+ up) (0" "vg + 0 w3 + - + 0 uy,)
=Tr(-+ (uvy + -+ upv,)0 4 --0) = /dZ(U1@1+"'+UnUn)

= l(’l)l,...,’l)n)

Since functionals of type I(v) are dense in the space of all functionals to define
a Poisson bracket it is sufficient to define {l;(v),la(w)}, where Iy corresponds
to the operator L; and I corresponds to the operator L.

Definition 4.3. We define the Poisson bracket and the Hamiltonian such that
{lh(v),l2(w)} = Tr((L1v)+ (Low) — (wLi)(vL2)4), H=Tr(L).  (50)

4.3.3. The case L = 0% +u
Take L = 0% +u and consider equations for u(z,t) that come from the equation
(42).

Consider the Poisson bracket {u(x),u(y)}, repand

oo

6 e 1
u(z) = - k_z_ Lye™ % — 1
Then one has
i{Lns L} = (0= m) Lugom + 35 (0° = 1) 4m0- (51)

Thus we one obtained a classical Virasoro algebral

4.3.4. The case L = 03 +uy0 + u} + us

Take L = 03 + ud + v/ + v, in this case we have the Bousinessq hierarchy.
Explicitely one has then for the second Poisson structure

{ula), u(y)} = 5 (03 + 20, +)o(x — ),
{ul), o(0)} = 5 (309, +2)5(z ),
{v(z),v(y)} = —é(@g + 10ud, + 150’02 + 9u” 0, +

+ 1660, + 2u"" + 16un’)é(z — y).
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Consider decompositions
12 = 1
__ = —inz -
u(z) p E e n T ok

12 —  ina
v(z) = —v10 g e~ "V,
c
n=-—oo

Then the modes of these decompositions satisfy

Z{Ln7 Lm} = (n - m)Lner + i("7‘3 - n)6n+m,07

12
i{Ln, L} = (2n — m)Vpim,
16 1
H{Va,Vin} = %(n —m)Apim + (n— m)L,H_m(l—S(n +m+2)(n+m+3)—
— L0+ 2)(m+2)) + = (n? — 1)(n? — )5
g T 360 " " ntm,0;
—+o0
An == Z Ln—mLm

That is L,,, V,,, form the classical W3 algebra.

4.3.5. Higher-order operators
Take L = 0™ + 1y, 20" "2 + - - 4 .
Then one has

{ttn-2(), tn-2(9)} = 5(05 + 2020, + 133z — )

Thus if one puts

oo

12 - 1
un72(1’) = - Z e "Ly, + 53

n=—oo

then L,, form a classical Virasoro algebra. Thus modes of u;(x) form a extension
of the classical Virasoro algebra.

Theorem 4.4. The modes of u;(xz) form a the classical W, algebra.

5. A reduction of a Poisson structure: an
approach based on group actions
Now we are going to explain the statement that the first Hamiltonian structure

is a reduction of reduction of the Kirillov-Poisson structure on the dual of an
affine Lie algebra.
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5.1. The general construction of a Hamiltonian reduction

Let us be given a Poisson manifold M such that a Lie group N acts on it. Then
for each h € N we have a vector field v (z) on M that describe an infinitesimal
action of h. To define it let us write h = exp(a), a € LieN, then

d
vp(z) = %(ezp(ta)z) lt=0 -
Vector fields can be regarded as differentiation of the algebra of functions
C*(X). An operation
{H,.} (52)
is also a differentiation of the algebra of functions C*°(M).

Definition 5.1. The action of N on M is called hamiltonian if the vector
fields vy (x) are hamiltonian, that is for every h € N there exists a function ¢y,
such that the vector field can be represented in the form (52)

onf = —{¢n, f}

Now return to the general situation: the group N acts on a Poisson M in
a hamiltonian way.

Definition 5.2. The mapping
p: M — (LieH)" such that < p(x),a >= ¢p(z) where h = ext(a).
is called a momentum map.

Take an orbit O of coadjoint action of G on (LieN)* and a submanifold
p~1(O) C M. The key fact is the following.

Proposition 5.3. The action of N on M preserves u~*(O)

Mo = i~} (0) /N (53)

This manifold is called a Poisson reduction of M with respect to action of N.
The functions on Mo can be viewed as functions on =1 (0O) invariant under
the action of .

Lemma 5.4. The functions on u=1(O) invariant under the action of N form
a Poisson subalgebra in C>(M).

This lemma is very easy. We need to prove that in f and g are invariant
function then {f, g} is also an invariant function. But since the action of N is
hamiltonian the fact that f and g are invariant under the action of N is written
as follows

{on, f} =0, {¢n, g9} =0 Vh € LieN
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Put
{on,{f 9}y = —{g:{on, f}} —{f{g:on}} =0

Thus {f, g} is also an invariant function.

As a corollary we obtain a natural Poisson bracket on the algebra of N-
invariant funcitons.
Thus we obtain the following result.

Theorem 5.5. Mo is a Poisson manifold

5.2. The main example

The main example of a hamiltonian action for us will be the following. Take
our affine Lie algebra g, consider it’s dual space g*.
As a manifold we take the hyperplane

g ={feg: f(C)=1}
In the considered example the momentum mapping is just an embedding
pogr =g (54)

Thus
Mo =0 (55)

is set of orbits of coadjoint action that are contained in g}.

Take g = gl,,. Take the loop group N(z) of upper triangular matrices with
units on the diagonal. It acts in an adjoint way on g}.
That is the elements of N(z) are matrices

1 ma(z) - nia(z)
0 1 S ngp(2)
0 0 0

where n; j(z) = Y, o, nF ;2%. Take as O the N(z)-orbit of the element

o O
O =
= O
o O
o O

o O
o O
o o
o o
O =

Theorem 5.6. The first Hamiltonian structure is a reduction of g/[;i by the
action of the group N(z).
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6. Why affine Lie algebras are related to
differential operators?

The key fact is the following well-know theorem

Theorem 6.1. The space g; is naturally isomorphic to space of connections
i.e. differential operators

d
—+ A 56
=+ AG) (56)
where A(z) is a g-valued function, thus this is an element of g((z)) ~ @7

The coadjoint action of GL(z) corresponds to the gauge group action of this

group on connections

dG
dz
The term ”naturally isomorphic” means that this isomorphism preserver
the action of the loop group.
Now take the one-dimensioanl n-th order scalar differential operator L. As
usual in theory of linear ODE to L there corresponds a first-order multidimen-
sional differential operator

A GAG '+ —G!

0 wy us -+ Up_1 Uy
-1 0 O 0 0
d+]1 0 -1 0 --- 0 0 (57)
0 0 O -1 0
We can write it shortly as d + J_ + A, where

0 0 o --- 0 0 0 (%) Unp—1 Up
-1 0 0 --- 0 O 0 O 0 0
J_=10 -10 --- 0 0, A@x)=]10 0 0 0
0 o 0 --- -1 0 o o0 .- 0 0

Now take a differential operator of the first order of type (56) and consider
its orbit under the action of the loop group GL(z). The orbit consists of all
operators with the same monodromy in 0.

Consider an action of the smaller group N(z) defined in the previous sec-
tion GL(z)-orbit decomposes into N(z)-orbits. Every such orbit has a unique
representative of type (57) (see [19]). Thus the set of operators of type (57) is
indeed a Poisson reduction of the dual to an affine Lie algebra.

7. Poisson reduction: an approach based on
constraints

In this section we present another viewpoint to Poisson reduction (see [4]). We
describe this approach explicitly in our main example.
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7.1. Constraints of the first class

Consider a Poisson manifold M and some constraints of the first class {p;},
i =1,...,n. These are some functions on M, such that

{@i,¢;} =0 on the set defined by equations ¢; =0, i=1,...,n
Equivalently, on the whole manifold M one has

k
{pispi} =ci jon
If one has a Poisson manifold with constraints ; of the first type then one has
an action of some Lie group on M. This is an exponential Lie group whose Lie
algebra has generators z; subject to relation
[zi, ;] = cf,jxk,

the infinitesimal action of this group is defined by the following vector fields
X; on M
Xi ={ei,-}- (58)
This group is called the gauge group.
This action preserves obviously the submanifold defined by constraints

{wi =0}

7.2. Constraints associated with an sl,-embedding

The Lie algebra sly is generated as a linear space by three elements e, h, f
subject to relations

le, f1=h, [h,e] =2e, [h,j]=-2f.

Consider an embedding
i:slh =g (59)

Introduce a notation for an eigenspace of the operator ady, = [h, .|

or=1{g9¢€g, [hg]=kg}, (60)

The eigenvalue k is necessarily an integer number.
Then for some N € Z we have

9= DOh- NGk (61)

Also an embedding (59) turns g into a sly-representation. This representation is
reducible and can be decomposed into direct sum of irreducible representations.

Take a base in g denoted as Iy, m, where k is a highest weight of a slo-
irreducible representation that contains the considered element, m is a slo-
weight and the index p indexes different sls-irreducible representation with the
same highest weight.
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As the underlying simple Lie algebra the affine Lie algebra g has an invariant
non-degenerate bilinear form (but it is not positively-defined, see [22]), denote
it as B. We can suggest that the restriction of this form to I? equals to the
Killing form of g. Using the form B we can identify g and g* according to the
ruler

x + Blx,.).
The functions on g* then become functions on g, in particular the constraints
are functions on g.

To define the constraints consider the loop algebra g((z)). Every loop l(z) €

g((t)) can be written
= U™ (2) Ity ms (62)

km

the coefficient UR#™(z) = Y- Uk#mz=n=1 ig a formal power series whose
coefficients are complex numbers that depend linearly on I. Let I*#*™ be a
base in g dual to Iy, . Then U™ = [F1m (1), We write also UFH™(2) =
(15 () 0).

Suppose that the image of sls under the embedding has the highest weight
1 and the index w=1 thus 11,171 =14, 11,170 = to, 11,17_1 = t_. Now take
constraints

P (2) = IHM () — S{8T0Y, m >0, (63)
Here we mean that @F#m™(z) = @k#mz=n=1"and we take as constraints all
functions @F#™. We identify If-+m w1th a function B(IF+m ).

Proposition 7.1. These constraints are the first class

7.3. The group defined by constraints

Denote as ¢®(y) a constraint defined in the formula (63). According to the
general scheme we identify the modes modes ¢S with generators of some Lie
algebra and we define the action of these generators on a function on g} by
vector fields define in the general formula (58).

Using the bilinear form we identify g7 and g;. We need to defined the action
of ¢ onto an element of g;. This action must preserve the central element
1, thus we need to define the action onto the loop I(z) = Zﬁ(Iﬁ(z))(l)Ig.
Obviously we can take just I?(x)I5. Denote the result of this infinitesimal
action as 0017 (z)Is

We can consider all ¢¢ simultaneously by taking

Sy’ (z Zy_” Y5pa P (2)15
‘We have

S (1P (2)15) = {0 (y), 1°(2) 15} = {I*(y), I”(x)} 3 =
= B*P§' (x — y)Ig + f3P6(x — y) I (2)15.
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Here B®# = B(I,, I3). But since f, 5 is antisymmetric one has
[P 15 = (I, Is]B*°.
Thus one obtains
Spo(yy(IP(x)I) = B*P8' (x — y)I5 + I, I) B>*6(x — y)I" ()

Note that B»*I,, € g_}, if and only if I, € gi
The conclusion is the following:

Proposition 7.2. That is the Lie algebra of gauge transformations is
Br>19-k-

Proposition 7.3. In the case g =gly, t+ = E1 2+ FE23+ -+ En_1,n (then
t_ andty are uniquely defined, see Section 9.3) the corresponding group is N(z)
is the group of unipotent upper-triangular matrices whose coefficients depend
on z.

Theorem 7.4. This approach is equivalent to the one described in the previous
section.

8. Classical finite IV algebras

The construction outlined in the previous section is the following: a classical W
algebra is a Poisson algebra that is obtained from the Kirillov-Poisson structure
on the dual to the affine Lie algebra using the Hamiltonian reduction.

There naturally rises a question: shall we obtain something interesting if we
take in this construction a simpler object: a dual space to a simple Lie algebra?

The obtained object is indeed interesting and it is called a classical finite W
algebra. This program was initiated in [33], in that paper firstly the classical
finite WW-algebras were defined (see also a review [32]).

8.1. A description of the classical W-algebra in the second
approach

Let us give a description of a classical W-algebra. We follow the paper [7].
Take a simple Lie algebra g and fix an embedding

i:8lb =g

Denote the images of the elements e, f,h as t,t_,tg.

Take a base in g denoted as Iy, m, where k is a highest weight of a slo-
irreducible representation that contains the considered element, m is a slo-
weight and the index p indexes different sls-irreducible representation with the
same highest weight.
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The dual space g* has a structure of a Poisson manifold. Using the Killing
form B(.,.) we can identify g and g* by formula

x < B(z,.).
Take in g a base I®*™ dual to Ij ,, . One has
{1, 1%}y = 13°0 (64)

The functions on g* then become functions on g, in particular the constraints
are functions on g. Consider the following constraints

Gl = TP = 87676, m >0 (65)

Here I*#™ is considered as a function B(I¥*™ .) on g.
Consider the subset g. in g defined by equations

P =0

Explicitly the elements of this set are given by the formula

CRDBPIL 2%

k,p m<0

m

where o, are arbitrary constants.
.

Proposition 8.1. These constant are of the first class.

Now let us write explicitly the group action generated by these constraints.
This is an action on the function on g*. A function on g* is an element of
g** — g.

Let ¢ be a constraint defined in the formula (65). According to the general
scheme we identify the modes modes ¢® with generators of some Lie algebra
and we we define the action of these generators on a function on g by vector
fields define in the general formula (58). We denote the result of the action onto
a function z as d,e. It is sufficient to defined an action of ¢ onto an element
x proportional to Ig. Such an element can be written as x = 3:5[/3 €g. And
2 can be written as I (), i.e. the value of the function I” on the elements .

One has

dpar = {9 2P g} = {I*,17(x) g = 71" I
But since f, g, is antisymmetric one has
[P 15 = (I, I5) B*?,
where B*% = B(I,, Iz). Thus one obtains
Spax = [I,, I;] B*° J7 (x)

Since B*I5 € g~* if and only if I, € g* one find that the Lie algebra of gauge
transformations is
@k219k~
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Proposition 8.2. In the case g = gly, t4+ = Eio+ Foz + -+ En_1,n
(then t— and tg are uniquely defined, see Section 9.3) the group N of unipotent
upper-triangular matrices.

The Poisson reduction is the factor space g./N.

Proposition 8.3. Fvery N-orbit has a unique representative of type
t, = Zxé‘lj"_w xy eC
Thus the factor space is isomorphic to the space

g =< ng‘lj“,] (66)

which is just the space formed by sls-lowest vectors.
Let us give a description of a Poisson bracket on this space.
To do it let us define an operator L. We have a map

ad, : Im(ad;_) — Im(ady.)

Let us denote the inverse operator continued to the rest part of g by 0 as L.
Then for functions I, I® € C*°(gy,,) one has

fe% _ « 1
I = Bl 1 1) (67)

Here I¢ is an element of a base of g dual to the base I,,.
Thus we come to the following statement

Theorem 8.4. The classical W algebra associated to the embedding i is the
space

d < Zxé‘ I (68)
with the Poisson structure

{Q1,Q2}(w) = (w, [grad,Q1, 7 grad,Q2]), (69)

1+ Load,

where Q1(w), Q2(w) are arbitrary function on g, and w is a coordinate on
Glw-

Consider a trivial example. If ¢, = 0 then all vectors are sly-lowest. Also
L = 0 and we obtain than g;, = g and L = 0. Hence

{I1°,1°}(1,) = B(L,,,[I*, I°)) = fF

Thus the corresponding W-algebra is just g with a canonical Poisson structure.
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8.2. Examples

Take g = sl =< f,h,e > and i = id.

Then g;, =< f >. Since the Poisson bracket is anti-symmetric we obtain
that the classical W-algebra corresponding to sls and a trivial embedding of
sly into itself is a commutative one-dimensional Poisson algebra.

The simplest non-principle embedding is an embedding i : slo — sl3 defined
by formulas

1

1
0, ——
] 2)a

ty =FEy13, to= dia9(§, t-=FEs;

In this case the constraints are
90%,1 = 111,1 -1=0
1 1
P1/2,1/2 = 11/271/2 =0,
2 2
P1/2,1/2 = 11/271/2 =0.

Choose the following generators of (sl3),
1
Jiw =< E(El,l + B33 —2Fs3),FE12,E23,FE1 3 >
According to our notations we denote these elements as

I&Ov 111/2,—1/27 112/27—1/2’ Ill,—l

4
C= —5(111,—1 + 3(1(%,0)27

E= 111/2,1/27

4
F = 5112/2,—1/27

H =4I,
Then the Poisson brackets are
{H,E} =2F,
{H,F} = —-2F
{E,F}=H?+C
C commutes with everything

An embedding i : sl — g is called principal if it’s coadjoit orbit in g is of
maximal dimension. In the case of g = gl,, this means that e is conjugate to

o 10 --- 0
0o 01 -+ 0
0 0 O 1
0 0 O 0
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Proposition 8.5. A classical W -algebra corresponding to a principal embed-
ding is a commutative Poisson algebra.

9. A definition of a finite W -algebra

Above we have define a classical W algebras. What is the construction of it’s
quantum analogue?

One can prove that the quantization of the Poisson algebra of functions on
o7 is the algebra g;. But we have a reduction of that Poisson structure defined
by constraints of the first type. The procedure of quantization of a Poisson
algebra which is obtained by imposing constraints of the first type is known in
physics - this is the BRST procedure. If one applies it to infinite classical W
algebra one obtains an infinite W algebra [16].

The first definition of the finite W algebra were given in this way [7]. So
this is the paper, where finite W-algebras were discovered. But later there
were obtained simpler definitions. To explain then we need some facts bout
slo-triples and nilpotent orbits.

9.1. Nilpotent orbits

Take our Lie algebra g. An element e € g is nilpotent if ad. is a nilpotent
endomorphism of g.For example in gl,, the elements F; ;, i # j are nilpotent.

For a arbitrary x € g denote as g” the kernel of the mapping ad,, in other
words this is a centralizer of x. This is a subalgebra in g.

9.2. Z-grading

A Z-grading of a Lie algebra g is a decomposition into a direct sum
g = @jeczg; such that
[9:, 95 C git-

Denote as G an exponential Lie group corresponding to g. One has an action
of G on g, which is described by the formula

z— G 2@,

denote an orbit of e as O, this a subspace in g.

There exists a unique dense nilpotent orbit called the reqular nilpotent orbit,
the corresponding nilpotent element is called regular nilpotent. Equivalently
one ca say that e is regular nilpotent if g° is of minimal dimension.

The set of all nilpotent orbits is a partially ordered set

0 <0« O C closure of O’ (70)
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For example in gl the nilpotent orbit are parameterized by partitions A =
(A1 > X3 >--+), N =X+ A of N. A partition corresponds to an orbit that
contains a nilpotent matrix in Jordan form (Jy,,...). One has O, < (N),
Osup <> (N, 1) is a unique dense orbit in gly \ Opeg.

9.3. Jacobson-Morozov theorem

The theorem of Jacobson-Morozov says the following

Theorem 9.1. FEvery non-zero nilpotent element e can be included in a sla-
triple {e, f,h}. That is elements these elements satisfy the slo- commutation
relations

e, fl=h, [h,e] =2e, [h,j]=-2f

For example if g = gly, e = Jy - a regular nilpotent element, then

h = diag(N —1,N —3,...,3—N,1—N),

o o0 .- 0 0
0 0 -+ an-1 O

9.4. Gragings

If we are given an sly- triple {e, f, h}, then we have a decomposition

g==ag, gi={g9€g: [hgl =g} (71)
this grading is called a Dynkin grading, it satisfies the following properties

€ € g2, (72)
ade : g; — gj4+2 is injective for j < —1, (73)
ade : g; — gj4+2 is surjective for j > —1, (74)
ge C D505, (75)
B(gj,9;) =0 unless i + j = 0, (76)
dimg. = dimgy + dimg; . (77)

An arbitrary grading is called good if it satisfies properties

€ € g2, (78)
ade : g; — @j+2 is injective for j < —1, (79)
ade : g; — @j+2 is surjective for j > —1, (80)
ge C ®j>08;, (81)
B(gj,9:;) =0 unless i + j =0, (82)
dimge = dimgo + dimg; . (83)
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i.e. (1)-(6) above.
For example take g = gl3, e = E 3.

1. Let h = diag(1,0,—1), f = E3 1, then the degrees of E; ; in the Dynkin
grading can be presented as follows

0 1 2
-1 0 1
-2 -1 0

2. Take an element h = diag(1,1,—1) and consider it’s eigenspace decom-
position, then we obtain a good, but non-Dynkin grading, defined by the

matrix
0 0 2
0 0 2
-2 =2 0

9.5. A bijection between nilpotent orbits and sl,-triples

Theorem 9.2. The mapping

{sly — triples}/G — {non-zero nilpotent orbts}
{6, f7 h} — Oe

is a bijection
9.6. Definition of finite I algebras via Whittaker modules

9.6.1. A definition

Now we can give the first definition of a finite W algebra. This definition was
given in [30]
So take a reductive Lie algebra g, an nilpotent element e. Take an algebra

slo =<e, f,h >

and an embedding
i:slh =g (84)

Consider a linear form
x(x) := B(z,e). (85)

Introduce a notation

<.,.>0-1 ><g_1—>(C
< T,y >i= B([-T7y]ae) = X([$7y])

Proposition 9.3. This form is skew-symmetric and non-degenerate
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Denote as [ the Lagrangian subspace in g_; that is the maximal subspace
such that < .,. >[(= 0. One has diml = %dimg_l.
Put

m:[GB@gj (86)

j<—2
It is a Lie subalgebra in g.
Proposition 9.4. The mapping
X |m:m—=C
s a one-dimensional representation of m
This Proposition is an immediate consequence of the fact that [ is la-

grangian.
Denote as I, the following left ideal in U(g):

I, := left ideal generated by a — x(a), a € m =
={z(a—x(a)), v€U(g) a €m}

Since m act on g in an adjoint way, U(g) is a U(m)-module. Consider an
induced module

Qy = U(g) ®um) C=Ul(g)/Iy (87)
A finite W-algebra is defined as follows
WX = EndU(g)(QX)Op (88)

Consider a trivial example. Let e = 0, then x = 0, g = go, hence m = 0 and
Qy = U(g) and W, = U(g). Compare this example with a trivial example at
the end of section 8.1.

9.6.2. A reformulation of the definition

Note that the U(g)-module Q, = U(g)/I, is cyclic, hence it’s endomorphism is
defined by an image of the coset 1 := 1+1,,, and this image must be annihilated
by I,. So

Wy ={yeU(g)/L: (a—x(a)y€ L, Vacm}

We can reformulate this as follows

Wy = Q)" ={g e U(9)/I: la,y] € I Yacm} (89)

The algebra structure is given by
1Yz =YYz
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9.7. A second definition of a finite I/-algebra
9.7.1. A definition

This definition was given in [24] even before the finite W-algebras were discov-

ered. Consider the case when the grading is even, that is g = 0 unless j is even.

Everywhere below in the paper we suggest that the grading is even.
Then g—1 = 0, hence m = P, _, g;. Put

v=0Py,
j=0

This is a subalgebra in g. One has

Denote as pry, the projection to the first summand. It defines an isomorphism
pry : U(g)/ I — U(v). (90)
The first definition of a finite W algebra was
Wy = (Q)* "™ ={g € U(g)/I: [a,y] € I Ya€m} (91)
Comparing (91) and (90) we come to the definition

W, =U(0)*™ ={y cU(v): [a,y] € [,Va € m} (92)

9.7.2. An example

Take e = Ey 2 € gly, then m = Cf, where f = Es ;.

Also v =Ce + CE; 1 + CEs 5.

One can show that W, is a polynomial algebra generated by i + Ea»
and e + %h2 — %h

The simplest non-principle embedding is an embedding i : slo — sls defined
by formulas

1

1
07 _5)7

t+ = E1¢3, to = diag(i, t_ = E3$1
The degrees of elements of sls are given in the matrix

o 1 =2

-1 0 1

-2 -1 0
Thus

1 1
g° =< 6(E1,1 + B33 —2E5 ), §(E3,3 —FEi1), B2, B3, E13 >

Boletin de Matemadticas 23(2) 165-219 (2016)



Introduction to finite W-algebras 199

Denote these elements as

I&,Ov 111,07 111/2,71/23 I12/2,71/27 Ill,fl
Choose the following generators of (sl3),
4
2

C= _3 Ill,fl + 3(‘[(%,0)2%

E= 111/2,71/2,

4
F= 5112/2,71/27

H=4Ij,
Then the Poisson brackets are
[H,E] =2F,
[H,F| = —2F
[E,F|=H*+C
C commutes with everything

In Section 13.4 we present a description of a W-algebra associated with a
principle nilpotent.

9.8. Definition though the BRST procedure

This definition makes a bridge to the previously discussed classical finite W-
algebras.

Consider for simplicity only the case of an even grading. Then m = ©;<_29;.
Take a copy of m and denote it as m. Also take a dual space m*.

On the direct sum m* ®m with a symmetric bilinear form defined by pairing.
The Clifford algebra of this space is A(m*) ® A(m). And the tensor algebra of
this Clifford algebra is

B* = A(m*) @ U(g) ® A(m) (93)
Take a basis {b;} in m and a dual basis {f;} in m*. Introduce an element
4 1 . . .
p = [(bi = x(b:)) = 5 f' f[bi, ;] € B, (94)
where a* is a dual element.
Let d = [p, ]
Explicitely

d(l‘) = fl[blaxL S g,
A(f) = 3 ad*bi(f)
(@) = a - x(a) + filbi, o]

Here ad* is a coadjoint action.
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Proposition 9.5. d?> =0

Theorem 9.6.
HO(B*) =Wy

10. The structure of a finite W-algebra

In this section we present some result about the structure of a finite W-algebra.
In particular we formulate the analogues of PBW theorem.

10.1. The Kazhdan filtration

We consider a finite W-algebra in a Whittaker-module realization. A filtration
of an algebra A is a sequence of vector subspaces

- CFACF, W AC---
such that
1. FPA=0, U;F;A=A
2. F;A-F{AC Fi;A
The associated graded algebra is the algebra
gr(A) = @i(FiA/Fi41 A)
The algebra U(g) has a filtration
- CFU(g) Cc FiU(g)C---

called a Kazhdan filtration, which is defined as follows.
An embedding

i:8lb =g

induces a decomposition

g==ag;, gi={g€g: [hygl =ig}

The elements © € g; have degree ¢ + 2, and the products z; ---x,, where
Xy € g;, have degree (i1 +2) + -+ + (in, + 2).

Note that the associated graded grU(g) is a symmetric algebra S(g) but
with a non-standard grading: x € g; have degree i + 2.

The Kazhdan filtration on U(g) induces a filtration on I, and I, is a graded
ideal in U(g). Hence we have an induced on @, = U(g)/I, and on W, =
End(Qy):

FW, ={weW,: wFkQ,) c FFQ,)}.
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10.2. The associated graded to Kazhdan filtration

To give a description of the associated graded we use the definition
Wy = Q™™ = {7 € U(a)/Iy : la,y) € I, Ya€m} (95)
and make an identification
grU(g) = S(g) = the function on the affine variety of g
Also remind that
I, = left ideal in U(g) generated by a — x(a), a € m =
={z(a—x(a), x€U(g) a €cm}

The associated graded of I, is then described as an ideal in this algebra defined
by the following condition

grl, = ideal of functions vanishing on the closed subvariety e + mt,

where m™T is the orthogonal compliment of m in g with respect to the bilinear
form B(.,.).
Then grQ = grU(g)/grl, is described as follows

grQ = function on e + m* = Cle + m™]
Note that from the second definition we obtain immediately
gr@Q = S(v).

But our purpose is to obtain a description of grW, = grQ™.
Take a subgroup H in G corresponding to a subalgebra m. It’s adjoint action
on g leaves e + m™ invariant, so H acts on the space of functions Cle + m™].
Put

o ={geg: [fg]=0}

We call the set

e-l—gf

the Slodowy slice.
By [20] the set
e+g/ Cetmt

gives a representative of each orbit. Hence
grQ" = Cle + m*]/ ~ Cle + ¢/]. (96)

They say that the W, algebra is a quantization of the Slodowy slice.
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10.3. An analogue of a PBW theorem
Take the algebra U(g) with a usual filtration
Fi(U(g)) =<z1---2;>, w€g.

Then gr(U(g)) = S(g)
The famous PBW theorem says that is we take a base x1,
fix some order z; < --- < x, then the products

Tiy Ty, Tiy < o0 < Ty

form a linear base of F,U(g).
We can reformulate it as follows.

Theorem 10.1. There exist a linear mapping
©:5(g) = grU(e) — Ul(g)

such that ©(F;(S(g))) = F;(U(g))-

This mapping commutes with the adjoint action of t.
One just puts

O(@iy ++ Tiy,) = T(iy) *** T(ay),

..., Ty in g and

where z(;,) <+ <)

Now let us turn to the algebra W,. We have the following subalgebras in g:

ge:{QEQ: [e,g]:O}, te:{tEt: [evt]:O}v

where t is the Cartan subalgebra in g.

Theorem 10.2. There exists a t¢ equivarent map

0 : g° = Wy,

such that for x € g; one has ©(x) € Fj1o(W) and such that if z1,...,2¢ s a
homogeneous base of g¢ (i.e. x; € g° N gy, for some n; € Z) then

{O(zs,) - O(zs,), k>0, 1<ip <--
c < <ty mgy ooy, + 2k <5}

form a basis of F;W,.

Let us explain a construction of ©. We have announced an isomorphism.

grWy = Cle+ m*]/ ~ Cle + ¢].

Also the following direct sum decomposition takes place
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Lemma 10.3.
v=g"®Plf gl

jz2
Take a projection to the first summand and consider a mapping
¢:8(0) = 5(g%)

induced by a projection to the first summand. Then since B is invariant for
z€@;sy0and z € e+ g/ we have

B([.f’m]’z) = B(ﬂ?, [%.ﬂ) = B(x7[€7f]) = B(.I‘,h) =0. (98)

We have used that h € go, x € @j>2 g; and these subspaces are orthogonal
with respect to B.

The formula (98) means that an element from ker¢ annihilates e+gf. Thus
we obtain a mapping from I'm¢ = S(g°) to Cle + g/] which maps z to B(z,.).

Lemma 10.4. This mapping is an isomorphism.

Thus we obtain that griV, = S(g°),
Introduce a notation for this isomorphism

§:grWy — S(g%) (99)
Now take z; € g°, then we can take

O(x;) = £ (x4).

10.4. A good filtration

There exist another filtration on W,. To define take a definition given in the
formula

W, =U(0)"™ = {y € U(v): [a,y] € [,[Va € m} (100)
Take a filtration on U(v), and put
E;W =W N F;U(v).
One has

Proposition 10.5.
(W) c U(v)

s a graded subalgebra
Actually the following statement takes place
Theorem 10.6.
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11. Representations of a finite W/-algebra

In this section we present results about representation of finite W algebras. We
present several independent approaches to the subject.

11.1. Primitive ideals

Let us describe an approach to description of finite-dimensional irreducible
representations of finite W-algebras that belongs to Losev [25]. For a ring A a
primitive ideal is an ideal I such that

I=Ann(V)={a€ A: aV =0}

for some irreduible A-module V.

Let us say some words about primite ideals in U(g). These ideals are clas-
sified (see [15]). They have two main invariant: the central character and the
associated variety. Let us defined them.

If V is an irreducible g-module, then Endy () (V') = C and thus the elements
from Z(g) act on V as a multiplication by a scalar. Thus we obtain a mapping

x:Z(g) — C.

It is called the central character. Actually it depend only on the ideal Ann(V).
To define the associated variety take the graded ring and the graded ideal

grl C gr(U(g)) = S(g) = Clg]

Then we can take a Zarisky closed subset in g defined by grl. It is called the
associated variety. We denote it as Var(I).
Duflo obtained the following classification.

Theorem 11.1. Let p be half-sum of positive Toot of the algebra g, denote as
V(XA) be an irreducible highest weight module of highest weight A — p then every
primitive ideal in U(g) is of type Ann(V (X)) for some weight .

It turns out hard to give a criteria when Ann(V(A\)) = Ann(V(u)), the
solution of this problem is known but very non-trivial.

Now let us proceed to W,-algebra. Note that by definition Qy is a (U(g), Wy)-
bimodule. For a W,-module V we define a U(g)-module V* as follows

vVt =Qyow, V.
There exists a map
t: PrimW, — PrimU (g), such that t(Annw, (V)) = Anng (V') (101)
Theorem 11.2. This mapping induces a surjection
t: Primypin Wy — Primg U(g), (102)

where
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Prim Wy, = {I € PrimW, codiml < oo},
Primeg,U(g) = {I € PrimU(g), Var(I) = the closure of Ge}

The first set parameterizes finite dimensional W,-modules.

Losev obtained some information about fibers of this surjection. Let Cg (e, f, h)
be a centralizer in G of elements e, f, h. Losev showed that the group Cg (e, f, h)
acts in an adjoint way on U(g) and this action preserves W,. The iden-
tity component Cg(e, f,h) acts trivially on W, since it’s Lie algebra em-
beds into W,. Hence, the adjoint action of Cg(e, f,h) induces an action of
C = Cgqle, f,h)/C&(e, f,h) on W, and hence on the set Prim g, W,,.

Theorem 11.3. The fibers of (102) are orbits of the action of C.

11.2. Highest weight theory for W,

These results are taken from [11]. Let us give a definition of a highest weight
module. Let us first define a subalgebra g(0) C g.
Assume that the toral subalgebra t is chosen in such a way that

tt={tet: [et] =0}

is maximal toral subalgebra of g¢ N gg. Then t¢ is the orthogonal complement
in t to h.
Here

9°={geg: gl =0}, go={geg: [hg =0}
For o € (t°)* we denote as g¢, the a-weight space of g°. Then
=90 P g
aede

Here
g(0):={geg®: Vhet® [h,g] =0}

is a centralizer of t¢ in g¢. For a € (t¢)* we put
9o ={g9€9": Vhet [hg]=a(h)g}.

Note that t° C g(0)¢ but in general t¢ # g(0)°.

Now let us denote the notion of a positive root. Take a Borel subalgebra
b C g. Take a parabolic subalgebra q = g(0)¢ + b.

For each « one has either g¢ C q or g¢, C q. In the first case we call the
root a positive and in the second case - negative.
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Put
0. =Pt
a>0
o =Pt
a<0
Here g¢, is the maximal a-weight subspace in g Choose a basis hq,...,h; in
965 €15+ -5 €m 0 g%, f1,..., fm in g¢, introduce notations
Fi = @(f1)7 Ez = @(61‘), Hz = @(h,) (103)
We have a PBW basis of W,
FYHYE".

Put
W;r = a left ideal of W, generated by Ei,..., Ep,

Take a W,-module and for A € (t°)* put
Ww={veV, tv=A{t)vforall t € t°} (104)
here we use an embedding t* C g¢ C W,.
Definition 11.4. We call V) the weight space.
Definition 11.5. The weight space if mazimal if WFVy = 0.

Now turn to the case of Lie algebras. In this case a highest weight module
is a module with a highest weight vector? When in the case of Lie algebras
a module with the maximal weight space has a highest weight vector? The
answer is the following: when this maximal weight space is one-dimensional
and it generates the whole module. We can reformulate the condition that
this maximal weight space is one-dimensional as follows: it is an irreducible
representation of the Cartan subalgebra. We use this reformulation for the
definition of the maximal weight modules of W,,.

Note that e € g(0), thus we can consider the W-algebra Wf(o). From the
second definition it immediately follows that Wy © W,. In the case of finite
W-algebras the role of Cartan subalgebra is played by Wy ),

Definition 11.6. A W,-module is a module of mazimal weight if it is generated

by maximal weight space, which is finite dimensional and irreducible as a W,’g(o)

- module.
Definition 11.7. For a finite dimensional and irreducible Wf(o) - module V
we define a Verma module

M = Wx/(WX ®W§(°) V)

This module has a unique maximal proper submodule R and M/R is an
irreducible module.
Every irreducible module can be obtained in this way.
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11.3. The category of representations
The following results about the category of representations of W, are known

Theorem 11.8. The number of isomorphism classes of irreducible finite-dimensional
representations with a given central character is finite

Theorem 11.9. Every Verma module M has a finite composition series

Now take a category O - the category of finitely generated W,-modules that
are semisimple over t¢ with finite-dimensional t®-weight-spaces and such that
the set {A € (t: V) #0)} is contained in {v € (t¢)*: v < u}

Theorem 11.10. Ewvery object in O has a composition series and the category

O decomposes into a direct sum of categories Oy, where Oy is a category
generated by irreducible modules with a central character

12. A relation to shifted yangians

12.1. The shifted Yangians and finite W-algebras

In [11] (see also [12]) the following result was obtained. A yangian Y (gl,,) is an

algebra generated by elements 1, ¢ ;, 7 >0, 4,5 = 1,..., N subject to relations
1 g 1 : :
[t:j sl — [t{j’tiﬁ | =t ti —th i (105)

Take a series

ti,j (’LL) = Zt;’ju_r
r>0
A matrix T'(u) = (¢; ;(u)) can be considered as an element of the space
T(u) = ZEi’j & ti,j(u) egl,® Y(gln)
Define an element

Y Eij®E;;

R(z)=1-— .

Then in the space g, ® gl, ® Y (gl,,) the defining commutation relations of the
Yangian can be written as follows

RLQ(U — U)T173(U)T273(’U) = T273(1})T172(U)R1,2(u — ’U)

Consider a Gauss decomposition
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where
1 IELQ(U) . l}hn(u)
D(u) = diag(D1(u) D, (u), E(u)= 0 1 e By p(u)
0 0 1
1 0 0
qu)__ Ebf?U) 1 0
En 1( ) En72( ) 1
Put

One can decompose the matrix elements of these matrices

u)=Y Eju", Fju=>F

r>1 r>1
= E Diu™", D(u)= E D'u™"
r>1 r>1

and obtain another set of generators of Y (gly). The commutation relations for
them are the following:

r+s—1
(DI, D] =0, [E;F;]=6i; Z DiD 1t

r—1
(D}, Fy) = (6ij — 6ij1) Yy FyH*~' 7D}
t=0
r—1
(D}, E5] = (8;j — 0ij1) »_ DIE;T—
t=0
s—1
l;r l;s j{:AE#l;T+S 1-t j{:lzz+5717tﬁg
t=1

Fr Fa ZFtF’r‘Jrs 1—t ZFT+S 1— tFt
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[Bf, E{H) — (BT Bf] = —E[Efy

[F7 F5H — [FI T Fey) = —FUF

[E7, E5] = [F], F}] =0 [i—j| > 1

[E7, (B Ef + (B, B Ef) =0 i —j| > 1
[F7 [ F 4 [FSL [F]F) =0 Ji— gl > 1

2

Take a matrix S = (s; ), such that
Sijj Sk = ik 1 [0 = [ 4[5 = k[ = |i = j]. (106)

For a Young diagram A = (A1,...,\,) we can define a shift matrix Sy by
formula
Sij = )\n+1—j — )‘n+1—i for ¢ <J and 0 if ¢ >

Definition 12.1. A shifted Yangian is a subalgebra in Y (gl),, generated by
D, r>0,1<i<n
Eiivg 7>8ii41 1<i<n
FzT—i-lz T > Sit1,i 1<i<n

To A one assigns a nilpotent element ey € gly. Denote the finite W algebra
corresponding to this nilpotent element as W, .
Theorem 12.2. Y (gin,Sy) =

EA

Similar results are know for the series B, D, C (see [9], [10])

12.2. Representations of shifted yangians

The theory of finite-dimensional representations of shifted yangiangs is well-
developed.

Proposition 12.3. Every irreducible finite-dimensional module has a vector
vy annihilated by E7 ;. on which Dy act diagonally. The isomorphism type of
a module is defined by Dy -eigenvalues, for each i these eigenvalues are zero for
r> A

Let us write

uP* Dy (u)v = Py (u)v
(u—1)P2Dy(u — 1)v = Pa(u)v

(u—n+1)P"Dy(u—n+ 1)v = Ppy(u)v,
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where Py, ..., P, are monic! polynomials of degrees \1,. .., Ap.
The corresponding module we denote V(P (u),. .., P, (u)).
Put
Piu)y=(u+ai1)...(w+apr), ai<...<a;n,.

The considered shifted yangian is defined by shifted Young diagram A =
(A > ... > X,). We can represent it as usual as a collection of boxes: \; boxes
in the upper row, Ao boxes in the next row and so on.

Put elements a; ; the diagram and obtain a Young tableau.

Theorem 12.4. This module is irreducible if and only if tableau is standard
(the entries increase from bottom to columns)

13. A relation to the center of the universal
enveloping algebra

13.1. Sugawara elemnts

It turns out that in general the center of U’(g)y is trivial.

Theorem 13.1 (see [18]). If k+ g # 0 then the center of U'(g)x is generated
by 1.

Definition 13.2 (see [21]). We say that an element P € U’'(g), is a Sugawara
element if

[P, U"(@)&] = (k + 9)U’ (@)«

Let us give an example of a Sugawara element. Take a Casimir of the second
order in U’ (g):

T=>Y II° (107)
Let us write field

T(z) =Y (II%)(2) =Y 2" °L, (108)

«

Note that we put no constant in front of the sum in this formula. Thus these
elements are defined for all k and for k # —g we have L,, = (k + g)L,.

Proposition 13.3. The elements L,, are Sugawara elements

It turns out the the generalization of this result to central elements of higher
orders is not direct. If we take an central element in U’(g) of higher order

Tn = dalw--a@nIal e Ian

Li.e. the coefficient at the highest power of u equals to 1
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then the modes of the field

are not in general the Sugawara elements.
Nevertheless the following result is know.

Theorem 13.4 (see [18]). There exist Sugawara elements T such that
TF =Tk modF;,_ U’ (g)
The center is a polynomial algebra generated by elements T .

Note that for all values of k the Sugawara elements form an associative
algebra. For k = —g it is of course commutative. Now put h = k + g, then
we obtain a family of associative algebras depending on h, such that for h = 0
the corresponding algebra is commutative. Look at this family from the point
of view of Section 3.2.1. We have a deformation of a commutative algebra for
h = 0 and this deformation must be described by a Poisson bracket. Thus we
come to the following result

Lemma 13.5. The algebra of Sugawara elements for k = —g has a natural
structure of a Poisson algebra.

13.2. Talalaev’s construction

For a long time an explicit construction of the elements T* was unknown. But
recently it was given for g = gl by Talalaev.

Let us remind a construction of generators of the center of U(gly) using
determinants. Let 7 be a formal variable, consider the matrix

E171 +T+1 E172 EiN
a— Egl EBlo+7+2 - Ejn ' (109)
Ezlv,l Ezlv,z T EIIV,N +7+N

Take it’s row determinant

rdet{) = Z (—1)091,0(1) T QN-,U(N)7

ogESN

And consider it’s decomposition
rdetQ(u) = NN 4ty

Theorem 13.6. The elements ¢; freely generate the center of U(gly)
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Now consider the Talaev’s construction of Sugawara elements. Consider
gly, it is spanned by C and Ej';. Introduce a notation

T(E;fj) = E:?'l

Take a matrix

_ —1 -1
E1,11 TT Ell,2 e El,zlv
0= E2,1 E2,2 +T o E2,N (110)
-1 -1 -1
Eny Eyo o Eyy+T
Take it’s determinant and it’s decomposition
rdetQ =71V + eV H ey (111)

Theorem 13.7 (see [31] or [13]). The elements c¥ := t%¢;, k € Z are Sugawara
elements and they generate the algebra of Sugawara elements.

In another way we can describe this construction as follows. Consider a
matrix composed of currents

El}l(z) + % El’g(z) . c. EI,N(Z)
1 —_— DRI
u=| Pl FeBrE Fa(?) (112)
EN,l(z) EN’Q(Z) ENJV(Z) + %
Then take a determinant using a normal ordered product
dN dN—l
rdetQ =Y (=1)( Qo) ( Ovow))(W) = 5 +eog—g + +ex
oc€ESN
(113)

Finally consider decompositions

cr(z) = Zc?z_i_k. (114)

Then we obtain just the elements c¥ mentioned in the theorem above.
Analogous construction were later given for the series B, C, D and for Gs
(see [28], [26], [29]).
Remind that the algebra Wy was defined using the central elements in
the universal enveloping algebra U(gly). The Sugawara elements are closely
related to this center. Thus the following result is not surprising.

Theorem 13.8. The Poisson algebra of Sugawara elements for gl and k =
—g is isomorphic to the classical Wy algebra.

There are analogs of this theorem for other series of algebras. The Poisson
algebra of Sugawara elements for the algebra g is isomorphic to the classical
W -algebra associated to a principle nilpotent element but for the Langlands
dual Lie algebra, i.e. Lie algebra with a transpose Cartan matrix.
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13.3. Explicit generators of the Wy

Actually the technique presented above allows to obtain generators of the al-
gebra Wy (see [1]).

Put
E{i+ Nt Er; Er3 E;’}H El N
-1 E;3+ N7 E33 E;}V_l E;}V
0= 0 -1 Ej3+Nr -+ Ejn.,  Ejy
-1
0 0 -1 Ey'y+Nr
(115)

Then we take the determinant and it’s decomposition
rdetQ =7V + WirN T4+ Wy (116)
Theorem 13.9 ([1]). The elements WF = t*W,, k € Z belong to Wy and

2
generate it as an associative algebra.

13.4. The case of a finite IW-algebra

Let us formulate another result about the structure of a finite W-algebra
Theorem 13.10 ([24]). If e is a reqular nilpotent element then W, is isomor-
phic to the center of U(g).

13.4.1. Examples

Let us describe this isomorphism explicitly in some examples. Below we give

an explicit description of the W-algebras associated with a principle nilpotent

elements. We give generators corresponding to generators of the center of U(g).
Take g = gl,, then B(a,b) = tr(ab), take the sly-triple

S G K G K ()

The Dynkin grading is given by the matrix

(5 %)

Take z = <1 0>, then

0 1
g° =< z,e >,
m=g_o=<f> x(f)=B(fe =1,
v =g0D g
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The algebra W, is freely generated by elements z, e + %hQ +% = ), where
Q=cf+ fe+ %hQ is the second Casimir element. Here as in Section 9.6.2 we
denote as Z the projection U(g) — U(g)/L.

The center of U(gl,) is just freely generated by z and 2. This is an illus-
tration of the isomorphism form Theorem 13.10.

Take now g = gly, B(a,b) = tr(ab),

o 10 --- O 0 0 0 0 0
o o1 --- 0 0 n-—1 0 0 0
e=1|-- Cf=l0 0 2m-2 0. 0
0o 00 --- 1
0 0 0 0 0 0 0 oo n—1 0
h=diagln—1,n—3,--- ,3—n,1—n).
The Dynkin grading is given by the matrix
0 2 4 6 --- 2n-—2
-2 0 2 4 -+ 2n—4
—6 -4 -2 0 -+ 2n—6
2 2n 0
As before z = diag(1,...,1), then
¢ =< z,e,€%,...,e" 1 >

m = @;>202-25, X(Eit1;) =1, x(Eitr,;)=0for k>2
Take Casimir elements

O =Ei iy iy is -+ Bigiy

Then W, is a polynomial algebra generated by

z, O
But the center of U(gly) is just freely generated by z and Q. So we again
have an illustration of the isomorphism form Theorem 13.10.

Unfortunately the descriptions of W, obtained above are not explicit sice
we describe the generators as projections in the factor algebra U(g)/I, as in
the first definition of W,,. But due to the second definition of finite W-algebra
we have an embedding W, = U(v)™ C U(g). Let us give explicit formulas
for the generators of W, as elements of U(g). This description is similar to
description of generators of infinite W-algebra obtain in the previous Section.

Consider the case g =gly, e=Ej 2+ Ea3+ -+ En_1,n, let

Eii+u—-1 Ei» Ei» e B,

1 EQ)Q +u— 2 E2)3 e Egyn

Q(’LL) = 0 1 E3,3 +u—3 --- Eg,n
0 0 0 oo Bpptu-—n
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Consider the row determinant

rdetQ(u) = Z (—1)09170(1) e QN,U(N)-

ogESN

Take a decomposition
n
rdetQ(u) = u"™ + z:wiu"_z
i=1

Theorem 13.11. [11] The elements w; belong to W, C U(g), commute and
freely generate W,

14. Noncommutative pfaffians and Capelli
elements

14.1. The definition

Take an algebra oy and consider it’s generators Fy; = E;; —Ej;, 1,5 =1,...,n,
1 < j. They satisfy the relations

[Fij, Fri] = 0k Fit — 0 Frj — 0inFji + 051 F . (118)

Let ® = (®y5), 4,5 = 1,...,2k be a skew-symmetric 2k x 2k-matrix whose
elements belong to some ring.
A noncommutative pfaffian of ® is defined by formula

1 -
Pfo— o ES: (=1)7 @5 (1)o(2)  * * Po(2k—1)0(2k)> (119)
ogESak

Take a matrix F = (F};), i,j5 = 1,...,N. Since F;; = —F}; then F is skew
symmetric.
Take a set of indices I C {1,..., N} and consider a matrix

Fr = (Fij)ijer
Theorem 14.1 ([27]). Let
Cr = > (PfF1)? k=24,... 2[5]. (120)
) ) ) ) 2
|I|=k,JC{1,..,N}

Then Cy, belong to the center of U(on). In the case of odd N they generate the
center. In the case of odd N they generate the center if we add PfF.

In [2] we found commutation relations between P fF; and the generators.
Introduce a notation Fj;I.Let I = {i1,...,ix}, ip € {1,...,N} be a set of
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indices. Identify 7, with the vector e; , and the set I = {iy,...,ix} we identify
with e;, ®---®e;, € V®k Then Fi;1 is a result of the action of F;; onto I.
For a, 8 € C put

PfFaryps = aPfFr+ BPfF;.
Then for every g € ox we have defined PfFy;.
Proposition 14.2. [F;;, PfFi] = PfFr, 1
Also we found relations between two pfaffians

Proposition 14.3.

[PfF, PfF;] = Z () TOPFFLPfFpip,,
=rnrv

These relations allow to prove the first part of the Molev’s theorem.

Conjecture 14.4. What kind of algebraic object form pfaffians? Is it isomor-
phic to a finite W algebra?

14.2. Fields corresponding to Capelli elements
Define a field PfF(z), I = {i1,...,i2x} as follows (see [3]):
Definition 14.5.

1 [eg
PfF(2) = or > (D) (Fo(iyotin) Fotia)otis) Fois)otie) - - - (121)
oESak
...Fﬂ('@k—l)U(iQk)))-.-)(Z)' (122)
Introduce a field by analogy with a Capelli element
Cu(2) = Y (PfFIPfFy)(2). (123)
[I|l=n

In this case we have the following analogue of the formula (14.2)

(enk +dn)PfEp s(w) N PFFp,I(w)

(2 —w)? G-w) (124)
where
eotdy =k 0D ppa, 202D
’ ! " (125)

= %(2 +cep—1(n—1)(n—2))k+ %((4n —4) + cp(n—1)(n — 2).

Conjecture 14.6. Are the modes of elements C),(u) Sugawara elements? If
no then how should we change them to obtain Sugawara elements?
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Actually the following result takes place

Proposition 14.7.

Ce, I2l=(k+g) fork=-n—-1,—n—-2,...,
[Cr, I3 =0 fork=0,1,...
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