Giménez

ANN. MULT. GPU PROG.

Revisiting Strassen’s Matrix Multiplication for Multicore

Systems

Domingo Giménez

Correspondence: domingo@um.es
Department of Computing and
Systems, University of Murcia,
Spain

Full list of author information is
available at the end of the article

Abstract

Strassen’s matrix multiplication reduces the computational cost of multiplying matrices of size
n x n from the O (n?) cost of a typical three-loop implementation to approximately O (n?81).
The reduction is made at the expense of additional operations of cost O (n2) and additional
memory is needed for temporary results of recursive calls. The advantage of Strassen’s algorithm
is therefore only apparent for larger matrices and it requires careful implementation. The increase
in the speed of computational systems with several cores which share a common memory space
also makes it more difficult for the algorithm to compete against highly optimized three-loop
multiplications. This paper discusses various aspects which need to be addressed when designing
Strassen multiplications for today’s multicore systems.

Keywords: Strassen matrix multiplication; multicore; linear algebra libraries; batched linear
algebra routines

Introduction

Strassen first introduced his matrix multiplication algorithm in 1969 [17]. Its computational cost is
of the order O (n?#°7), while the typical naive, three-loop implementation has a cost of O (n?).
Since the introduction of the Strassen algorithm, new algorithms have been proposed to further
reduce the cost of matrix-matrix multiplication but implementation difficulties for achieving practical
high performance for non-huge matrix sizes has led to Strassen’s multiplication being known as “fast
matrix multiplication”.

Matrix multiplication is a widely used basic routine in the solution of scientific and engineering
problems either directly or in other higher-level linear algebra routines (LU, QR, etc.). It is also used
as the basic operation in linear algebra algorithms by blocks to increase the computation to memory
access ratio in order to improve performance [4, 11]. It is therefore os interest to researchers, and
there are now many highly-efficient implementations, some of which exploit the parallelism offered
by today’s multicore systems (MKL [14], MAGMA [2], etc.).

As a result, it is now more difficult to implement Strassen’s multiplication in such a way that it is
competitive with highly-efficient implementations. The main difficulty lies in the additional memory
required by the recursive implementation of the algorithm. More memory entails a decrease in the
computation to memory access ratio and, as a result, the algorithm is only competitive with naive
but efficient implementations for large matrices.

There have been some recent attempts to implement Strassen's algorithm for today's computational
systems [12], and we discuss certain aspects that could be taken into account for implementations
optimized for multicore systems.

In the following section we will begin by summarizing the ideas behind Strassen’s algorithm. We also
elaborate various ideas for optimizing the algorithm for contemporary multicore systems in addition
to presenting and commenting on the experimental results on a range of multicore nodes to support

Annals of Multicore and GPU Programming, vol. 4 (1). ISSN: 2341-3158. 1



Giménez

these optimization ideas. We also outline our conclusions together with some possible extensions of
the methodology.

Strassen’s algorithm
Strassen'’s algorithm follows the typical divide-and-conquer recursive paradigm [6, 9] and its schema
is shown in Algorithm 1. The matrices to be multiplied (A and B) and the result matrix (C) are

divided into four submatrices of size § X 3,
matrices of this size. Ten additions and subtractions of matrices g X % are made to form the matrices

and the routine is called recursively seven times with

to be multiplied, and the seven resulting matrices are combined with eight additional operations of
the same size to obtain the final result. For small matrices, the multiplication is directly obtained
with a basic matrix multiplication, which can be a naive, three-loop version or a routine dgemm from
an optimized library.

strassen(A,B,C,n,base);
Data: Matrices A and B of size n X n. Size of the base case, base
Result: C = AB
if n < base then

| C=basicmultiplication(A, B);
else
strassen(A11 + Ag2,B11 + Ba2,P, 5 base);
strassen(A21 + Agg,Bu,Q,%,base);
strassen(Au,Blg — BQQ,R,%,I](ISE);
strassen(A22,B21 — Bll,S,%,base);
strassen(A11 + Alg,ng,T,%,base);
strassen(A21 — A11,B11 + B12,U,%,base);
strassen(A12 — Ag2,B11 + B22,V, 5 base);
Ch=P+S-T+V;
Ci2=R+T;
Coa1=Q+S;
Cyp=P-Q+R+U,;

end
Algorithm 1: Schema of the Strassen matrix-matrix multiplication algorithm.

The execution time follows the recursive equation ¢t (n) = 7t (%) + %nz, from which the cost of
order O (n2'8074) is obtained. It is, however, necessary to determine the optimum recursion level (the
value of base). If we unroll the recursion until size base, the equation of the execution time is

4 base >
t(n) = 2k3n'®8 "base!°s T + kgg 1- < (;se) (D)

where k3 and ko represent the execution time of a multiplication and an addition of two double-
precision numbers, respectively. The optimum value of base for a matrix size n can be estimated by
deriving Equation 1 in relation to base and equaling zero to obtain base as a function of n. In this way,
for a particular system, if the values of k3 and k, are estimated, the value of base can be obtained
from the equation connecting it with n. However, the problem is not so simple since the values of
ks and ko are not fixed and depend on the size of the operations to which they correspond and the
way in which the data are stored in the memory. When working on multicore nodes, these values also
depend on the number of cores working in each operation. A more sophisticated auto-tuning process
is therefore needed to determine the optimum value of base.

The amount of memory consumed should also be taken into account. The order in which the
operations in Algorithm 1 are carried out determines the required memory. The memory cost is
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min) = 30 + Sn? (1 - (bn)Q) (2)

where s represents the number of submatrices used to store the temporary matrices in the recursive
calls to the routine. If the calls are made in the order in which they appear in Algorithm 1, only two
temporary matrices are needed, and the amount of memory is %nQ. It may, however, be preferable to
conduct the seven multiplications simultaneously so that the computation is of coarser grain and the
parallelism of the system can be better exploited. In this case, the memory used for one multiplication
is not reused for other multiplications, s = 21, and the total memory is around 10n2.

Auto-tuning techniques are widely used for optimizing sequential and parallel routines, and especially
for linear algebra routines [5, 13, 15, 16]. In the following section, we analyze the application of some
of these techniques to Strassen's algorithm for multicore systems. The order in which the recursive
calls are made, the management of temporary memory and the basic routine or library used for the
basic multiplications are some of the aspects to be considered.

Optimizing Strassen’s algorithm for multicore systems
In this section, we discuss the application of traditional optimization techniques to Strassen’s algorithm
for multicore systems, before presenting our experimental results in the following section.

A routine can be optimized statically or dynamically. Static auto-tuning is traditionally applied in two
ways: with empirical models (EmpMod) of the execution time of the routine, or with experimentation
at installation (ExpIns) time [7, 8]. For Strassen's algorithm, the recursion level is a new parameter
to be optimized, and this can additionally depend on the value of another parameter (the number of
threads) when parallelism is incorporated into the routine, and this further complicates the auto-tuning
process.

For EmpMod, the model of the execution time in Equation 1 can be adapted for a computational
system with executions of the routine for small problems, and this model or the information about
the optimum configuration obtained for these small problems can be used to decide the configuration
(recursion level and the number of threads in a multithread version of Strassen's algorithm or the
basic multiplication) used when applying the algorithm for other problem sizes.

In ExpIn, experiments are conducted when the routine is installed in a system, and the information
generated (optimum level and number of threads in parallel routines) in the installation is incorporated
into the routine, and this is compiled together with a shell that selects the parameters to be used in
the multiplication for a particular problem from the parameters stored for the installation size closest
to that of the multiplication being performed.

In dynamic optimization (DynOpt), the values of the parameters are selected with experiments
which are conducted while the routine is being executed. There is some overhead due to part of the
execution being carried out with non-optimum values of the parameters, but the values are selected in
the conditions in which the routine is being applied and so the values obtained can be more accurate.

The preferred basic routine used for the multiplications in the basic case in Algorithm 1 varies with
the problem size (the value of base), and the value of k3 on Equation 1 depends on the routine used.
A polyalgorithmic approach can therefore be used [3], with the basic routine a new parameter to be
selected in the auto-tuning process. The basic routine can be optimized for different configurations
of the node, for example, for the multicore CPU or for the joint use of CPU and GPU if there is some
available (which is normal in contemporary computational nodes).
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Experimental analysis
Experiments have been conducted over three multicore systems:
= 6Phenom, with a CPU AMD Phenom Il X6 1075T (6 cores) at 3 GHz, with 16 GB of shared
memory
= 12Xeon, with two hexa-cores Intel Xeon Haswell E5-2620 V3 at 3.4 GHz, with 64 GB of shared
memory
= 24Xeon, with four hexa-cores Intel Xeon E7530 with 32 GB of shared memory at 1.87 GHz
The optimization techniques referred to in the previous section were analyzed in the three nodes
and displayed similar results with variations caused by the different numbers of cores and their relative
speed. The most significant results are shown for some of the systems, and the variations for other
systems are highlighted.

Static optimization

In order to apply the model of the execution time in Equation 1, the values of k3 and k5 should be
estimated for the computational system we are working with. Small matrices are used for low execution
time. For example, we can consider a direct multiplication (recursion level 0) of size 1000 x 1000 and
a Strassen’s multiplication of the same size and one level of recursion. In this way, in 6Phenom, the
values are k3 = 0.0847 usec and ko = 5.06 usec. There is a big difference in the values of ks and k3,
which might be due to the use of the optimized dgemm routine of MKL for the basic multiplications
and the additions being directly programmed. The methodology explained here does however work
the same for other implementations. By performing the experiments with larger sizes and adjusting
the data to the least squares approximation, better approximations could be obtained, but the simple
approach used here provides satisfactory results. The experiments with the sizes used takes less than
1 second.

For ExpIns, experiments are conducted in 6Phenom at installation time with sizes
{1000, 3000, 5000, 7000}, and the optimum recursion level (we consider four levels: direct multi-
plication, and recursion from level 1 to 3) for each size is stored to be used at execution time. The
manager can decide the problem sizes used for the installation, depending on the problem sizes that
will normally be solved. In order to reduce the installation time, executions are performed for each
problem in the installation set beginning with recursion level 0 (direct multiplication) and increasing
the level while the multiplication time decreases. In this way, the largest executions are avoided. The
installation time is around 285 seconds, which is much larger than that of EmpMod, but affordable if
the predictions are better.

In order to compare the results obtained with the two optimization methods, experiments are carried
out for a validation set {2000, 4000, 6000, 8000}. For these sizes, the recursion levels with which the
lowest experimental execution time is obtained are 1, 2, 3 and 3, which matches the selection with
EmpMod and with ExpIns. Although satisfactory results are therefore obtained with either of the two
techniques, the empirical modeling technique has a shorter installation time.

Since the mean of the improvement in the execution time in relation to that with direct multiplication
is around 37%, the Strassen multiplication is preferable even when an optimized routine (dgemm of
MKL) is used for the direct multiplication. The difference in terms of the time obtained with the
greatest recursive level (level 3) is around 3.3%, which means that using this level as the default level
is a good option particularly for the largest problems for which this is the optimum level.

In faster systems, the accurate prediction of the execution time is more difficult and this also hampers
a satisfactory selection of the recursion level. 24Xeon works about twice as slow as 6Phenom when
working in a matrix multiplication, and 12Xeon works around 2.5 times faster.
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For the slowest system (24Xeon), the recursion levels are also correctly selected for the four
validation sizes (2, 3, 3 and 3), and the mean improvement in relation to the direct multiplication is
79.6%. The installation times are 0.6 psec and 437 usec.

The results are slightly different for faster systems. For example, the selections in 12Xeon are
shown in Table 1. The level with the lowest execution time is labeled Low, and this is compared with
the levels selected with EmpMod and EmpIns. Fewer than half of the selections are correct, and now
the recursion level selected with the two optimization techniques is different. The difference with the
lowest execution time is 4.3% for EmpMod and 1% for ExpIns. Furthermore, the installation time in
this system drops to 0.2 and 60 seconds for EmpMod and ExpIns.

Table 1 Recursion level with which the lowest time is obtained (Low), the level selected with empirical modeling
(EmpMod) and that with the experimental technique (ExpIns), for different matrix sizes in 12Xeon.

Low EmpoMod Explns
2000 1 1 1
4000 1 2 1
6000 2 3 1
8000 2 3 1

Use of multithread routines
The experiments conducted so far were with the dgemm routine from MKL with only one thread. MKL
is a multithread library, and so parallelism can be exploited implicitly merely by calling the routine
with the desired number of threads, possibly with this number equal to the number of cores in the
system. In this way, there is a reduction in the execution time of the direct multiplication and, as
with faster systems, it will be more difficult to outperform dgemm with the Strassen multiplication.
Table 2 compares the evolution of the recursion level with which the lowest execution time is
obtained (Low) when the size of the matrices increases (sizes 4000, 6000 and 8000) and with systems
with different speeds and varying the number of threads used in dgemm. The levels selected with
EmpMod and with ExpIns are also shown, as are those selected dynamically (DynOpt), and the
selections that do not coincide with the lowest time are highlighted. Although the table shows the
results until six threads, 12Xeon comprises 12 cores and 24Xeon 24 cores.

Table 2 Evolution of the recursion level with which the lowest time is obtained for different matrix sizes and
computational systems when the number of threads varies

matrix size: 4000 6000 8000

##threads: 1 2 3 4 5 6|1 2 3 4 5 6|1 2 3 4 5 6
24Xeon Low 32 1 1 1 013 3 2 1 1 1(3 3 2 2 1 0
EmpMod {3 2 1 1 0 13 3 2 2 1 1|3 3 2 2 1 2

ExpIns (3 2 1 1 1 13 3 2 2 1 1|3 3 2 2 1 1

DynOpt {2 2 1 1 1 1|3 3 2 1 1 1|4 3 2 2 1 1

6Phenom Low 2 2 1 o0 o0 03 1 1 1 1 1(3 3 2 1 1 1
EmpMod (2 2 1 1 1 13 3 2 1 1 2|3 3 2 2 2 2

ExpInms (2 1 1 0 O0 1|3 2 2 1 1 0|3 2 2 1 1 0

DynOpt {2 1 1 1 1 1|3 2 1 1 1 1|3 2 2 1 1 1

12Xeon Low 1 1 0 0 O O|2 1 1 1 O O|2 1 1 1 0 O
EmpMod (2 1 1 1 1 13 2 2 2 2 13 2 2 2 2 2

ExpInms |1 1 O O O 0|1 1 0 O o O0|1 1 1 0 o0 O

DynOpt {2 2 1 1 1 1|2 1 1 1 1 1|2 1 1 1 1 1

Some conclusions can be drawn:
= In general, the optimum level decreases with the computational cost: it is lower for smaller
problems, for faster systems or for more threads. Strassen’s algorithm will only therefore be
competitive with the multithread implementation of dgemm for very large problems.
= The quality of the prediction with EmpMod decreases for faster systems.
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= ExpIns makes better selections, especially for faster systems. It is therefore preferable for there
to be no drastic increase in its installation time.

Table 3 shows the installation time (in seconds) for EmpMod and ExpIns in the three systems
considered and a limit of six cores. In EmpMod the values of k3 and ko are estimated independently
for numbers of threads from 1 to 6, but the installation times are very low in comparison with those
with ExpIns. In any case, for the slowest system the installation time is lower than 19 minutes, which
is affordable if better selections are achieved.

Table 3 Installation time (in seconds) with EmpMod and ExpIns in different computational systems with a
maximum of six threads

12Xeon 6Phenom  24Xeon
EmpMod 0.40 1.04 1.58
ExpIns 143 708 1122

Figure 1 shows the quotient of the execution time in terms of time with Strassen’s multiplication
for recursion levels 1, 2 and 3. The results are shown for the three systems, with matrix sizes 8000
and 12000, and varying the number of threads from 1 to the number of cores in the system. For these
large sizes, the improvement achieved with Strassen’s multiplication in relation to the routine dgemm
is between 10% and 30% when only one thread is used. When the number of threads increases, the
difference decreases and the direct method is largely preferable. For a number of threads equal to
that of the cores, the advantage sometimes obtained with recursion level 1 is residual for matrices
of size 8000, but the difference increases with the matrix size. These results confirm the fact that
Strassen’s method should only be used in large multicores for very large multiplications.

6Phenom 12Xeon 24Xeon

S et=1

=3

time level 0 / time level L
time level 0 / time level L

time level 0 / time level L

time level 0 / time level L
time level 0 / time level L

10
1
2

Figure 1 Quotient of the execution time of the direct multiplication for that of Strassen’s algorithm with
recursion levels 1, 2 and 3, for matrix size 8000 (up) and 12000 (bottom).

Dynamic optimization
The recursion level can be selected dynamically during execution of the routine. The routine strassen
in Algorithm 1 is called without a base case, and the seven multiplications in the algorithm are called
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initially with an increasing level of recursion (with base = N/2, N/4,...). The execution time of each
call is obtained and the lowest is stored. When the time of one call is higher than the lowest, the
recursion level for the remaining calls is fixed to the level which provided the lowest time. Because
there are only seven multiplications, this method can only give satisfactory results if the optimum
recursion level is not high, which is the case according to the results in Table 2. As we can see in the
table, one of the disadvantages of this method is that it is not possible to select level 0. Nevertheless,
the method adapts well to the speed of the systems and the size of the matrices. This is confirmed in
Figure 2, which shows the quotient of the execution time of Strassen’s algorithm with the optimum
recursion level obtained experimentally in terms of time with DynOpt. The times are very close and
differences might arise from different runnings. The obtained approximation is only unsatisfactory
when a large number of threads is used (more than 14) and this is due to the optimum level being 0
(direct multiplication) although the experiments are conducted by DynOpt with levels 1 and 2.

6Phenom

21 —e— 5000
512000

24Xeon

2| e 8000

—5-12000

2| _o” 5000

—5-12000

time optimum level / time Dynamic Optimization
time optimum level / time Dynamic Optimization

10

Figure 2 Quotient of the execution time of Strassen's algorithm with the best recursion level experimentally
obtained for the execution time with DynOpt, for matrix sizes 8000 and 12000 in three computational systems

Conclusions and future work

Strassen’s matrix multiplication is referred to as “fast matrix multiplication” because of its cost of or-
der O (n2'8074) which outperforms the O (n3) of the naive, three-loop multiplication. It does, however,
incur memory and computation penalizations. Multicore nodes are the standard basic components of
today's computational systems, and there are highly optimized, multithread implementations of the
matrix multiplication for these. In order, therefore, to make Strassen’s multiplication competitive with
these implementations, it is necessary to combine its divide-and-conquer approach with parallelism
and optimization techniques for parallel routines. This paper analyzes the application to Strassen’s
algorithm of some of these techniques: static or dynamic optimization, with the use of a model of the
execution time or with experimental installation. In order to avoid system-dependent conclusions, ex-
periments were conducted in three multicore systems with a different number of cores and at different
speeds.

The conclusions are partially satisfactory. The static optimization techniques adequately select the
recursion level for certain systems and when the number of cores is not very large, which makes
Strassen'’s algorithm only competitive for very large matrices. The dynamic version of the algorithm
gives results which are close to the optimum of Strassen’s algorithm so that it is not necessary to
install the routine for each system.

Additional optimizations are, however, needed to better adapt Strassen’s algorithm to multicore
systems. We have not considered memory issues, and the affinity in the assignation of threads to
the cores in the system should be considered. We are also working on the application of mutilevel
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parallelism, which is obtained by combining explicit OpenMP parallelism with implicit parallelism in
the underlying multiplication used in the base case. The number of threads to be used at each level
should be selected.

The development and optimization of batched linear algebra routines has recently attracted atten-
tion [1, 10] due to their presence in many scientific problems. We are working on the application of
batched computation. For example, the level before the last level of the recursion can be implemented
in such a way that seven basic multiplications are performed in parallel. These multiplications can be
performed in different ways, and the arrangement of the multiplications must be decided. For example,
if the multicore comprises six cores, the seven multiplications can be performed consecutively, working
with the six cores in each of the multiplications. The configuration would be represented as 7(1 x 6),
which means that seven groups of one multiplication are performed with six cores. It is also possible
to perform three consecutive pairs of simultaneous multiplications, each using three cores followed by
one multiplication with six cores (3(2 x 3) + 1(1 x 6)), or two consecutive triples of multiplications
with two cores each, followed by one multiplication with six cores (2(3 x 2) 4+ 1(1 x 6)). Once the
preferred configuration has been determined, it can be used for each group of seven multiplications,
but the best configuration will depend on the problem size, and so there is influence between the
recursion level, the basic routine and the arrangement selected to perform the operations.
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