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Abstract
The objective of this study was to identify grapevine epiphytic yeasts and bacteria for biocontrol of Botrytis cinerea on grapes. 

Antagonistic yeasts and bacteria were isolated from the epiphytic flora associated with grape berries and leaves cv. ‘Thompson seedless’ 
from vineyards in Iran and identified by sequencing the conserved genomic regions. A total of 130 yeast and bacterial isolates from the 
surface of grapevine were screened in vitro for determining their antagonistic effect against B. cinerea and used to control postharvest 
gray mold. Among the 130 isolates, five yeasts and four bacterial isolates showed the greatest antagonistic activity in vitro against B. 
cinerea. Two yeasts species including Meyerozyma guilliermondii and Candida membranifaciens had high antagonistic capability 
against the pathogen. Also, 4 bacterial isolates belonging to Bacillus sp. and Ralstonia sp. showed significant biocontrol effect against 
B. cinerea. The isolates were capable of producing volatile and non-volatile substances, which suppressed the pathogen growth. The 
antagonistic activity of selected yeasts and bacteria against the pathogen was investigated on wounded berries of ‘Thompson seedless’. 
On small clusters with intact berries, all of the antagonistic isolates considerably reduced the decay on grape berries and inhibition of 
gray mold incidence on fruits treated by these isolates was less than 50%, except for the isolate N1, which had higher capability in 
inhibiting the disease incidence. These results suggest that antagonist yeasts and bacteria with potential to control B. cinerea on grape 
can be found in the microflora of grape berries and leaves.
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Introduction

Table grapes (Vitis vinifera L.) are one of the most 
therapeutically and economically important fruits in 
the world. However, 30-40% of table grapes are lost 
every year owing to inadequate handling and the lack 
of proper methods to prevent decay and senescence 
(Prusky, 2011; Hashem et al., 2013). Even in cold 
storage (0 °C), grapes are affected by blue molds 
(Penicillium spp.), black molds (Aspergillus spp.), gray 
molds (Botrytis cinerea), Alternaria rot (Alternaria 
alternata), and Rhizopus rot (Rhizopus stolonifer) 
(Karabulut et al., 2003; Senthil et al., 2011; Romanize 

et al., 2012). Thakur & Saharan (2008) estimated that 
postharvest losses in grapes are about 39% of the yield, 
and 30% of the value.

The necrotrophic pathogen Botrytis cinerea Pers. is 
a filamentous fungus belonging to the Sclerotiniaceae 
family (Holz et al., 2004). B. cinerea (teleomorph: 
Botryotinia fuckeliana), the causal agent of gray mold, 
is an airborne plant pathogen that affects over 200 
plant species worldwide in temperate and subtropical 
regions. This disease is considered as a limiting factor 
for storage and exporting table grapes (Elad et al., 
2007). In grapevines it is responsible for botrytis bunch 
rot or grey mold, the effects of which are intensified by 
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its vigorous growth rate and ability to spread throughout 
clusters (Mlikota Gabler & Smilanick, 2001). It is the most 
important fungal disease that affects grape production 
in many temperate regions pre- and postharvest (Elmer 
& Reglinski, 2006). B. cinerea affects the vine’s non-
lignified aerial organs, such as leaves, buds, rachis, 
and flowers, causing tissue necrosis and soft rot of the 
berries (Elad et al., 2007; Williamson et al., 2007). This 
fungus generates abundant mycelia and produces a great 
quantity of conidia at the end of branched conidiophores. 
In adverse conditions also generates survival structures, 
known as sclerotia. Furthermore, it can survive as a 
saprophyte on plant residues during the winter. Conidia 
can persist as latent inoculum in floral residues, such as 
stamens and calyptrae causing postharvest rot (Viret et 
al., 2004).

Postharvest diseases often account for a major part 
of the losses and their control requires use of a large 
amount of fungicides (Wilson & Wisniewski, 1994). 
Control of this disease and other fungal diseases of 
grapevine is mainly performed by using chemical 
fungicides. Widespread use of chemical fungicides have 
certainly decreased the incidence of fungal diseases, 
but at the same time have contributed to the appearance 
of fungicide-resistant strains of the pathogens. Public 
demand to reduce fungicide application, stimulated by 
greater awareness of environmental and health issues, 
as well as development of resistance in some of the 
pathogens to the fungicides, limits the application 
of chemicals on agricultural products (Thind, 2012). 
There is an increasing demand to develop alternative 
environmentally safe methods for disease control (Elad 
et al., 1992). In recent years, several researches were 
focused on developing novel and effective control 
methods against pre- and postharvest decay in grapes as 
well as other agricultural commodities (Leibinger et al., 
1997; Zahavi et al., 2000; Raspor et al., 2010). The use of 
biofungicides obtained from beneficial microorganisms 
appears as potential non-hazardous alternatives to 
fungicide application for controlling B. cinerea (Elmer 
& Reglinski, 2006; Chanchaichaovivat et al., 2007; 
Sharma et al., 2009). Biological control is defined as the 
use of living agents to control pests or plant pathogens. 
This approach is being increasingly considered by 
the scientific community as a reliable alternative to 
fungicide utilization in the field and postharvest. This 
biological approach is highly desirable for controlling 
fungal growth on grapes, helping to reduce the amount 
of agrochemical residues in grapes and related products 
(Cabras et al., 1999; Cabras & Angioni, 2000). In recent 
years, a number of different microorganisms including 
bacteria, filamentous fungi, and yeasts have been isolated 
and shown to protect grape fruit against postharvest 
pathogens (Heydari & Pessarakli, 2010).

The interactions between yeasts, fungi and bacteria 
may play a key role in the natural process of biocontrol, 
although the molecular mechanisms involved are still 
largely unknown. Secretion of cell wall degrading 
enzymes (Masih et al., 2001), competition for nutrients 
(Filonow, 1998), predation (Lachance & Pang, 1997), 
production of syringotoxins, syringomycins (Woo et 
al., 2002) and killer toxins (Walker et al., 1995) are 
possible mechanisms of biocontrol. Several studies have 
demonstrated an efficient antagonistic activity of yeasts 
against B. cinerea (Saligkarias et al., 2002; Santos et 
al., 2004; Elmer & Reglinski, 2006; Dal Bello et al., 
2008). Candida oleophila is an effective yeast against B. 
cinerea and has been used to protect apples after harvest 
(Jijakli & Lepoivre, 1998). Other yeasts are reported to 
be antagonists of a diverse group of phytopathogens: 
Debaryomyces hansenii against Penicillium digitatum 
on grapefruit, Pichia guilliermondii (syn: Meyerozyma 
guilliermondii) (anamorph: Candida guilliermondii) 
against Botrytis, Rhizopus, and Alternaria rots of 
tomato fruits, Cryptococcus laurentii and C. albidus 
against Mucor rot of pear and Candida sake against 
major postharvest pathogens of apple including B. 
cinerea and Rhizopus nigricans (Masih et al., 2000).

Also, in recent decades, there has been continued and 
rigorous research worldwide with a greater impetus to 
explore a wide range of bacteria possessing antagonistic 
properties against B. cinerea (Elmer & Reglinski, 
2006; Compant et al., 2013). However, in the majority 
of these studies, the efficacy of biocontrol agents was 
evaluated under controlled conditions, and the fact that 
most of them were not effective against the pathogen 
in the field is now widely known. Despite the large 
number of scientific papers published on this topic, the 
number of efficient bacteria commercialized for using 
as microbial fungicides against B. cinerea in the pre- 
and/or postharvest stages remains limited (Nicot et al., 
2011; Romanazzi et al., 2016). Some of these products 
that inhibit B. cinerea contain bacteria such as Bacillus 
sp., as their active ingredient. For example, Serenade 
(AgraQuest, Davis, CA, USA), which is used to control 
Botrytis bunch rot, has Bacillus subtilis as its active 
ingredient. These bacteria have several advantages 
over gram negative bacteria, including the production 
of endospores that are tolerant to heat and desiccation 
and also production of secondary metabolites with 
broad-spectrum activities (Jock et al., 2002). Thus, 
Bacillus sp. offers biological solutions to commercial 
formulation problems as they can be included in a 
stable dry powder product (Emmert & Handelsman, 
1999). Several bacterial biocontrol agents have been 
isolated from vineyards, including Acinetobacter 
lwoffii (Magnin Robert et al., 2007; Trotel-Aziz et 
al., 2008), Pseudomonas fluorescens (Magnin Robert 
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et al., 2007; Trotel-Aziz et al., 2008), Pantoea 
agglomerans (Magnin Robert et al., 2007; Trotel-Aziz 
et al., 2008), and Bacillus subtilis (Trotel-Aziz et al., 
2008). However, some of the yeast and bacterial based 
commercial biocontrol products which are effective 
against B. cinerea are available, including Serenade ® 
(containing B. subtilis) (Chen et al., 2008), Shemer™ 
(Metschnikowia fructicola) (Karabulut et al., 2004), 
Candifruit™ (Candida sake) (Vinas et al., 1998) and 
Boni-Protect™ (the yeast-like fungus, Aureobasidium 
pullulans) (Schena et al., 2003).

Biocontrol effects of fungi such as Trichoderma 
and Gliocladium have been extensively studied (Elad 
et al., 1982). The Trichoderma harzianum (Rifai) is 
an extremely versatile biocontrol agents suppressing 
diseases caused by a number of airborne plant pathogens, 
including anthracnose and grey mold on strawberry 
(Freeman et al., 2004). The variety of controlling 
primary postharvest diseases caused by R. stolonifer, 
B. cinerea and P. expansum on a variety of fresh fruits 
was achieved with an invert emulsion formulation of T. 
harzianum (Rifai) (Batta, 2007). 

Considering the importance of gray mold in Iran and 
the disease management problems, the objective of this 
study was to isolate and identify grapevine epiphytic 
yeasts and bacteria to evaluate their effectiveness 
against B. cinerea not only in vitro, but also in vivo on 
grape berries.

Material and methods

Isolation of antagonistic yeasts and bacteria from 
grapes and inoculum preparation

The antagonists were isolated from the samples 
without any signs of infection. These samples seemed 
to be healthy, whereas, botrytis attack was clearly 
observed on other grapes of the same vineyards. 
Therefore, it was supposed that the unaffected plants 
surviving out the B. cinerea attack might harbor 
bioprotecting agents against the pathogen. Grape 
(Vitis vinifera) berries and leaves belonging to the 
‘Thompson seedless’ cultivar were sampled from the 
most important raisin-producing regions in the east 
of Iran. Ten healthy plants were sampled along two 
major diagonals of each vineyard. Three bunches and 
leaves were collected from the central part of each plant 
without any signs of infection. The samples were kept 
in paper bags and stored in portable refrigerators during 
transfer to the laboratory for isolation of yeasts and 
bacteria. From each vineyard ten different bunches were 
randomly selected and from each bunch, ten berries 
and ten leaves from each vineyard were collected and 

transferred to sterile distilled water containing 0.02% 
Tween-20. Epiphytic microorganisms were isolated 
by shaking the berries and leaves in 100 mL of sterile 
distilled water for 1 h at 100 rpm on a rotary shaker 
(Peng & Sutton, 1991). The wash was serially diluted 
and 1 mL of each dilution was dispersed on potato 
dextrose agar (PDA) and nutrient agar (NA) media. 
The Petri dishes were incubated at 28 °C for 4 days and 
colonies were selected randomly according to the color 
and morphological characteristics, removed with a 
sterile loop and transferred to fresh PDA and NA plates 
to obtain pure cultures. Finally, isolates were kept in 
tubes containing sterile distilled water and stored at       
4 ºC in the culture collection of the Department of Plant 
Protection, Ferdowsi University of Mashhad (Iran), for 
subsequent analysis. In this study, standard T. harzianum 
TBI isolate obtained from the culture collection of the 
Department of Plant Protection, Ferdowsi University of 
Mashhad, was used as a positive control.

For inoculum production, yeasts and bacterial 
isolates were activated from stored stock cultures 
by transferring them to plates containing PDA and 
NA media, respectively. After growing, they were 
transferred again to PDA and NA media, grown 
overnight, and the yeast and bacterial suspensions were 
prepared by suspending 3 full transfer loops of each 
culture in 5 mL of sterile tap water. Suspensions of the 
yeast and bacterial cells were adjusted to the desired 
concentration (1 × 107 cells/mL) with a hemocytometer.

Preparation of the pathogen for inoculation

In this study, B. cinerea BC81 isolate, previously 
isolated from grapes with gray mold symptoms, was 
used as pathogen. Spore suspensions of BC81 were 
prepared by collecting spores from 5-day-old colonies 
(grown on PDA at 25 °C) in sterile distilled water with 
addition of 0.02% Tween 20 to assist the dispersal of 
conidia. The spore concentration (1 × 105 cells/mL) was 
calculated with a hemocytometer. 

Inhibition of B. cinerea on PDA by epiphytic 
yeasts and bacteria

Dual culture assay
All yeasts and bacterial isolates were tested in an in 

vitro preliminary screening to select isolates showing 
antagonism against B. cinerea mycelial growth. For 
this purpose, a loop of yeasts and bacterial cells from 
3-day-old cultures was streaked on a PDA plate (9 cm 
diameter) at ~2 cm distance from the rim of each plate. 
Then, a fungal disk (5 mm diameter) of B. cinerea from 
a 5-day-old PDA culture was located at the distance 
of 5 cm from the yeast or bacterial line. Plates with 
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isolates. The petri dishes were incubated at 28 °C until 
the control colony reached the plate edge. Then, colony 
diameters and percentage inhibition were calculated in 
relation to the control by the formula mentioned before. 
There were three replicates for each treatment in an 
experiment and the whole assay had three repetitions.

Inhibitory effect of yeasts and bacteria on B. 
cinerea conidial germination

Yeasts and bacterial isolates were assayed for their 
capability to inhibit germination of B. cinerea conidia 
at 25 ºC according to the methodology described by 
Droby et al. (1997). A volume of 100 μL of suspended 
yeast and bacteria (1 × 107 cells/mL) and 100 μL of 
suspended pathogen conidia (1 × 105 conidia/mL) were 
added to an Eppendorf tube containing 800 μL potato 
dextrose broth (PDB) medium. For the control, 100 
μL of sterile distilled water without antagonist was 
added to a tube. Three replicates were used for each 
treatment. Treatments were incubated for one and three 
days at 25°C. Two 50-μL drops from each tube were 
placed on a microscopic slide and 100 conidia per drop 
were examined. The number of germinated conidia 
were determined. The germination criterion considered 
that conidium was germinated when the length of the 
germination tube was more than twice the greatest spore 
diameter. The conidial germination inhibition index 
(GII %) was calculated from the results according to 
the formula described by Manici et al. (1997), where 
GII (%) = (conidia germinated in control – conidia 
germinated in treatment) × 100/conidia germinated in 
control.

In vivo yeasts and bacteria pathogenicity

To determine if yeasts and bacteria selected in the 
previous assay were pathogenic on grapes, 15 μL of 
suspended yeast (1 × 107 cells/mL) were inoculated 
in a micro-wound made on grape berries ‘Thompson 
seedless’ that were homogeneous in size. These berries 
were previously disinfected with a commercial sodium 
hypochlorite solution at 1% v/v for 1 min. They were 
placed in plastic boxes at 25 ºC for 7 days. It was 
determined that the yeast was pathogenic when an 
alteration of the berry tissue was observed (Vargas et 
al., 2012).

Inhibition of B. cinerea by epiphytic yeasts and 
bacteria on wounded berries

Biocontrol activity of the antagonistic isolates was 
evaluated against B. cinerea on grape fruit as described 
by Poppe et al. (2003). Clusters of cv. ‘Thompson 

only B. cinerea were used as control. Petri dishes were 
incubated at 28 °C for 7 days and were daily observed 
for investigating mycelial growth of B. cinerea in each 
plate. Each yeast and bacterial isolate was tested three 
times and the whole experiment was repeated three 
times. Fungal growth inhibition was determined as the 
percent of colony diameter decrease compared to the 
control. Percent inhibition of radial hyphal growth (R) 
was calculated using the following equation (Mari et 
al., 1996):

where, R is percent inhibition of radial hyphal growth, 
R1 is hyphal growth of the control, and R2 is hyphal 
growth in the Petri dish inoculated with yeasts and/or 
bacterial isolates. 

Volatile compounds assay
The inhibitory effect of volatile products produced 

by antagonistic isolates was evaluated using the method 
reported by Arrebola et al. (2010). Briefly, yeasts and/or 
bacterial cell suspensions (1 mL) were spread on PDA 
and NA media, respectively, and incubated at 28 °C for 
24 h. A fungal disk of B. cinerea (5 mm diameter) from 
a 5-day-old PDA culture was inoculated at the center of 
PDA plates. Then, a Petri dish “sandwich” was made, 
with the antagonist isolates culture on the bottom and 
the B. cinerea PDA culture on the top. The sandwiched 
plates were sealed using parafilm and incubated at 28 
°C. The PDA plates containing B. cinerea cultured 
under the same conditions were used as control. The 
hyphal growth of B. cinerea was measured daily for 7 
days post-inoculation using a Vernier caliper. Percent 
inhibition of radial hyphal growth (R) was calculated 
using the equation mentioned before. All treatments 
were performed in triplicate and the experiment was 
repeated three times.

Non-volatile compounds assay
The production of non-volatile substances by 

antagonistic isolates against B. cinerea was studied 
using the modified method described by Kraus & 
Lopper (1990). Briefly, yeasts and bacterial cell    
suspensions  (1 mL) were spread on PDA and NA media, 
respectively, and incubated at 28 °C for 72 h. Then, the 
colonies were cleaned from the surface of culture media 
by sterile cotton in sterile conditions under the laminar 
hood. Afterward, petri dishes were cleaned with cotton 
soaked in chloroform and placed under UV light for  
0.5 h. Then, petri dishes were placed half open for 1.5 h 
in order to evacuate the steams of chloroform. Finally, 
petri dishes were inoculated with mycelial plugs (5 mm 
diameter) of B. cinerea at the centres. The control petri 
dish was not inoculated with any of the antagonistic 
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seedless’ were divided into smaller clusters with 10-
15 berries. The grape berries were homogenous in size 
and color, without any visible damage or mold. The 
berries were surface disinfected by dipping each bunch 
for 1 min in 1% (v/v) sodium hypochlorite and rinsed 
twice with distilled water. The berries were punctured 
with a cylindrical tool to produce a wound with 3 mm 
diameter and 3 mm depth. A 15 μL drop of each yeast 
and bacterium suspension in water (1 × 107 CFU/mL) 
was pipetted into each wound, and left to dry for 1–2 
h. Then, 15 μL of the conidial suspension of B. cinerea 
(1 × 105 CFU/mL) were injected into the same sites. 
Treated grapes were air-dried and placed in plastic 
bags with wet paper towels to maintain high humidity. 
The fruits were incubated at 25 °C for 7 days. Each 
treatment consisted of three replicates of four bunches. 
The results obtained are the mean of three independent 
experiments. A positive control was performed with 
berries inoculated only with sterile water and then with 
B. cinerea suspension (1 × 105 CFU/mL).

The percentage of fungal growth inhibition was 
determined 7 days after B. cinerea inoculation, using 
the following formula (Pantelides et al., 2015): 

DNA extraction

Total genomic DNA of the selected yeast isolates 
(with higher biocontrol effect against B. cinerea) 
was extracted by the hexadecyl-trimethylammonium 
bromide method according to Zolan & Pukkila (1986). 
Total DNA was dissolved in 50 to 200 μL of Tris-
EDTA (TE) buffer depending on the size of DNA pellet. 
Dissolved DNA was stored at –20°C until used.

For DNA extraction from the bacteria showing 
greater antagonistic activity against B. cinerea, the 
samples were prepared from 1–3 mL of a liquid culture 
grown in LB-broth overnight. Bacteria were centrifuged 
at 13,000g for 2 min and pellets were resuspended in 1 
mL sterile H2O. The samples were centrifuged again for 
2 min, resuspended in 200 μL sterile H2O and heated 
at 100 ºC for 10 min. After cooling, the solution was 
centrifuged at 8000 rpm for 3 min and the supernatant 
was either directly used for PCR or, if necessary, for 
DNA purification by phenol/chloroform-extraction and 
precipitation in ethanol (Sambrook & Russel, 2001).

Identification by rDNA sequence analysis

Yeast identification was carried out by a molecular 
procedure based on PCR amplification of the 5.8 S 
ribosomal RNA gene using universal primers for fungi, 

including ITS1 (5` TCC GTA GGT GAA CCT GCG G 
3`) and ITS4 (5` TCC TCC GCT TAT TGA TAT GC 3`) 
as previously described (Drik, 2000). The amplification 
reaction was performed in a final volume of 25 μL 
containing 50 pmol of each primer (ITS-1 and ITS-4), 
200 μM of each dNTP, 0.5 units Taq DNA polymerase 
and 3 μL of DNA sample in 1x Taq polymerase buffer 
(Invitrogen) (White et al., 1990). The mixture was first 
denatured at 94°C for 7 min. Then, 35 cycles of PCR 
were performed with by denaturation at 94°C for 1 
min, annealing at 55°C for 30 s, and extension at 72°C 
for 1 min. At the end of the last cycle, the mixture was 
incubated at 72°C for 10 min.

For identification of bacteria, 16S rDNA was 
amplified from genomic DNA with the primers 27F 
(5` AGA GTT TGA TCM TGG CTC AG 3`) and 
1492R (5` TAC GGY TAC CTT GTT ACG ACT T 
3`) as previously described (Yashiro et al., 2011). 
PCR amplification was performed as follows: 4 min at          
95 ºC, 35 cycles of 95 ºC for 1 min, 1 min at 55 ºC, 90 s 
at 72 ºC, and a final elongation step at 72 ºC for 5 min, 
4 ◦C save. For each reaction, a negative control missing 
DNA template was included. The PCR products were 
separated in a 1% agarose gel in parallel with PCR 100 
bp Low DNA ladder (Sigma-Aldrich) as molecular size 
standard. After electrophoresis, the gel was visualized 
under UV light. The PCR products were sequenced 
by Macrogen Inc. (Seoul, Korea). Sequence similarity 
searches were performed using National Center for 
Biotechnology Information (NCBI) databases with the 
Basic Local Alignment Search Tool (BLAST) program. 
The nucleotide sequences were registered in GenBank.

Experimental design and statistical analysis

The experiments were conducted in a complete 
randomized design with three replications and three 
repetitions. All data obtained from the antagonistic 
activity experiments were analyzed by one-way 
ANOVA and means were separated by Duncan test at 
a 0.05 significance level. Statistical software SPSS 23 
was used for data analysis.

Results 

Isolation of microorganisms and selection of 
antagonists

A total of 130 isolates of bacteria and yeasts were 
isolated from the surface of table grape berries and 
leaves. The selection process was carried out in vitro. 
First, 5 yeasts and 4 bacterial isolates inhibiting B. 
cinerea growth were selected among all of the isolates, 
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which represent 6.9% of the total isolates, and they 
exhibited obviously antimicrobial activity in vitro. 
This effect was considered as indicative of the fungal 
sensitivity to the action of a yeast or bacterial isolate 
in the same biological niche. Also these isolates were 
able to generate an inhibitory halo with higher than 
10 mm diameter around the pathogen in dual cultures. 
Finally, isolates were kept in tubes containing sterile 
distilled water and were placed in the culture collection 
of the Department of Plant Protection, Faculty of 
Agriculture, Ferdowsi University of Mashhad and 
kept at 4 ºC. For long term storage of yeast and 
bacterial isolates, many yeast and bacterial cells 
from the plate were transferred to 1 mL sterile 15% 
glycerol. The cells were suspended by shaking (or 
vortex if necessary) and stored at –80 ºC (Sherman 
et al., 1986).

 
Effect of antagonistic isolates on mycelial growth 
of B. cinerea in vitro

Results of the dual culture experiments showed that 
9 of the isolates tested were able to significantly inhibit 
mycelial growth of B. cinerea. In the dual culture 
treatments formation of inhibitory zones between 
colonies of yeasts and/or bacteria with B. cinerea 
was observed after 7 days incubation. Although the 
mycelial growth was not fully inhibited by the yeast 
and bacterial isolates, in some treatments the mycelial 
growth was confined compared to the control plates 
and a zone with spore production inhibition was 
observed between the yeasts or bacteria and the 
pathogen (Fig. 1). Comparison of the data obtained 
from the dual culture revealed that all 9 antagonistic 
isolates inhibited the mycelial growth of B. cinerea 
from 28.3% to 50%. T. harzianum TBI isolate was 
the most effective, suppressing 88.3% of B. cinerea 
mycelial growth. Bacillus sp. isolate (Ka3) was the 
next most effective antagonist, suppressing 50% of B. 
cinerea mycelial growth (Table 1).

All these isolates, which showed high levels of 
inhibitory effect on the pathogen growth in the dual 
culture test, were used for determining the capability 
of producing volatile and non-volatile metabolites. The 
results indicated that antagonistic isolates apparently 
produced volatile and non-volatile substances that 
suppressed the pathogen growth (Figs. 2 and 3). Data 
presented in Table 2 clearly indicate that volatile 
substances of Bacillus sp. isolate A10 caused maximum 
inhibitory effect (80.7%) on the mycelial growth of B. 
cinerea. Inhibition of the pathogen mycelial growth 
by volatile metabolites of M. guilliermondii kh60, 
C. membranifaciens kh69, Ralstonia sp. N1 and T. 
harzianum TBI isolates was 75.4%. 

Significant differences were observed among the 
antagonistic isolates for the effect of non-volatile 
metabolites against B. cinerea and all of their inhibition 
rates were more than 50% (Table 2). Non-volatiles 
of T. harzianum showed the highest inhibitory effect 
on mycelial growth of B. cinerea (100%), followed 
by Bacillus sp. kh26 (70.2%), Bacillus sp. Ka3 
and Bacillus sp. A10 (64.9%). The lowest level of 
inhibition via non-volatiles against this pathogen was 
observed for C. membranifaciens Ka15 (50.9%).

Inhibitory effect of yeasts and bacteria on B. 
cinerea conidial germination

All 9 antagonistic isolates inhibiting B. cinerea 
growth were investigated for their effect on B. 
cinerea conidial germination. The highest level of 
conidial germination inhibition against B. cinerea 
was obtained using M. guilliermondii Kh59 and C. 
membranifaciens Ka15 isolates with 99% and 98% 

Figure 1. Antagonistic effect of yeasts and bacteria against 
Botrytis cinerea using the dual culture technique on PDA 
plates. Pictures are taken 7 days after challenging the an-
tagonists with the pathogen. Inhibition was clearly dis-
cerned by limited growth of fungal mycelium and inhibi-
tion of spore production in the zone surrounding the yeast 
and bacterial colony. Meyerozyma guilliermondii Ka21 
(a), Meyerozyma guilliermondii Kh59 (b), Meyerozyma 
guilliermondii Kh60 (c), Candida membranifaciens Ka15 
(d), Candida membranifaciens Kh69 (e), Bacillus sp. Ka3 
(f), Bacillus sp. A10 (g), Bacillus sp. Kh26 (h), Ralstonia 
sp. N1 (i), Trichoderma harzianum TBI (j) and control (k 
and l).
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Table 1. In vitro screening of antagonistic isolates against Botrytis cinerea by dual culture test 
at 7 days post inoculation

Antagonistic isolates Species
Dual culture

Mean radial growth (mm) Inhibitiona (%)

Yeasts
Ka21 Meyerozyma guilliermondii 28.7±1.7 28.3 e
Kh59 Meyerozyma guilliermondii 23.7±1.3 40.8 d
Kh60 Meyerozyma guilliermondii 23±2 42.5 cd
Ka15 Candida membranifaciens 20.7±2.3 48.3 bc
Kh69 Candida membranifaciens 24.3±1.3 39.16 d
Bacteria
Ka3 Bacillus sp. 20±2 50 b
A10 Bacillus sp. 20.36±1.3 49.1 bc
Kh26 Bacillus sp. 25±2 37.5 d
N1 Ralstonia sp. 23.7±1.3 40.8 d
Positive control
TBI Trichoderma harzianum 4.7±1.3 88.3 a
Negative control 40±0.3 0 f

Three replicates were used for each treatment. a Means with the same letter do not have significant differ-
ence according to Duncan’s multiple range test at p < 0.05

Figure 2. In vitro test of antagonism of yeasts and bacteria 
against Botrytis cinerea using the volatile metabolites technique 
on PDA plates. Pictures were taken 7 days after challenging of 
antagonist isolates with the pathogen. Meyerozyma guilliermon-
dii Ka21 (a), Meyerozyma guilliermondii Kh59 (b), Meyerozy-
ma guilliermondii Kh60 (c), Candida membranifaciens Ka15 
(d), Candida membranifaciens Kh69 (e), Bacillus sp. Ka3 (f), 
Bacillus sp. A10 (g), Bacillus sp. Kh26 (h), Ralstonia sp. N1 (i), 
Trichoderma harzianum TBI (j) and control (k and l).

Figure 3. In vitro test of antagonism of yeasts and bacteria against 
Botrytis cinerea using the non-volatile metabolites technique on 
PDA plates. Pictures were taken 7 days after challenging of an-
tagonist isolates with the pathogen. Meyerozyma guilliermondii 
Ka21 (a), Meyerozyma guilliermondii Kh59 (b), Meyerozyma 
guilliermondii Kh60 (c), Candida membranifaciens Ka15 (d), 
Candida membranifaciens Kh69 (e), Bacillus sp. Ka3 (f), Ba-
cillus sp. A10 (g), Bacillus sp. Kh26 (h), Ralstonia sp. N1 (i), 
Trichoderma harzianum TBI (j) and control (k and l).
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inhibitory effects, respectively, after 1 day and C. 
membranifaciens Kh69 and M. guilliermondii Ka21 
isolates with 99% inhibition after 3 days incubation at 
28 °C (Fig. 4). In the control assay, germination was 
100%.

Pathogenicity of the yeasts and bacteria on table 
grape berries

Among the selected yeasts and bacterial isolates, 
none of them exhibited a damaging effect when they 
were inoculated on table grape berries cv. ‘Thompson 
seedless’.

Effect of antagonistic isolates on mycelial growth 
of B. cinerea on wounded berries

The isolates showing antagonistic activity in the agar 
plate tests were evaluated for their efficacy to inhibit 
the growth of B. cinerea on small bunches of grapes. 
In the berries treated with yeasts and bacteria before 
inoculation with the pathogen, the incidence of gray 
mold decreased compared to the control (Figs. 5 and 
6). Biocontrol activity of different isolates on small 
grape bunches in reducing B. cinerea growth ranged 
from 23.8% to 54.7% compared to the fungal growth 
on control berries. The highest level of biocontrol 
was achieved by isolate N1 (Ralstonia sp.), which 
reduced the disease progress on grape bunches by 
54.7%. Followed by Bacillus sp. kh26 (49.9%) and M. 
guilliermondii isolates Ka21 and Kh59 (47.6%). These 

Table 2. Effect of volatile and non-volatile metabolites of antagonistic isolates on mycelial growth of Botrytis cinerea

Antagonistic isolates Species
Volatile metabolites Non-volatile metabolites

Mean radial growth (mm) Inhibitiona (%) Mean radial growth (mm) Inhibitiona (%)
Yeasts
Ka21 M. guilliermondii 12.7±1.3 33.3 d 8.7±1.3 54.4 cd

Kh59 M. guilliermondii 6.7±1.3 64.9 b 7.3±1.3 61.4 bcd

Kh60 M. guilliermondii 4.7±1.3 75.4 ab 7.3±1.3 61.4 bcd

Ka15 C. membranifaciens 9.7±2.3 49.1 c 9.3±1.3 50.9 d

Kh69 C. membranifaciens 4.7±1.3 75.4 ab 7.3±1.3 61.4 bcd

Bacteria
Ka3 Bacillus sp. 13.3±1.3 29.8 d 6.7±1.3 64.9 bc

A10 Bacillus sp. 3.7±1.3 80.7 a 6.7±1.3 64.9 bc

Kh26 Bacillus sp. 9.7±0.7 49.1 c 5.66±1.4 70.2 b

N1 Ralstonia sp. 4.7±1.3 75.4 ab 9±1 52.6 d

Positive control
TBI T. harzianum 4.68±0.7 75.36 ab 0±0 100 a

Negative control 19±0.3 0 e 19±0.3 0 e
Three replicates were used for each treatment. a Means with the same letter do not have significant difference according to Duncan’s 
multiple range test at p < 0.05

Figure 4. Germination inhibition index of Botrytis cinerea treat-
ed with different yeasts and bacteria isolates after one and three 
days at 28ºC. Meyerozyma guilliermondii (Ka21), Meyerozy-
ma guilliermondii (Kh59), Meyerozyma guilliermondii (Kh60), 
Candida membranifaciens (Ka15), Candida membranifaciens 
(Kh69), Bacillus sp. (Ka3), Bacillus sp. (A10), Bacillus sp. 
(Kh26), Ralstonia sp. (N1) and Trichoderma harzianum (TBI).
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were considered as the best controllers of gray mold 
on grape berries in this study. Results presented in 
Figure 5 showed that all antagonistic isolates obtained 
in this study were effective (p<0.05) in reducing the 
development of B. cinerea.
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Identification of yeasts and bacteria with greater 
biocontrol activity

Our data revealed that the ITS and 16S rDNA 
genomic regions were discriminative for identification 
of yeasts and bacteria, respectively. The yeast isolates 
Ka21, Kh59 and Kh60, showed 99%, 100% and 99% 
homology, respectively, with the ITS rDNA sequences 
found in the GenBank database corresponding to M. 
guilliermondii. Furthermore, Ka15 and Kh69 isolates 
showed 99% and 100% homology, respectively, with 
the ITS sequences of C. membranifaciens in the 

GenBank. The bacterial isolates Ka3, A10 and Kh26 
had 99% similarity to Bacillus sp. and the isolate N1 
belonged to Ralstonia sp. with 99% similarity to this 
genus. These similarities are sufficient to deduce that 
our best antagonistic bacteria belonged to Bacillus 
sp. and Ralstonia sp. The nucleotide sequences were 
registered in GenBank and the accession numbers are 
presented in Table 3.

Discussion

Grey mold, caused by the phytopathogenic fungus 
B. cinerea, is one of the most important diseases on a 
large number of economically important agricultural 
and horticultural crops and it is considered as the main 
postharvest decay of table grapes, because of the damage 
caused in the harvest season and during storage (Elad et al., 
2015). The pathogen can also develop at low temperature, 
shortening the duration of storage and marketing.

The natural presence of antagonistic microorganisms 
on grapes lends itself to the application of selected 
antagonistic bacteria and yeasts to manipulate these 
populations as a good strategy for biological control of 
pathogens. Currently, biological control is considered 
as a promising alternative to synthetic fungicides in 
controlling postharvest decay of fruits and vegetables 
(Wisniewski & Wilson, 1992), with special interest 
on grapes (He et al., 2003; Ruenwongsa & Panijpan, 
2007; Pusey et al., 2009). Since grapes production is of 
high relevance in Iran, the objetives of this work were 
of promising importance and constituted a primacy of 
studies with Iranian grapes. The antagonist yeasts and 
bacteria found here with potential control of B. cinerea 
on grape berries justify this research.

The major objective of the present work was to 
isolate and identify epiphytic yeasts and bacteria from 

Figure 5. Percentage of disease progress inhibition 7 days after 
challenge inoculation on wounded berries treated with antagonis-
tic isolates before challenging with Botrytis cinerea. Meyerozy-
ma guilliermondii (Ka21), Meyerozyma guilliermondii (Kh59), 
Meyerozyma guilliermondii (Kh60), Candida membranifaciens 
(Ka15), Candida membranifaciens (Kh69), Bacillus sp. (Ka3), 
Bacillus sp. (A10), Bacillus sp. (Kh26), Ralstonia sp. (N1) and 
Trichoderma harzianum (TBI).
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Table 3. Sequenced product and accession numbers in GenBank for the antagonistic 
yeasts  and  bacteria  obtained  in this study.

Strains Species Sequenced DNA (bp) Acc. No.
Yeasts
Ka21 Meyerozyma guilliermondii 582 KY550351

Kh59 Meyerozyma guilliermondii 549 KY550352

Kh60 Meyerozyma guilliermondii 566 KY550353

Ka15 Candida membranifaciens 583 KY550355

Kh69 Candida membranifaciens 538 KY550354

Bacteria
Ka3 Bacillus sp. 1028 KY617030

A10 Bacillus sp. 1067 KY617029

Kh26 Bacillus sp. 1074 KY617031

N1 Ralstonia sp. 1027 KY617032
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grapes and to assess their potential ability for biological 
control of botrytis rots. Application of microbial 
antagonists, which are naturally occurring on the 
surface of fruits and vegetables, is a basic approach for 
the biocontrol of plant diseases. Epiphytic yeasts and 
bacteria are the major components of the microbiota on 
the surface of plants and they are evolutionary adapted 
to these ecosystems (Andrews & Harris, 2000; Morris 
& Kinkel, 2002; Redford et al., 2010). The majority of 
organisms we isolated from grape berries and leaves 
showed some levels of efficacy for reducing decay 
development in the preliminary tests. However, the 
natural epiphytic population isolated was very diverse 
in its propensity to reduce decay by Botrytis rot and 
only a small percentage of the isolates tested reduced 
decay development to a level that could be considered 
significant.

The results of our work showed that there were some 
antagonistic yeasts and bacteria among the microbial 
community associated with grape berries and leaves 
which were able to control B. cinerea. They were 
identified by partial sequencing of ITS1-ITS4 region 

(for the yeasts) and 16S rRNA gene (for the bacteria) 
using the universal primers. The obtained sequences 
were deposited in the GenBank nucleotide sequence 
database. Molecular analysis based on ITS1-ITS4 
region and 16S rRNA gene sequences showed high 
levels of sequence similarity of our isolates to closely 
related species in the nucleotide sequence databases in 
The National Center for Biotechnology Information 
(NCBI). The experimental data presented in this 
paper demonstrated that our best antagonistic yeasts 
belonged to C. membranifasciens (Ka15 and Kh69) 
and M. guilliermondii (Ka21, Kh59 and Kh60). The 
antagonistic bacterial isolates belonged to Bacillus sp. 
(Ka3, A10 and Kh26) and Ralstonia sp. (N1). To our 
knowledge, this is the first report in which the epiphytic 
yeasts and bacteria were isolated from grape leaves 
and berries in Iran and assessed for their potential 
antagonistic ability against B. cinerea. The epiphytic 
yeasts and bacteria reduced growth of B. cinerea not 
only on agar plates, but also on grape berries. A total 
of 130 epiphytic yeasts and bacterial isolates were 
isolated and evaluated for their antagonistic effect 
against B. cinerea by an in vitro co-inoculation assay 
performed on agar plates and it was shown that 9 
isolates (6.9% of the analyzed population) were able 
to inhibit fungal growth at a significant level (Table 
1, Fig. 1). The effect of antagonists on fungal growth 
was considered as indicative of the pathogen sensitivity 
to the action of yeasts and bacteria obtained from the 
same biological niche. Inhibition zones in the dual 
cultures could be due to the production of antibiotics, 
siderophores, toxic or antifungal metabolites used by 
these organisms as biological control mechanisms, 
and the size of the observed inhibition zones would 
represent the concentration and diffusivity of the 
inhibitory compounds secreted by each isolate 
(Swadling & Jeffries, 1996). However, production of 
these compounds in the culture media is not indicative 
of its production in action sites on the fruits (Dal Bello 
et al., 2008). Significant differences were observed 
among assayed yeasts and bacteria in terms of inhibitory 
effects, with T. harzianum TBI being the most, and M. 
guilliermondii Ka21 the least effective in inhibiting B. 
cinerea growth (Table 1).

Spore germination of the pathogen was considerably 
inhibited using M. guilliermondii Kh59 and C. 
membranifaciens Ka15 isolates with 99 and 98%, 
respectively after 1 day, and by C. membranifaciens 
Kh69 and M. guilliermondii Ka21 isolates with 99% 
after 3 days incubation at 28 °C (Fig. 4). This inhibition 
could be due to different action mechanisms exerted 
by the yeasts and bacteria. One of them might be 
competition for nutrients since it has been reported 
that B. cinerea conidial germination is dependent on 

Figure 6. Inhibition of Botrytis cinerea by antagonistic isolates 
in Thompson Seedless grapes. Grapes were treated with Mey-
erozyma guilliermondii Ka21 (a), Meyerozyma guilliermondii 
Kh59 (b), Meyerozyma guilliermondii Kh60 (c), Candida mem-
branifaciens Ka15 (d), Candida membranifaciens Kh69 (e), Ba-
cillus sp. Ka3 (f), Bacillus sp. A10 (g), Bacillus sp. Kh26 (h), 
Ralstonia sp. N1 (i), Trichoderma harzianum TBI (j) and control 
(k and l). Photographs were taken at 7 days post-inoculation with 
the pathogen.
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the amount of nutrients obtained from the environment 
(Filonow et al., 1996). Another mechanism could be 
parasitism and/or production of enzymes that degrade 
the pathogen wall, such as glucanases, which are 
responsible for degradation of glucans as the main 
polymers in the conidial wall structure (Masih & Paul, 
2002).

The nine antagonists selected for further study 
(which showed significant inhibitory effect on the 
pathogen growth in vitro) were efficient in reducing 
decay caused by B. cinerea, on clusters having intact 
wounded berries that were artificially inoculated after 
application of the antagonists. Our data showed that 
all 9 isolates not completely prevented infection of 
wounded berries throughout the cluster but decreased 
the pathogen mycelial growth and fruit rot (Fig. 6). 
These findings are similar to the report of Masih et al. 
(2001), who studied the effect of C. membranifasciens 
against B. cinerea. The obtained data are consistent 
with those of previous studies in which various isolates 
of Candida sp. were documented to be effective 
against several fungal pathogens (Guinebretiere et 
al., 2000; Zahavi et al., 2000; Bleve et al., 2006). 
Among yeasts, Hanseniaspora uvarum or Kloeckera 
apiculata (Suzzi et al., 1995; Karabulut & Baykal, 
2003) and Pichia sp. (Fleet, 2003) have been reported 
as effective biocontrol agents against a wide range of 
fungal pathogens (Filonow et al., 1996). Similar results 
were reported by Raspor et al. (2010), who obtained 
a significant decrease in the degree of infection by B. 
cinerea on grapes treated with yeasts before inoculation 
with this pathogen compared to the grapes treated with 
yeasts and immediately inoculated with the pathogen 
(Filonow et al., 1996; Saligkarias et al., 2002). Qing 
& Shiping (2000) discovered that Rhizopus rot of 
nectarine was effectively controlled by the application 
of washed cells of C. membranefaciens. Wounded 
areas treated with C. membranefaciens showed no 
darkening or necrosis associated with application 
of a concentration of 5 × 108 CFU/mL to wounds. 
The yeast Pichia guilliermondii (syn: Meyerozyma 
guilliermondii), previously called Debaryomyces 
hansenii, controls a range of postharvest spoilage fungi, 
such as Penicillium digitatum on grapefruit (Droby et 
al., 1989), B. cinerea on apples (Wisniewski et al., 
1991), and Aspergillus flavus on soybeans (Paster et 
al., 1993). Its adverse effects on P. digitatum and B. 
cinerea have been ascribed to competition for nutrients 
and secretion of cell wall-degrading enzymes (Droby 
et al., 1989). P. guilliermondii effectively controlled 
P. italicum in grapefruit and oranges. Also, it was 
effective in inhibiting the development of Geotrichum 
candidum in citrus fruit. P. guilliermondii was effective 
in reducing Rhizopus rot in both injured and non-

injured grape berries (Wilson et al., 1991). Santos 
& Marquina (2004) described the effects of a killer 
toxin of Pichia membranifaciens in the biocontrol 
of B. cinerea. Nantawanit et al. (2010) reported that 
M. guilliermondii, strain R-13 induced resistance in 
peppers against infection by Colletotrichum capsici. 

Our study showed that C. membranifaciens, M. 
guilliermondii, Bacillus sp. and Ralstonia sp. were 
potent antagonistic species against B. cinerea causing 
the grey mold disease of the grapevine. Evidence have 
been found that biocontrol activity of Bacillus isolate 
UYBC38 might be attributed to the production of 
antifungal substances capable of inhibiting B. cinerea 
growth in vitro. Spore germination of the pathogen was 
completely inhibited by culture filtrates of UYBC38 
(Rabosto et al., 2006), which is in agreement with our 
findings.

It has also been reported that combined inoculations 
of T. harzianum and B. cinerea conidia, or inoculation 
of T. harzianum conidia only 8 h before inoculation 
with B. cinerea prevented wounded grape berries from 
becoming infected (O’Neill et al., 1996a). In other 
studies, antagonistic T. harzianum strain Th2 was 
highly effective against B. cinerea on apple fruit (Batta, 
2004a), against Alternaria alternata on fig leaves 
(Batta, 2000) and persimmon fruit (Batta, 2001), and 
against P. expansum on apple fruit (Batta, 2004b).

This study demonstrated the presence of epiphytic 
yeasts and bacteria on Iranian grapes, which were 
able to control growth of B. cinerea not only in vitro, 
but also in vivo on grape berries. The effectiveness of 
selected yeasts and bacteria to inhibit fungal growth 
is promising but it is necessary to test these isolates 
under field conditions. It has been shown that the 
efficacy of biological control agents can be variable 
and is dependent on pathogen’s inoculum level and 
environmental conditions (O'Neill et al., 1996b).

Based on the findings of this research, it could be 
concluded that initial in vitro screening and wounded 
fruit assays might be good methods for effective isolation 
of antagonists, especially when the microorganisms are 
selected from epiphytic flora. As the obtained results 
showed in Table 2 (in the case of volatile compounds 
which inhibit mycelial growth of the pathogen in 
vitro), Figure 4 (about spore germination inhibition) 
and Figure 5 (disease progress inhibition on grape 
berries), several antagonistic isolates had no significant 
differences with T. harzianum, as a positive control, 
in their biocontrol capabilities against B. cinerea. 
These data indicate finding of powerful epiphytic 
antagonists for controlling the pathogen in the present 
research. However, a good performance in laboratory 
experiments does not necessarily correspond with a 
high antagonistic capacity in the field, where many 
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factors can affect the survival of the biocontrol agents 
(Stapleton & Grant, 1992; Elad & Kirshner, 1993), 
including climatic conditions and nutrient levels, which 
affect colonization and development of populations. 

Viticultural yeasts and bacteria isolated from table 
grapes were found effective as in vivo biocontrol agents 
against B. cinerea. The current study demonstrated 
that 5 yeasts and 4 bacterial isolates inhibited mycelial 
growth and spore germination of the pathogen. 
This work is an initial step concerning the possible 
application of the epiphytic yeasts and bacteria obtained 
from grape berries and leaves for botrytis rot disease 
prevention. It is necessary to evaluate culture conditions 
of the yeasts and bacteria at an industrial level, and 
implement some field tests for commercial use of 
these microbial antagonists, taking into account that 
gray mold develops at pre- and postharvest conditions. 
Since the antagonistic isolates coexist on grapevines, 
they might have synergistic effects in biocontrol of the 
pathogen and preventing disease development, which 
is necessary to be investigated in future researches. In 
future studies, it would be important to evaluate the 
antifungal activity of the selected yeasts and bacteria 
in mixed cultures, against phytopathogenic fungi 
isolated from rot damaged grapes and determine the 
mechanisms involved in biocontrol of grape pathogens.
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