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RESUMEN: En este trabajo, abordamos el problema de selección de carteras de inversión desde una
perspectiva multiobjetivo y consideramos algoritmos evolutivos de optimización multiobjetivo basados en
preferencias para generar carteras eficientes teniendo en cuenta preferencias del inversor. Por un lado,
proponemos un modelo de optimización para la selección de carteras con tres objetivos, en el que se han
considerado números fuzzy de tipo LR para modelizar la incertidumbre de los futuros beneficios. Las
funciones objetivo a optimizar son el beneficio esperado (a maximizar) y dos medidas del riesgo de la
inversión (ambas a minimizar): la semi-desviación media absoluta por debajo del beneficio esperado y
el valor de riesgo (medida de la peor pérdida esperada en un horizonte dado). Además de la restricción
presupuestaria, se ha introducido una restricción que limita la cardinalidad de las carteras y cotas supe-
riores e inferiores para la inversión en cada activo. El problema de optimizatión multiobjetivo resultante,
denominado por sus siglas en inglés como modelo MASdVaR (mean-absolute semi-deviation value-at-risk
model), es no lineal y no convexo y, por ello, se ha aplicado el algoritmo evolutivo basado en preferencias
WASF-GA para generar carteras de inversión eficientes. En WASF-GA, se consideran valores de aspiración
que el decisor desea alcanzar en cada objetivo para expresar las preferencias. Para el modelo MASdVaR,
los valores de aspiración considerados corresponden a un perfil de inversor conservador. Los resultados
obtenidos para un caso basado en el mercado de inversión español demuestran que las carteras eficientes
obtenidas que alcanzan los mayores beneficios, mejoran los valores de referencia considerados para las dos
medidas del riesgo. Por otro lado, aquellas carteras con beneficios más moderados presentan valores de
riesgo menores, pero sin dejar de satisfacer las aspiraciones del inversor, por lo que representan estrategias
de inversión menos arriesgadas.

Palabras Clave: Selección de carteras de inversión, Algoritmos evolutivos de optimización multiobjetivo
basados en preferencias, Solución Pareto óptima, Distribución de credibilidad, Variables fuzzy tipo LR.
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ABSTRACT: In this work, we address the multi-criteria paradigm of the portfolio selection problem and
consider a preference-based evolutionary multi-objective optimization algorithm to find Pareto optimal
portfolio solutions based on the investor preferences. Firstly, we propose a three-objective optimization
model for portfolio selection, in which the uncertainty of the portfolio returns is modelled by means of an
LR-power fuzzy variable. In the model, three criteria are considered, which are the credibility expected
value of the returns (to be maximized) and two measures of the risk (both to be minimized): the below-
mean absolute semi-deviation and the fuzzy value-at-risk. Besides the budget constraint, a cardinality
constraint and lower and upper bound constraints for the assets are also considered. The resulting model,
called a credibility mean-absolute semi-deviation value-at-risk (MASdVaR) model, is a non-linear and non-
convex multi-objective optimization problem which is solved by means of the preference-based evolutionary
algorithm WASF-GA. In WASF-GA, the preferences are expressed by means of aspiration values that the
decision maker would like to achieve for the objectives. In the MASdVaR model, the investor aspiration
values considered for the objectives are calculated assuming a conservative profile. The results obtained
for a case study based on the Spanish stock market show that the portfolios generated with the highest
expected returns improve the aspiration values considered for the two risk measures. Besides, portfolios
with intermediate values for the expected return achieve lower values for the risk measures, but they still
improve their aspiration values and thus represent less risky investment options for the investor.

Keywords: Portfolio selection; Preference-based evolutionary multi-objective optimization; Pareto optimal
solutions; Credibility distributions; LR-fuzzy variables.

1. Introduction

Solving problems arising in real-world applications, such as e.g. economy, engineering or industry,
involves optimizing several objective functions simultaneously. Usually the objectives are in conflict
and there is no solution which optimizes all of them at the same time. These problems are called
multi-objective optimization problems and, instead of searching for one optimal solution of the
problem, the interest is focused on a set of Pareto optimal solutions, at which none of the objectives
can be improved without a sacrifice in, at least, one of the others. The set of all the Pareto optimal
solutions (in the objective space) is known as the Pareto optimal front.

The so-called portfolio selection problem is an example of a multi-objective optimization prob-
lem, in which an investor desires to know how her/his capital should be allocated between the
different assets available in the market in order to guarantee the maximum expected return of the
investment with the minimum risk. The multi-objective nature of these problems is unquestionable
and, since the classical mean-variance optimization portfolio selection problem of Markowitz was
proposed in [21], portfolio theory has evolved considerably. Nowadays more complex and sophis-
ticated models are used which include more than two criteria to find Pareto optimal portfolios
[3, 26, 31, 36], thus making the problem more difficult to solve. Also, besides the variance of the
returns, alternative statistical measures of the risk of the investment have been employed, such as
e.g. the semi-variance, the absolute semi-deviation or the value-at-risk (see [13, 30] and references
therein). However, not all the relevant information for portfolio selection can be obtained just by
optimizing the returns and the risk simultaneously. Usually, information about trading and about
the requirements of the investor is considered in the model by means of the introduction of new
constraints, such as cardinality constraints (to limit the number of assets participating in the fea-
sible portfolios), lower and upper bound constraints (to set lower and upper limits for the amount
invested in each asset) and so on.

However, in portfolio selection, deciding the approach to quantify the uncertainty of the port-
folio returns is as important as determining the optimization model to be solved. In classical prob-
lems, the expected returns on assets are considered as problem parameters, estimated throughout
historical data sets and assuming that the vector of returns on assets is multivariate-normally
distributed. But financial information is not always completely available and, commonly, decisions
are made under uncertainty. Then, a more realistic approach is to assume that the uncertainty of
the future returns on assets can be quantified by means of fuzzy numbers, which allow the intro-
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duction of the imperfect knowledge about the future market behaviour into the model [3, 15, 33].
Alternatively, the uncertainty of the future returns can be directly approximated using the his-
torical returns on the portfolios [28, 31, 32]. However, note that the fuzzy representation of the
uncertainty of the returns implies the use of a non-continuous, non-smooth, quasi-concave and
quasi-convex function (a quantile function). Thus, in this case, the problem becomes more difficult
to solve by means of classical optimization techniques given that we need to deal with non-linear
and non-convex functions.

Once the portfolio selection model has been completely defined, a suitable multi-objective op-
timization technique able to provide Pareto optimal portfolios has to be used, but several issues
have to be considered in this regard. On the one hand, under a fuzzy modelling framework to
determine the uncertainty of the portfolio returns, the multi-objective portfolio selection prob-
lem is non-linear and non-convex, as already said. Besides, under the assumption of cardinality
constraints, the portfolio selection model becomes a constrained mixed integer multi-objective op-
timization problem that is NP-hard, with both combinatorial and continuous optimization aspects
[25]. To overcome these drawbacks, Evolutionary Multi-objective Optimization (EMO) algorithms
[7, 8] can be used for successfully solving the portfolio selection problem. These algorithms operate
with a population of individuals and attempt to search for a set of non-dominated solutions as
close as possible to the Pareto optimal front (convergence) and, at the same time, which represent
the entire Pareto optimal front (diversity). For a comprehensive literature review about the use of
EMO algorithms in portfolio selection, see [18, 22, 28].

Another crucial aspect to reach a satisfactory Pareto optimal portfolio is the post-optimization
decision making phase, in which the investor (the decision maker (DM)) must make an adequate
decision to choose the portfolio which best fits her/his risk profile. To achieve this, several issues
must be considered. Firstly, only a few Pareto optimal portfolios must be analysed by the DM
in order not to overwhelm her/him, since comparing too many solutions may be difficult in the
presence of three or more objectives. Secondly, asking preference information in a format as simple
as possible is important to make the solution process more meaningful. Besides, if the DM feels
that the portfolios obtained reflect well enough her/his wishes, (s)he is more motivated and (s)he
is more likely to keep on looking for her/his most preferred Pareto optimal portfolio. To cope
with these shortcomings, the so-called preference-based EMO algorithms [4, 6, 17] can be of great
help in portfolio selection. They incorporate information about the preferences of the DM into
the solution process and their main purpose is to focus the search for new solutions on the subset
of Pareto optimal solutions which best fit these preferences. As a result, the DM only has to
compare the trade-offs between solutions that are supposed to please her/him, avoiding to analyse
undesirable ones and reducing the cognitive burden. Among the preference-based EMO algorithms,
we can mention the Weighting Achievement Scalarizing Function Algorithm (WASF-GA) [27],
which considers the information given by the DM in the form of desirable aspiration objective
function values (which are the components of a so-called reference point). This is a natural way
to express preferences which is not cognitively demanding. According to the reference point given,
WASF-GA approximates a region of interest in the Pareto optimal front which contains potentially
interesting Pareto optimal solutions for the DM.

With all of this, the purpose of this paper is twofold. Firstly, we propose a new credibility mean-
absolute semi-deviation value-at-risk (MASdVaR) model for portfolio selection. We assume that
the uncertainty of the portfolio returns is modelled by means of an LR-power fuzzy variable, which
is built using a historical data set of the returns. The criteria considered in the MASdVaR model
are the maximization of the credibility expected value of the return of the investment, and the
minimization of two measures of the risk, the below-mean absolute semi-deviation and the fuzzy
value-at-risk (VaR). The feasible portfolios are defined in the model by means of the budget con-



4 A.B. Ruiz, R. Saborido, J.D. Bermúdez, M. Luque, E. Vercher

straint, a cardinality constraint to control the portfolio size and lower and upper bound constraints
for the share invested in each asset to assure the diversification of the portfolio composition.

Secondly, taking into account the nature of the problem (non-linear, non-convex, mixed integer
and NP-hard), we generate Pareto optimal portfolios of the MASdVaR model according to the
profile of the investor by applying the preference-based EMO algorithm WASF-GA. Applications
of evolutionary algorithms which handle preferences in portfolio selection can be found elsewhere,
e.g. in [14, 20, 32, 37]. However, none of them directly use a preference-based EMO algorithm such
as WASF-GA, which has not been specifically designed for portfolio selection and which allows to
approximate a region of interest (a subset of Pareto optimal solutions) based on the preferences
of DM, as we do in this paper. Regarding the preference information required in WASF-GA, the
aspiration values for the objectives are calculated assuming a conservative profile for the investor.
Additionally, to guarantee the feasibility of the portfolio solutions generated in WASF-GA, special
care must be taken for handling the objectives and constraints along the solution process. Here,
we have considered the mutation, crossover and reparation operators suggested in [28], which are
designed ad-hoc for portfolio selection models which incorporate cardinality and lower and upper
bound constraints, such as the MASdVaR model.

In a previous research [32], we proposed a cardinality constrained bi-objective optimization
model in which the fuzzy VaR was not considered as a criterion as such. Instead, the fuzzy VaR was
used in a post-optimization decision support stage applied once a set of Pareto optimal portfolios
had been found by a genetic algorithm. Besides, the genetic algorithm applied in [32] did not take
into account the investor preferences to generate these portfolios. Alternatively, in this paper, we
analyse both the effect of considering the fuzzy VaR as a third objective function to be optimized,
and also the consequences of including the preferences into the solution process of the genetic
algorithm for directly generating Pareto optimal portfolios according to the expectations of the
investor.

The rest of this work is structured as follows. Section 2 summarizes general definitions and
concepts of multi-objective optimization and fuzzy theory, including a brief description of the
WASF-GA algorithm. Next, the credibilistic MASdVaR portfolio selection model proposed in this
paper is formulated in Section 3. We illustrate our proposal with a data set from the Spanish
stock market and we analyse the numerical results obtained in Section 4. Finally, we conclude and
summarize the most significant findings of this work in Section 5.

2. Background concepts

A multi-objective optimization problem can be defined by the following mathematical expression:

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S, (1)

where k (k ≥ 2) objective functions fi (i = 1, . . . , k), defined from the feasible set S ⊂ Rn to R,
must be minimized simultaneously. A vector of decision variables x = (x1, . . . , xn)T is a feasible
solution if it belongs to the feasible set S. Its image z = f(x) = (f1(x), . . . , fk(x))T is referred to
as an objective vector and the set of all objective vectors, denoted as Z = f(S) ⊂ Rk, is the feasible
objective set.

In most of the cases, it is impossible to find a feasible solution which simultaneously minimizes
all the objective functions because of the conflict degree among them. Thus, the concept of Pareto
optimality arises. Given z, z′ ∈ Rk, we say that z dominates z′ if zi ≤ z′i for all i = 1, . . . , k and
zj < z′j for at least one index j. When z and z′ do not dominate each other, we say that they are
non-dominated. Besides, a set A ⊂ Rk is said to be a non-dominated set if any pair of elements
of A are non-dominated. Regarding to problem (1), a Pareto optimal solution can be defined as a
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feasible solution x ∈ S for which there does not exist another x′ ∈ S such that f(x′) dominates
f(x). Usually, there are many Pareto optimal solutions and we refer to the set of all of them in
the decision space as the Pareto optimal set, denoted by E, and its image in the objective space
as the Pareto optimal front, denoted by f(E).

Since the Pareto optimal front contains more than one objective vector (obviously, if it was
formed by a single vector, this vector would be the solution of problem (1)), it is useful to know the
ranges of the objective vectors in the Pareto optimal front. The ideal point z? = (z?1 , . . . , z

?
k)T ∈ Rk

defines lower bounds for the objective function values and is obtained by optimizing each objective
function individually over the feasible set, that is, z?i = minx∈S fi(x) = minx∈E fi(x) for all
i = 1, . . . , k. The nadir point znad = (znad1 , . . . , znadk )T ∈ Rk is calculated as znadi = maxx∈E fi(x)

for all i = 1, . . . , k and consists of upper bounds for the objectives. While the ideal point can
be easily obtained, the nadir point is difficult to calculate because the set E is usually unknown.
Different approaches for estimating it can be found in [9, 10].

In general, a decision maker (DM) is involved in the solution process by expressing her/his
preferences, which can be elicited in different ways [23]. As previously said, one of them is by
specifying desirable aspiration objective function values to form a so-called reference point. That
is, a reference point is an objective vector q = (q1, . . . , qk)T ∈ Rk, where each qi (i = 1, . . . , k) is
an aspiration value for the objective function fi given by the DM. A reference point is achievable
if either q ∈ Z or if q is dominated by a Pareto optimal objective vector; otherwise, the reference
point is said to be unachievable.

Given a reference point, an achievement scalarizing function (ASF) can be minimized over the
feasible set in order to find the Pareto optimal solution which best fits this reference point [35].
ASFs are real-valued functions formulated using the k objective functions, the reference point q

and a vector of positive weights µ = (µ1, . . . , µk)T (µi > 0, for i = 1, . . . , k). One of the most used
ASF was proposed in [35] and it is an extension of the L-infinity metric plus an augmentation term.
An advantage of using this ASF is that the optimal solution which minimizes it over S is always
a Pareto optimal solution of the original problem (1). Also, it is proven that every Pareto optimal
solution of (1) (including non-supported solutions) can be generated by varying the reference point
and/or the weight vector used in this ASF [29]. An overview about ASFs can be found in [24].

The MASdVaR model proposed in Section 3 is solved using a preference-based EMO algorithm.
In general, Evolutionary Multi-objective Optimization (EMO) algorithms randomly generate a
population of solutions and, at each generation, assign a fitness to each solution and apply selection,
crossover, mutation and elitism operators to progressively converge towards the Pareto optimal
front. Roughly speaking, we can say that the fitness assignment and the selection become crucial
to quickly converge to the Pareto optimal front, the mutation and the crossover operators ensure
the exploitation and the exploration of solutions, while the elitism operator prevents the best
non-dominated solutions found along the generations from being discarded from the population.
Among all of them, the EMO algorithms which introduce preference information into the solution
process are aimed at directing the search for new non-dominated solutions towards a region of
interest in the Pareto optimal front constituted by the Pareto optimal solutions which best suit
these preferences.

In Section 4, the preference-based EMO algorithm WASF-GA [27] is used for generating non-
dominated portfolios of the MASdVaR model. The main purpose of this algorithm is to approxi-
mate the region of interest of the Pareto optimal front defined by a reference point q given by a
DM. Formally, according to [27], we can define the region of interest of the Pareto optimal front
associated to q as follows. When q is achievable, the region of interest is the subset of Pareto opti-
mal objective vectors which dominate q, that is, the objective vectors f(x) with x ∈ E such that
fi(x) ≤ qi, for every i = 1, . . . , k. On the other hand, if q is unachievable, the region of interest is



6 A.B. Ruiz, R. Saborido, J.D. Bermúdez, M. Luque, E. Vercher

formed by the Pareto optimal objective vectors which are dominated by q, that is, the objective
vectors f(x) with x ∈ E such that fi(x) ≥ qi, for every i = 1, . . . , k. In this case, solutions lying in
this region are likely to be more appealing for the DM than the ones outside it because, at them,
the objective function values differ from the aspiration values as little as possible, although they
do not improve any of them. The solutions outside this region may improve some of the aspiration
values (and not all of them) but at the expense of a sacrifice in the rest of them, what may not be
so attractive for the DM.

To approximate this region of interest, WASF-GA maintains a diverse set of non-dominated
solutions by considering, on the one hand, a predefined set of weight vectors in (0, 1)k and, on the
other hand, by minimizing at each generation the ASF proposed in [35] for the given reference point
and these weight vectors. At each generation of WASF-GA, parents and offspring are classified into
several fronts according to the values that each solution takes on the ASF, for the reference point
used and for each one of the weight vectors in the predefined set. The lower the ASF values reached
by a solution, the more this solution is highlighted. The solutions selected can be considered as
the best solutions found at each generation for minimizing the ASF with respect to the each one
of the weight vectors. From the practical point of view, we can say that the region of interest is
approximated by projecting at each generation the reference point onto the Pareto optimal front,
taking into account a set of well-spread search directions (defined by the weight vectors). Then, to
preserve the diversity, the weight vectors must represent evenly distributed projection directions.
For more details about the working procedure of WASF-GA, see [27].

In the rest of this paper, we consider membership functions associated to bounded LR-power
fuzzy variables to approximate the uncertain portfolio returns. Let us recall some concepts of fuzzy
set theory [11, 19, 38] which will be used hereafter. According to [16], a fuzzy number Q is said to
be an LR-type fuzzy number if its membership function has the following form:

µQ(y) =


L(A−ysA

) if −∞ < y ≤ A,
1 if A ≤ y ≤ B,
R(y−BsB ) if B ≤ y < +∞,

(2)

where A and B (with A ≤ B) represent lower and upper bounds of the core of Q, respectively,
i.e. [A,B] = {y|µQ(y) = 1}; sA and sB are the left and right spreads of Q, respectively; and
L,R : [0,+∞)→ [0, 1] are reference functions which are non-increasing and upper semi-continuous
with lim

t→+∞
L(t) = lim

t→+∞
R(t) = 0. Furthermore, Q is said to be a bounded LR-type fuzzy number

if its reference functions are such that the support of Q is bounded, i.e. if there exist two real
numbers a and b (with a < b) such that {y : µQ(y) > 0} ⊂ [a, b]. Actually, we say that Q is an
LR-power fuzzy number if its reference functions are of the type Lα(t) = 1− tα and Rβ(t) = 1− tβ ,
for every t ≥ 0, where α and β are two positive real values known as shape parameters. Note that
any trapezoidal fuzzy number is a particular case of an LR-power fuzzy number with α = β = 1.
Additionally, if A = B we obtain a triangular fuzzy number.

It is well-known that a fuzzy number Q induces a possibility distribution that matches with its
membership function µQ(y) [38]. Since the possibility and necessity of every fuzzy event can be
evaluated based on the possibility distribution associated to its membership function, every fuzzy
number can be considered as a fuzzy variable ξ (in the sense of [19]), whose credibility distribution
Φξ : R→ [0, 1] is given by:

Φξ(x) =
1

2
(supy≤x µξ(y) + 1− supy>x µξ(y)). (3)

In this way, the fuzzy variable ξ is an LR-type fuzzy variable if its credibility distribution has a
membership function µξ as the one given in (2), which corresponds to an LR-type fuzzy number.
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3. A new model for portfolio selection using the Value at Risk (VaR)

In most portfolio selection models, the expected return on assets, the covariance matrix and the
upper moments are usually considered as known parameters estimated throughout a historical data
set. Instead, we turn the problem around: we assume that the portfolio composition is known and
we directly consider the historical returns on the given portfolio for quantifying the uncertainty of
its future return. For this, we apply fuzzy set theory [11, 19, 38] in such a way that historical data
information is used for building suitable membership functions for the return of the investment.
This modelling approach has been previously used for ranking risky portfolios [1] and for obtaining
Pareto optimal portfolios using multi-objective optimization approaches [2, 28, 32].

Therefore, throughout the paper, we use the credibility measure of a fuzzy event to quantify
the uncertainty of the future return of the investment. To do so, we directly approximate the
credibility distribution of the portfolio return (which is considered as a fuzzy variable) instead
of aggregating the credibility distributions of the individual assets that compose the portfolio.
However, the historical portfolio returns are evaluated by considering the returns on assets for
each period of time. Note that quantifying the uncertainty of the portfolio return by means of
a fuzzy variable and credibility distributions allows us to measure the percentage of loss on a
given portfolio allocation by means of its fuzzy Value-at-Risk (VaR) [34], so we can calculate this
function and introduce it into the model as a measure of the investment risk to be minimized.

3.1. A credibility mean-absolute semi-deviation model with a fuzzy VaR
criterion (MASdVaR)

Let us consider a capital market with N financial assets offering uncertain rates of returns. An
investor desires to know which is the optimal allocation of their wealth among the N assets,
looking for the maximization of the expected return of the investment at the end of the period
at the minimum risk. Let us denote a portfolio by x = (x1, . . . , xN )T in which the total wealth is
allocated, where xi (i = 1, ..., N) represents the proportion of the total investment devoted to the
asset i.

Each portfolio x must verify the budget constraint given as
∑N
i=1 xi = 1 and the non-negative

condition of every proportion, i.e. xi ≥ 0 for every i = 1, ..., N , when short selling is excluded.
Also, lower and upper limits on the budget to be invested in each asset i can be imposed to
assure the diversification of the investment. For this, constraints of the type 0 ≤ li ≤ xi ≤ ui can
be considered, where li and ui denote the lower and upper bounds for the asset i, respectively
(i = 1, 2, ..., N). Additionally, a cardinality constraint can be incorporated into the model to
control the number of assets that participate in the portfolio. The cardinality constraint is given
by hl ≤ c(x) ≤ hu, where c(x) = rank(diag(x)) denotes the rank of the diagonal matrix whose
diagonal elements are the components of the vector x and hl and hu are two positive integer values.
Thus, the cardinality constraint ensures that the number of assets that compose each portfolio x is
always within the interval [hl, hu]. Furthermore, if hl = hu, the portfolios are forced to be always
composed by the same number of assets. The function c(x), which gives the number of positive
proportions in the portfolio x, is quasi-concave.

For a portfolio x, let us consider the historical returns over T quotation periods, denoted
by {rt(x)}Tt=1, whose sample percentiles are given by pj , being j the order of the percentile.
In our modelling approach, we assume that the uncertainty regarding the future return on x

is approximated by a fuzzy variable ξx, whose membership function and credibility distribution
(given in equations (2) and (3)) are built using these sample percentiles pj . To be more precise, the
uncertain return on the portfolio x is modelled by means of a bounded LR-power fuzzy variable,
denoted by ξx = (A,B, c, d)LαRβ , where [A,B] is the core, c and d are the left and right spreads of



8 A.B. Ruiz, R. Saborido, J.D. Bermúdez, M. Luque, E. Vercher

its membership function, while α and β are the positive shape parameters of the power reference
functions L and R, respectively.

In our multi-objective optimization portfolio selection problem, the objective functions to be
optimized are the credibility expected value of the return, the below-mean absolute semi-deviation
and the fuzzy VaR5% (that is, the 0.05-optimistic value of the fuzzy variable which represents the
uncertainty on the percentage of loss in a given period of time). Obviously, the expected return
value of the investment is to be maximized, and both the credibility below-mean absolute semi-
deviation and the fuzzy VaR5% are measures of the investment risk to be minimized. These two
measures provide different information about the risk: the fuzzy VaR5% represents the percentage of
loss that will be lower than VaR5% 95% of the time, while the below-mean absolute semi-deviation
deals with the non-desired variability around the credibility expected value, i.e. (ξx − E(ξx))−.
According to [32], for every portfolio x whose uncertainty of its future return is modelled by the
fuzzy variable ξx, these credibility moments and optimistic value can be mathematically computed
as follows:

• Credibility expected return value, denoted by E(ξx):

E(ξx) =
A+B

2
+
d

2

β

β + 1
− c

2

α

α+ 1
. (4)

• Credibility below-mean absolute semi-deviation, denoted by MASd(ξx):

MASd(ξx) =


1
2 (E(ξx)− (A− c))− 1

2
c

α+1

(
1− (A−E(ξ)

c )α+1
)

if A− c ≤ E(ξx) ≤ A,
1
2

(
B −A+ c α

α+1 + d β
β+1

)
if A ≤ E(ξx) ≤ B,

1
2 ((B + d)− E(ξx))− 1

2
d

β+1

(
1− (E(ξx)−B

d )β+1
)

if B ≤ E(ξx) ≤ B + d.

(5)
• Fuzzy VaR5%, denoted by FVaR5%(ξx):

FVaR5%(ξx) = B + 0.9
1
β d. (6)

Based on the aforementioned definitions, the cardinality constrained credibility mean-absolute
semi-deviation value-at-risk (MASdVaR) model for the portfolio selection problem is formulated
as follows:

(MASdVaR) maximize E(ξx)

minimize MASd(ξx)

minimize FVaR5%(ξx)

subject to
N∑
i=1

xi = 1,

hl ≤ c(x) ≤ hu,
0 ≤ li ≤ xi ≤ ui, i = 1, 2, ..., N.

(7)

In the rest of the paper, we assume that the cardinality constraint is formulated as c(x) = h, for
a given number h ∈ N (i.e. hl = hu = h). This means that every feasible portfolio of (7) is forced
to invest in exactly h of the N available assets.

Because of the use of fuzzy variables to represent the uncertainty of the portfolio returns
which depend on the sample percentiles, the MASdVaR model involves non-linear and non-convex
functions. Besides, the introduction of the cardinality constraint with a quasi-concave function
means that the model is a constrained mixed integer multi-objective optimization problem that
is NP-hard [25]. Dealing with a non-linear and non-convex mixed integer NP-hard multi-objective
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optimization problem is not straightforward and classical multi-objective optimization methods
are not suitable. This is the reason why we have used an EMO algorithm to find Pareto optimal
portfolios of the MASdVaR model, because they are able to handle problems with different types of
variables and objectives, such as e.g. integer or binary variables and non-convex, non-differentiable
or discontinuous functions.

4. Computational experiments

In this section, we solve the MASdVaR model (7) using the preference-based EMO algorithm
WASF-GA [27]. Given that EMO algorithms cannot be directly applied in their standard form to
constrained portfolio optimization problems, we must carefully define several issues for handling
the objectives and constraints of the problem. Commonly, classical operators are applied to these
problems [18], but a repair mechanism needs to be used in order to assure that the new portfolio
solutions satisfy all the constraints. In the case of the MASdVaR model, the main drawback comes
from the presence of the cardinality constraint, since new portfolios obtained by commonly used
mutation and crossover operators are not assured to be composed by a limited number of assets. To
deal with this, we have considered mutation, crossover and repair operators in WASF-GA which
ensure to generate feasible portfolios of the MASdVaR model satisfying all the constraints.

In what follows, we briefly introduce the solution representation and operators used. Later, the
case study and the parameters considered in the experiments are described and, finally, we discuss
the results obtained.

4.1. Solution representation

We use a standard real-valued representation, i.e. a portfolio x is represented by a vector x =

(x1, . . . , xN )T ∈ RN , where each xi represents the proportion invested in the asset i, for i =

1, . . . , N . This means that, if xi 6= 0, the portfolio x invests in the asset i and the value of xi
indicates the proportion of the capital budget allocated to the asset i.

4.2. Evolutionary operators

To generate portfolios satisfying the budget, the upper and lower bound and the cardinality con-
straints, we have used the evolutionary operators proposed in [28]. These operations are specially
designed for generating feasible portfolios of cardinality constrained problems such as the MASd-
VaR model.

• Mutation operator. The mutation operator suggested in [28] is a unary operator which, for
a given portfolio, retrieves a mutated portfolio. The mutation operation is just a simple
procedure for swapping the proportions of two different assets, which are randomly selected
with a probability Pm = 1/h, where h is the number of assets that participates in the
portfolio according to the cardinality constraint.
• Crossover operator. The crossover is a binary operator which generates two offspring port-

folios from two given parent portfolios. Firstly, the offspring are initialized as empty portfo-
lios and the assets which constitute them are added lately, inheriting h positive proportions
from both parents. The inherited proportions from each parent are selected depending on
the number of assets in common between the two parents. For further details, see [28].
• Reparation operator. Although the new portfolios generated with the above mentioned
crossover operator satisfy the cardinality and the bound constraints, it is not guaranteed
that they meet the budget constraint. For this reason, the reparation operator described
in [28] is performed. After normalizing the positive proportions to satisfy the budget
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constraint, a strategy is followed to readjust the proportions which do not meet the lower
and the upper bounds.

4.3. WASF-GA algorithm with the operators

As explained in Section 2, the working procedure of WASF-GA is based on the classification
of parents and offspring into several fronts. We have incorporated the aforementioned operators
into WASF-GA as explained in Algorithm 1, which describes one generation t. Here, Np denotes
the population size and Pt and Qt are the population of parents and offspring, respectively, at
generation t.

Algorithm 1 Each generation t of WASF-GA
Require: The population Pt at generation t.
Ensure: The population Pt+1 for the next generation t+ 1.
1: Set Qt = ∅.
2: while #(Qt) < Np do
3: repeat
4: Select two parents x1 and x2 from Pt by using binary tournament selection.
5: Crossover : using x1 and x2, generate two offspring portfolios y1 and y2 by means of the crossover

operator proposed in[28].
6: Reparation: apply the reparation operator proposed in [28] to the portfolios y1 and y2 if required.
7: Mutation: perform the mutation operator suggested in [28] on y1 and y2 to produce two mutated

portfolios ȳ1 and ȳ2.
8: Insert ȳ1 and ȳ2 into Qt.
9: until #(Qt) = Np

10: end while
11: Combine Pt and Qt to form a population of size 2Np. Select the best Np portfolios from the combined

population to constitute the population Pt+1 as it is usually done in WASF-GA [27].

4.4. Case study and parameters setting

Firstly, the case study we have used consists of a set of weekly returns on assets from the Spanish
IBEX35 index, observed in T = 165 periods (weeks) from January 2013 till March 2016. The
number of available assets for allocating the wealth in this period of time is N = 33 (although this
index is constituted by 35 assets, there were two assets which were not included in the IBEX35
index through all the time window considered). For every i = 1, . . . , 33 and t = 1, . . . , 165, the
sample return on the individual asset i at week t, denoted by rti, is calculated as follows:

rti =
CPi(t+ 1)− CPi(t)

CPi(t)
, (8)

where CPi(t) denotes the closing price of the asset i on Wednesday at week t. Thus, for t =

1, . . . , 165, the weekly return on each portfolio x for the week t is obtained as rt(x) =
∑33
i=1 rti ·xi.

Finally, we consider a bounded LR-power fuzzy variable ξx = (A,B, c, d)LαRβ to represent the
uncertainty of the future return on each portfolio x and we build its membership function by
means of the sample percentiles of its weekly returns set, denoted by pj , where j is the order of the
percentiles. In particular, the core and the support of ξx are represented by the intervals [p40, p60]

(medium return values) and [p3, p97] (the 3rd the 97th percentiles), respectively, while the shape
parameters are obtained as α = ln(0.5)/ ln(p40−p20c ) and β = ln(0.5)/ ln(p80−p60d ), assuming that
the sample percentiles p20 and p80 have a 50% possibility of being realistic (they are obtained in
such a way that the fuzzy and empirical quartiles coincide).
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Tabla 1. Parameter settings

Parameter Value
Population size 300
Number of evaluations 420000
Stopping criterion Maximum number of evaluations
Crossover operator Pc = 0.90, ηc = 20

Mutation operator Pm = 1/k, ηm = 20

Regarding the MASdVaR model, we have assumed that the portfolios are composed by 9 assets
(i.e. h = 9 and c(x) = 9 is the cardinality constraint). The number of assets has been limited to 9
following the advice given in [5], which suggests that investors should not consider h-values above
one third of the total number of assets because of dominance relationships. Besides, the upper and
lower bounds considered for each asset are li = 0.00 and ui = 0.30 (i = 1, . . . , 33).

In relation to the computational implementation needed, we have considered the jMetal frame-
work [12] which includes a Java implementation of WASF-GA1. In the experiment, we have selected
the reference point q = (0.80, 1.40, 4.82)T because, on the one hand, having an expected value for
the return of 0.80 is very desirable and, on the other hand, the aspiration values considered for the
MASd and the VaR objectives, 1.40 and 4.82 respectively, are both realistic and good initial values
for both risk measures (based on previously observed results obtained in similar situations). Thus,
this reference point represents an intermediate level of risk for a real investor which corresponds
to an optimistic but conservative profile. Besides, 30 independent simulation runs of WASF-GA
were performed to approximate the region of interest determined by this reference point. Table 1
summarizes the parameter setting used in these simulation runs. Note that the solutions found by
the algorithm in all the runs were combined in order to select the non-dominated ones to built a
non-dominated set which represents the region of interest as best as possible.

4.5. Numerical results

Once all the portfolios generated in the 30 runs of WASF-GA were combined, we ob-
tained 369 non-dominated portfolio solutions approximating the region of interest associated to
q = (0.80, 1.40, 4.82)T . Table 2 shows a numerical description of the characteristics of these non-
dominated portfolios (as independent observations of the objective functions). Observe that the
obtained portfolios have improved the aspiration values considered for the three objectives (remem-
ber that the expected value is to be maximized and the two risk measures are to be minimized).
This means that the reference point used is achievable. Thus, the portfolios obtained achieve ex-
pected return values better than 0.80 and values for both measures of the risk lower than 1.40 and
4.82, respectively.

Figure 1 shows two bivariate scatter plots of the credibilistic MASd and VaR values versus
the expected return values attained by the 369 non-dominated portfolios, respectively. In this
figure, the solid diamond represents the reference point q = (0.80, 1.40, 4.82)T . The marginal box-
plots of the achieved objective function values have been also included in this figure. Note that
all these portfolios are non-dominated in a three-dimensional multi-objective optimization frame-
work, although these two-dimensional plots may wrongly show a domination among the portfolios
represented.

1jMetal is an object-oriented Java-based framework for multi-objective optimization using meta-heuristic algorithms.
It can be downloaded as open source at http://jmetal.sourceforge.net/, where the implementation of the WASF-
GA algorithm is publicly available.
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Tabla 2. Numerical description of the 369 non-dominated portfolios generated by WASF-GA

Min. 1st Qu. Median Mean 3rd Qu. Max.
Expected return 0.802 0.839 0.869 0.860 0.875 0.909
MASd 1.238 1.256 1.299 1.301 1.334 1.396
VaR 4.290 4.337 4.497 4.453 4.525 4.738
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Fig. 1. On the left, the scatter plot of MASd versus expected return with their marginal box-plots. On the right,
the scatter plot of VaR versus expected return with their marginal box-plots.

Tabla 3. Characteristics of some specific portfolios

Portfolio Expected return MASd VaR
1 0.802 1.238 4.366
2 0.803 1.238 4.313
3 0.813 1.243 4.290
4 0.909 1.396 4.738

From the point of view of the investor, each portfolio represents an investment proposal gen-
erated according to the reference point used. In Table 3, we can see the characteristics of four
different portfolios, which are shown just to give an idea of the diversity of the obtained results
from an investment perspective. Portfolios 1 and 2 are the ones with the lowest expected returns
among all the non-dominated solutions and, accordingly, they have the lowest MASd values, but
acceptable VaR values. These two portfolios could be recommended for a conservative investor. On
the other hand, portfolio 3 attains the lowest VaR value and has quite small expected return and
MASd values (both of them below their first quartiles). Finally, portfolio 4 represents the most
risky option, since it reaches the highest MASd and VaR values, but this is the price to pay if
the investor wants to have also the highest expected return value. Then, this portfolio could be
recommended for an optimistic investor.

It is noteworthy that if we had used other aspiration values for the objective functions (i.e. a
different reference point), representing a more risky or a more conservative investor profile, the non-
dominated portfolio solutions generated by the WASF-GA algorithm would have approximated a
different region of interest constituted by Pareto optimal portfolios fitting the profile considered.
Actually, if the investor is too pessimistic or conservative (i.e. the reference point is achievable),



REFERENCES 13

the portfolios generated are likely to achieve better values for the three objective functions that the
expected ones, as in our experiment. But if the investor is too optimistic (i.e. the reference point
is unachievable), there may not exist portfolio solutions attaining or improving the expectations
of the investor although (s)he would be informed about the portfolios which best suit her/his
investment aspirations. Thus, in practice, the reference point used in the experiment determines
the type of portfolios to be generated.

5. Conclusions

In this work, we have suggested a new multi-objective optimization model for the portfolio selection
problem. In the new model, which is called the credibility mean-absolute semi-deviation value-at-
risk (MASdVaR) model, the uncertainty of the future return of the portfolios is modelled using
LR-power fuzzy variables and the three criteria considered are the maximization of the credibility
expected value of the return and the minimization of two risk measures, the below-mean absolute
semi-deviation and the fuzzy value-at-risk. To define the feasible portfolios, the model includes
a budget constraint, lower and upper bound constraints to limit the proportion invested in each
asset, and a cardinality constraint to control the number of assets participating in each portfolio.

Given that the resulting MASdVaR model is non-linear, non-convex, mixed integer and NP-
hard, we have used the preference-based evolutionary multi-objective optimization algorithm
WASF-GA to generate non-dominated portfolios according to the investor profile, which has been
specified by means of a reference point. The experiment carried out using a set of weekly returns
on assets from the Spanish IBEX35 index has demonstrated that very promising portfolios can
be obtained with the MASdVaR model, each of them reprenting an investment option fitting the
investor profile considered. This shows that the WASF-GA algorithm, togehter with suitable ge-
netic operators, has been able to generate non-dominated portfolios for the MASdVaR model.
Furthermore, the introduction of the preferences into the algorithm has enabled the generation of
portfolio solutions which directly correspond to the investor expectations, without the necessity of
any post-optimization stage to filter the portfolios generated.

As future research lines, we plan to investigate how the portfolios generated would vary accord-
ing to different investment profiles. Additionally, a comparison of the performance of WASF-GA
against other preference-based EMO algorithms will let us confirm the goodness of the results
obtained for the MASdVaR model.
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