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l. lNTRODUCTION 

• 

Cellular Automata (CA) are discrete dynamical systems acting on the configuration space Az of all 
!-dimensional sequences x : Z -+ A, where A is any finite and nonempty set called alphabet, Z is the 
!-dimensional integer lattice, and the global transition maps defining CA are given by the action of one 
local rule which determines the evolution, sequentially and synchronously, of the state x(n) of the cell 
n E Z in the configuration x E A z depending on the states of cells on a finite and uniform neighborhood. 
More explicitly, F : Az -+ A z is a cellular automaton if and only if there are: a finite and nonempty 
set V and a local rule f : Av -+ A, where Av is the set of all functions from V to A, such that for all 
x E A z and n E Z it holds: 

(1) F(x) (n) = f(x\v+n), 

where xlv+n: V-+ A is given by x\v+n(k) = x(n +k) for all k E V. In other words, the state of cell n 
in the configuration F(x) depends of the states of the cells n +k, k E V, in the configuration x. 

On the configuration space A z one can consider different topological structures in order to study 
dynamic properties for endomorphisms on AZ: 

I) Product topology (or Cantor topology): is the finest topology such that, for each n E Z, 
the projection 7rn : Az -+ A, 7rn(x) = x(n), is a continuous map. It is well known, even A 
any discrete topological space, that the family of cylinders C(1U, h) = {x E A z : x\u = h}, 
where 1U is a finite and nonempty subset of Z and h is a function from 1U into A, is a dopen 
basis for this topology; dopen means closed and open set. It is well know that the function 
de: Az x Az-+ [O,+oo) given by dc(x,y) = 2-i where i = inf{\n\: n E Z, x(n) -=f. y(n)} define 
a metric compatible with the product topology on Az. In particular, when the alphabet A is 
finite, this metric is called Cantor metric and Az is a Cantor set; that is: compact, perfect and 
totally disconnected. 

II) Besicovitch topology and Weyl topology: introduced in the context of symbolic dynamics 
to refine the study of discrete dynamical systems on Az. These topologies are defined by a shift 
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invariant pseudometric; the first one measures the density of differences in central segments of 
two configurations; it is given by the formula 

d ( ) 
_

1
. #{m E {-f,· ·· ,f}: x(m) f; y(m)} 

B x,y - 1msup 20 . 
l-+oo .c.+ 1 • 

Weyl's pseudometric measures the density of differences in arbitrary segments and it is given by 
the formula 

d ( ) l. ( #{mE{p,···,p+f-1}:x(m)f:y(m)}) 
wx,y=Im sup 

0 
• 

l-+oo pEZ .c. 

For more details about Besicovitch and Weyl topologies we remit the reader to [2]. 

For instance, considerA any discrete topological space which we assume finite. It is obvious that any 
local rule is a continuous function and CA are continuous transformations of the configuration space 
Az. Also it is simple to verify that CA commute with the shift map a : Az --+ Az which is defined, 
for each x E A z and n E Z, as a(x)(n) = x(n + 1). Notice that shift map is a cellular automaton. 
As homeomorphism on Az the shift map has an important impact in the developing of the dynamical 
systems theory. In a classical article, Hedlund [3] characterized CA in terms of shift map, in fact: every 
continuous transformation of Az is a cellular automaton if and only if it commutes with the shift map 
on Az; see theorem 3.4 in [3]. This result is true only in the Cantor topology; in [2] there are examples 
of continuous transformations, in Besicovitch and Weyl topologies, commuting with a and these maps 
are not CA. 

In this work we deal with discrete dynamical systems on Az where the global transition maps are 
defined in a similar way to CA but depending on a finite number of local rules. This kind of dynamical 
systems are called multistate cellular automata, or r-cellular automata, where r ~ 1 is the number of 
local rules employed to describe the global transition maps. This notion extends the classical definition 
of CA, see [1] and [4]. 

The main result of this note shows that under certain permutations on the set of local rules, the 
corresponding multistate cellular automaton are topologically conjugated; that property is independent 
in the above topological structure on Az. Recall that two continuous transformations f : X--+ X and 
g : Y --+ Y (X and Y topological spaces) are topologically conjugated if there is a homeomorphism 
h: X--+ Y such that h o f = g o h. Notice that h carries on orbits off into orbits of g; therefore, f and 
g have the same topological dynamics. 

In the next section we introduce the concept of r-cellular automata and the corresponding version 
of Hedlund 's theorem when the alphabet A is finite; also we show a couple of examples, each of them 
defined by the same set of local rules arranged in different ways. Finally we introduce the notion of 
conjugacy classes and prove the main result. 

2. r-CELLULAR AUTOMATA AND CONJUGACY CLASSES 

Consider a finite alphabet A and a positive integer r. Let Vi be a finite and nonempty subset of Z 
and Ji: Av,--+ A the local rule acting on Vi (i =O,··· ,r - 1). By means of these local rules we will 
define a global transition map on A z. 
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Definition 2.1. Given local rules Ji : Av• -t A with O ::; i ::; r - 1, the r-cellular automaton, or 
multístate cellular automaton, generated by them is the transformation F : Az -t Az defined, for each 
x E Az and m E Z, by 

(2) 

where q is the integer m taken modulo r. 

Clearly CA on Az are 1-cellular automata. Observe that for any r-cellular automaton F the state 
temporal evolution, {Fn(x)(m) : n ~ 0}, of the configuration x E A z depends on a particular local rule 
which is given by the location of m in Z. Moreover, it is easy to verify that F commutes with ar and 
itis a continuous on Cantor, Besicovitch and Weyl topologies. The following extension of Hedlund's 
theorem was proved in the context of product topology on A, even when A is any discrete topological 
space, see [1]. 

Theorem 2.1. Every contínuous transJormation F : Az -t Az commuting with ar is a r-cellular 
automaton. 

Given a r-cellular automaton F, always it is possible to redefine it in such a way that the local rules 
act on the same finite neighborhood V of Z, for example in an interval [e, e+ k] = {e, e+ 1, · · · , e+ k} 
(e, k E Z with k~ 0). Assume that F is the r-cellular automata induced by the local rules Ji :A Vi -t A 
(O::; i < r). Let e and k be integers, with k~ O, such that each Vi is contained in the interval [e, e+ k]. 
Define, for every O ::; i < r , the function h : A[f,i+k] -t A as h(h) = fi(hi\ti), where hl\ti denotes the 

restriction of h to l/i. Thus, for every x E Az and m E Z, the r-cellular automaton F, generated by 
these local rules and the uniform neighborhood [e, e+ k], satisfies: 

(3) F(x)(m) '[q ( xl[f,l+k]+m) = '[q(x(e +m),··· , x(e +k+ m)) 

= Jq ( xiVq+m) = F(x)(m). 

In other words, each r-cellular automaton is determined by a set of r functions Jo,··· , Jr-1 : Ak+l -t 

A, for sorne nonnegative integer k, and can be written as in equation (3). However, one could change 
the order of the local rules by permutations of {0, · · · , r - 1} and obtains, possibly, different r-cellular 
automata. 

Example 2.1. ConsiderA= Z2 = {0, 1 }. Let cpo, cp1, cp2 : A3 
-t A be the local rules given by: 

cpo(a-l,ao,al) = ao + a1 (mod 2), 'Pl(a-l,ao,al) = a1 

and cp2(a-1, ao, a1) = a-1 + ao (mod 2) . 

In order to obtain 3-cellular automata from this fuctions one can rearrange these local rules according to 
sorne permutation of {0, 1, 2}. So, if V= [-1, 1], the local rule vector (cp0, cp1 , cp2) defines the 3-cellular 
automaton F: Az -t Az given, for each x E Az and n E Z, by 

{

epa (xlv+n) = x(n) + x(n + 1) (mod 2), if n =O (mod 3) 

F(x)(n) = 'Pl (xlv+n) = x(n + 1), if n = 1 (mod 3) 
'P2 (xlv+n) = x(n- 1) + x(n) (mod 2), if n = 2 (mod 3) 
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While the local rule vector (<po, <p2, <p¡) generates the 3-cellular automaton G on Az defined, for each 
x E Az and n E Z, as 

{

'Po (xlv+n) = x(n) + x(n + 1) (mod 2), if n =O (mod 3) 
G(x)(n) = <p2 (x lv+n) = x(n -1) + x(n) (mod 2), if n = 1 (mod 3) 

<p1 (x lv+n) = x(n + 1), if n = 2 (mod 3) 
• 

These 3-cellular automata have different topological dynamics when Az is provided with the Cantor 
topology: they are not topologically conjugated; in other words, for every homeomorphism h: Az --t Az 
on the Cantor topology F oh ::j: h o G. This claim is a straightforward consequence of the fact that F 
has infinitely many fixed points; in fact, every configuration x = (x(n))nEZ E Az satisfying 

x(3f + 1) = x(3f + 2) =O for all fE Z 

is a fixed point for F. However, G has only one fixed point: the null configuration o(n) = O for every 
nE Z. 

In Besicovitch and Weyl topologies can be constructed r-cellular automata with the same performance 
in preceding example. 

Let Jo,··· , fr-1 : A k+1 
--t A be a set of local rules and let [f, f +k] (f, k E Z with k ~ O) be the set 

of integers between f and f + k. Consider the group Sr of permutations of {0, · · · , r - 1} . It is clear 
that every T E Sr arranges the set of local rules in a vector Ur(o), · · · , fr(r-1)), which we refer as local 
vector rules. Thus, for such a vector and the neighborhood [f, f +k] we have the r-cellular automaton 
Fr: Az --t Az defined, for each x E Az and m E Z, by 

(4) Fr(x)(m) = fr([m]r)(x(f +m), .. · , x(f +k+ m)), 

where [m]r is the integer m taken module r. 

Example 2.1 shows that different permutations on the set of local rules induce, possibly, different 
topological dynamics on Az by means of the corresponding r-cellular automata. However, we will 
introduce a partition on Sr. generatcd by an equivalence relation, which make possible to classify in 
conjugacy classes the collection of r-cellular automata given by (4) for every T E Sr. In fact, let u be 
the cyclic permutation 

U= (
o 1 .. . 
1 2 ... 

r- 2 r- 1) 
r -1 O · 

For this special permutation we use the same nomenclature of the shift map because, in fact, it is a shift 
with periodic boundary conditions. 

Definition 2.2. Givcn permutations r¡, T E Sr, we say that they belong to the same cyclic class if, and 
only if, there exists O :s; j < r such that T = r¡ o (J'j. 

Obviously this defines an equivalence relation on Sr. Observe that for every TE Sr, its cyclic class is the 
set ofpermutations {T, T(J', · · · , T(J'r- 1 }; in particular, the cyclic class of (1 is the subgroup {i, (1, • • • , (J'r-

1 
}, 

where i denote the identity on Sr. It is clear that there is exactly (r- 1)! cyclic classes on Sr. 

The following Theorem is the main result of this note. 
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Theorem 2.2. Given local rules Jo,··· , fr-1 : Ak+1 
-t A and the neighborhood [f, f+k] e Z; iJ r, r¡ E Sr 

belong to the same cyclic class, then the r-cellular automata F,. and Fr¡, as defined in (4), are topologically 
conjugated. 

Proof. Assume T = r¡ o CTj for sorne O :::; j < r. It is well known that CTj : Az -t Az, &iven by 
CTJ(x)(m) = x(m + j) for all x E Az and m E Z, is a homeomorphism on Az with Cantor, Besicovitch 
and Weyl topologies. On the other hand, for each O :::; j < r the permutation CTj satisfies CTj ( i) = [i + j]r 
for all O:::; i < r. Now we will show that the homeomorphism CTj of Az conjugates the r-cellular automata 
Fr and Fr¡. In fact, for every x E Az and m E Z we have: 

(Fr o CTi)(x)(m) = Jr([m]r)(CTi(x)(f +m),··· , CTi(x)(f +k+ m)) 

fr([m]r)(x(f +m+ j), · · · , x(f +k+ m+ j)) 

Jr¡(ui([m]r))(x(f +m+ j), · · · , x(f +k+ m+ j)) 

= Jr¡([m+i]r)(x(f +m+ j), · · · , x(f +k+ m+ j)) 

= Fr¡(x)(m + j) 

= (CTi o Fr¡)(x)(m). 

Thus Fr and Fr¡ have the same topological dynamics. 

The following corollary is an obvious consequence of the number of cyclic classes. 

o 

Corollary 2.1. Fixed r local rules Jo,··· , Jr-1, the number oJ different topological dynamics given by 
(4) with TE Sr has (r- 1)! as an upper bound. 

Next example shows that topological conjugation is only a necessary condítion to belong to the same 
conjugacy class. 

Example 2.2. ConsiderA= Z5 = {0, 1, 2, 3, 4}, V= {O} and the local rules Jo, fi, h: A-tA given by 

Jo( a)= 2a (mod 5), fi(a) =a+ 1 (mod 5) and h(a) = 2a + 1 (mod 5). 

'The 3-cellular automaton generated by the local rule vector (!0 , fi, h) and the neighborhood Vis defined, 
for every x E Az and n E Z, by 

{

2x(n) (mod 5), if n =O (mod 3) 
F(x)(n) = x(n) + 1 (mod 5), if n = 1 (mod 3) 

2x(n) + 1 (mod 5), if n = 2 (mod 3) 

Now we rearrange the local rule vector (Jo, !1, h) according to the permutation T = (~ ~ ~); notice 

that r and i = (~ i ;) are not equivalent according to definition 2.2. 

Clearly the 3-cellular automaton Fr is defined, for each x E Az and n E "Z, as: 

{

x(n) + 1 (mod 5), if n =O (mod 3) 

Fr(x)(n) = 2x(n) (mod 5), if n = 1 (mod 3) 

2x(n) + 1 (mod 5), if n = 2 (mod 3) 
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It is easy to verify that h : Az ---+ Az, given by 

{

x(n + 1), if n =O (mod 3) 
h(x)(n) = x(n- 1), if n = 1 (mod 3) 

x(n), if n = 2 (mod 3) 

defines a homeomorphism on Az and h o F = F7 o h. 
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