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1 Introduction

In [16] Kummer generalizes Gauss quadratic sums to the rings Z/p‘Z,
where p is a prime number and ¢ > 0 is a natural number, obtaining
some of their most important properties. Using the Chinese remainder
theorem, these sums and their properties can be extended to the rings
Z/mZ. In particular, the representation of arithmetical functions modulo
m as discrete (finite) Fourier series is obtained (see, e.g., [4, Chap. 8,
p. 172]). In the 20th century Gauss sums are studied in finite fields I,
q = p', where p is a prime number and ¢ > 1 is an integer, and used, for
example, to determine the number of solutions of forms Fy[t,--- ,t,],
see [26, 14] or to decide if a polynomial f(t1,--- ,t,) € Fylt1, -+ ,t,] is
or is not a permutation polynomial [23, 24]. Due to the analogy between
the rings Z and F,[X], a natural generalization of Gauss sums is done
by Carlitz in [5, 6], and later precised by Cohen in [8]. Analogously to
the rational case, they find that any arithmetical function defined on
Fy[X], modulo a unitary (primary) polynomial h(X), admits a discrete
Fourier series. In the 50’s of the last century, Lamprecht [17] (see also
[7]) further extends the notion of Gauss sums and their properties to a
wide class of commutative finite rings. According to Moreno [20], under
quite natural conditions, the results on Gauss sums in these rings are
analogous to those of Kummer. Also, he pinpoints their importance, not
only in the classical case, but in recent developments in digital signal
processing, self-correcting codes and Igusa’s stationary phase method
[3], among others.

On the other hand, in 1967, Nageswara Rao [21] extends previous
results in the rational case on the number of solutions of certain algebraic
equations, some of them with partition conditions [9, 10, 11, 22] to the
case of the rings F,[X]/(h(X)), where h(X) is a unitary polynomial in
Fq[X].

Our purpose in this paper is twofold. In the first place, in section
2, we present a somewhat detailed selfcontained exposition of Gauss
and Ramanujan sums over the algebras A = Fy[X]/(h(X)) and L, =
Fq[X]/(p(X)"), where h(X) is a unitary polynomial and p(X) is a irre-
ducible unitary polynomial. In the second place, in section 3, we use the
results in section 2, to prove in these algebras analogous results to the
classical old results of Libri [18, 19] and use them to obtain the num-
ber of solutions of some algebraic equations with coefficients in A and
L,. In particular, we present a somewhat different proof of a result of
Nageswara Rao.

2 Notations and preliminaries

In this paper, the group of units of a unitary commutative ring A will
be denoted by A*.
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Let K = F, be a finite field with ¢ = p’ (¢ a positive integer) elements.
If F'is an extension de K of degree s = [F' : K|, we define as usual the
trace of a € F sobre K by the relation

s—1

trp/r(a) =a+al+---+af

The following proposition contains the main properties of the function
tr /i (see [14, Chap. 10, p. 125]).

Proposition 1. Let K C F finite fields. If o, § € F and a € K, then
i) trp/g(a) € K.

ii) trp/g(a+ B) =tr g () +tr g/ (B)
iii) tr g/ g (aa) = atr p/g ().

iv) tr g/ : I — K is onto.

If h(X) = api(X)™ -+ p(X)* € Fy[X], where a € F and p;(X)
is an irreducible polynomial in F,[X], we denote by (h(X)) the ideal
generated by this polynomial. The Chinese remainder theorem in the
ring F,[X] tell us that:

Fy[X]/(n(X)) = HFq[X]/(pi(X)“i), (1)

and

=
=
R
~
>
=
.
=
X

I

T [0/ (i (X)) (2)
i=1

Therefore, we may restrict our considerations to rings of the form
F,[X]/(p(X)?) where p(X) is an irreducible polynomial. It is well known

that Fy[X]/(p(X)) = L is a finite field containing an isomorphic copy of
F,. Also, if the degree of p(X) is d, then the degree of the extension

L/F, is d. Consequently, L has q¢ elements. For these residual rings we
have the following results [2, 1, 25].

Proposition 2. With above notations we get:
i) Fy[X]/(p(X)¥) contains a field L isomorphic to F,[X]/(p(X)).

ii) F,[X]/(p(X)") = L, is an L-algebra of dimension v and q"¢ ele-
ments.
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iii) Ly = {\(20) = Ao+ A2y + -+ X120 2\ € L}, where 28 # 0
fori =1,2,---,v—1 and zF = 0 if kK > v. Moreover, the set
{1, 2,,---,2°" '} is a base for this L-algebra.

iv) LY = L* x {1 + \izy + )\223 + -+ )xv,lz}j_l : \j € L} where
20 40 fori=1,2,---,v—1and 2F = 0 if k > v. Therefore, L
has (¢ — 1)¢**—1) elements.

Now, using the following notations

A = F[X]/(h(X)),
Lvi = IFI][X]/(pi(X)vi)’

we get the following isomorphisms:

,
A~ PL,, (3)

i=1

T
A =~ @LUXZ . (4)

i=1
Thus an element of the F,—algebra A has the form (a(z,,), -, a(zy,))
where a(z,,) is an element of the F,-algebra L,, for ¢ = 1,---,7. In
what follows, if there is no confusion, we will denote (a(zy, ), -+, @(2y,))

by a(zy). It is clear that a(z,) € A* if, and only if, a(z,,) € L.

The set M(X,F,) of all unitary polynomials in F,[X], is an arith-
metical multiplicative monoid [15] on which the analogous notion of
arithmetical function in classical number theory can be defined. In par-
ticular, we are interested in periodic multiplicative functions with period
h(X) € M(X,F,), that is, arithmetical functions F' : M(X,F;,) — C
satisfying F'(a(X)) = F(b(X)) whenever a(z) = b(X)(md h(X)). An
example of this type functions are the characters of the finite algebras A
and L,. More generally, if A is a unitary finite commutative L ——algebra,
a function x : A — C satisfying the following conditions:

i) x(af) = x(a)x(B), for all a and 5 € A.
ii) x(a) =0 if « is not invertible.

iii) x restricted to A* is a group with values in T = {z € C; |z| = 1},

is said to be a Dirichlet multiplicative character of A.
Also, we will use additive characters, i.e., homomorphisms 9 : AT —

T satisfying ¥ (a + 8) = () (5).
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Let us observe that the restriction of y to A* is a character of the
finite commutative group A*, and, conversely, given a multiplicative
character x* de A* it can be extended uniquely to a Dirichlet character
x on A by defining x(a) = x* (o) if @« € A* and x(a) =0 if o ¢ A*.
From now on we will use x to denote both x and x*.

Next, we will prove that each character of A is the product of char-

acters of the L,,, ¢ =1,--- ,r. So we can restrict our study to characters
of L,.

Proposition 3. Given a multiplicative character 6 of A, there are mul-
tiplicative characters x; of L,,,, 1 = 1,--- ,r, such that 0 = H . And,
conversely, given characters x; of L,,, for i1=1,---,r, then T[Z 1Xilsa
character of A.

Proof. Let us suppose that y;, ¢ = 1,--- ,r, are multiplicative characters
of L,, and put x = []i_; xi- We now check that x is a multiplicative
character of the algebra A. We have

x(a(zy) B(z0) = HXZ a(zy,) B(20,))

= H Xi( sz H Xz sz = X(a(zv))X(ﬁ(zv))'
=1

Indeed, let us recall that a(z,) §Z A if, and only if, a(z,) ¢ Ly, for

some ¢ = 1,--- ,r. Since each yx; is a character of the algebra L,, then
x(a(zy)) = 0 if a(zy) ¢ A*. On the other hand, a(z,) € A* 1f and
only if, a(z,,) € L} for each i = 1,--- 7, and x; restricted to Lffi is a

group homomorphism with values in T. Therefore, x, restricted to A,
is a group homomorphism. That is, x is a character of A.
Conversely, it is clear that for any a(z,) € A we have:

a(zv) = (a(zm% 1, -, 1) (17 704(21]1_), e 1)
X (17 T a(zv'r))7 (5)

and thus

O(a(z)) = o

—~

a(zv1)7 17...71) ...(1’...’a(zvi)’...71)

X (17 R O‘(Zvr)))
= 9((04(21]1), 1,---, 1)) 0((1, e O‘(Zw)a e 1))
xO((1, -, alz,)). (6)

Using the evident isomorphism
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IX oo X1 X Ly, x1 X - xX1rRL,,, (7)

we define the following character of L,,;:

Xi(a(zvi)) = 9((17 T O‘(Zvi)v B 1)) (8)
From (6) and (8) it follows

O(a(z0)) = xa(a(zu)) - xi(a(zu)) -~ xr((20,)) (9)
as desired. O

The character defined as follows: xo(a(zy)) = 1 if a(z,) is invertible
and xo(a(zy)) = 0 otherwise, is called the principal character of L,,. It is
also clear that L is a finite commutative group and therefore, from [4,
Theo. 6.8] it follows that the group of (Dirichlet) characters of L, has
(% — 1)g“*=1) elements.

The following results are analogous to the ones proved in [4, pp. 133
and ff.], and are easily proved by mimicking their proofs.

Proposition 4. Let x be a character of L,. Then:

i) x(1) = 1.

ii) Putting x(A(2zv)) = x(A(zy)) for every A(zy) € Ly, X Is a character
of L.

iii) For all \(z,) € LX we have Y(A(2v)) = x(A(20)) 7t = x(M(z0)71).
Proposition 5.

d_ \dw=1) o _
Z X()\(zv)) _ {(q 1)q ) 1.fX X0,
A(zo)€ELu 07 le 7& X0-

Proposition 6.

d _ 1)gd0-1)  if\(2) —
Z X(/\(Zv)) — {(q 1)C] ) f>‘( v) 1,

0, otherwise.
x character of L,

Proposition 7. Let a(z,) , A(2y) € L, and x a character of L, then
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(q¢ — 1)qd(“*1)7 if Mzy) = alzy),
0, otherwise.

S X)Xl = {

x character of L,

Following Carlitz, we define the following function 7, from L, into
Fy:
To(A(20)) = To(Xo + A12p + -+ + Avflzg_l) = tr L/IFpo\vfl) )

and call it the trace of A(z,). This definition makes sense, since A\,_1 € L
and L is a finite extension of IF,. The following result follows from the
definition of 7, and the properties of tr 1 /r, .

Proposition 8. The function 7, : L, — F, is a F,-linear onto map-
ping.

To abbreviate we put 7/ = tr, JF,» SO that

m(a(zy)) = tr L/F, (p—1) = T/(av—1)~

If ¢, = exp(2mi/p) is a primitive p—th root of unity in C, we define the
function

e(@) =,
with a € L. With these notations, we prove now
Proposition 9.
d .
_fq% ifa=0,
Z e(af) = {0, otherwise.
BeL

Proof. Since 7’ is onto, there is a v € L such that 7/(vy) # 0, and thus
e(y) # 1. Let us compute the following sum:

) Y ead) =3 etelad) = 3 ety +aB) = 3 e(ad).
BeL BEL BEL BeL

If a2 0weputd=p+ Y. But when B runs over L then § does the
o

same uniquely. Hence,
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e(v) D e(aB) =) e(ad) =Y e(ap).

BeL o€l BeL
Thus {e(y) — 1} > 5y e(@B) = 0, and therefore 5., e(af) = 0. If
a=0, wehaveZe(aﬁ):leqd. O]
BeL BEL

Denote by p,, the group of p-th roots of unity in C, and let us define
Yy 1 Ly — Hyp by
Uy (Mzy)) = C;u(/\(zu)) — C;—’(/\v—l) .
This expression makes sense since 7/(Ay_1) € F).
Proposition 10. The function 1, has the following properties:

i) ¥y(0) =1.

ii) v, is an epimorphism from the additive group of L, into the mul-
tiplicative group m,, (i.e., 1y is an additive character).

iii) There exists \(z,) € L, such that ,(\(z,)) # 1.
V) 2 oawer, Yo(A(z0)) = 0.
vd - if afz,) = 0,

WX hGat) = {8

A(zv)ELy

otherwise.

Proof. Property i) follows from definitions. The linearity of 7, and 1)
implies that 1, is a group homomorphism. For a € p,, there exists

b € F), such that a = C}D’. Since T, is onto. there is then a \(z,) € L,

such that 7,(A(zy)) = b and, therefore, 1,(A(2,)) = a. That is, 1,
is a epimorphism of groups, which proves ii). From the above, iii) is
immediate. To prove iv), let us observe that from iii) there is a a(z,) € L,
such that 1, (a(zy)) # 1. So that

Po(a(zv)) Z o(A(20)) = Z Yo(a(zv) + A(20))

A(zv)ELy Azv)ELy

= Z Yo(A(z0)),

A(zv)ELy
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where we use ii) and the fact that when A(z,) runs over L, so does
a(zy) + A(zy). From this it follows

{Yu(alzy)) — 1} Z Py(AM20)) =0

A(zv)€ELy

Consequently, 3y, yer, Yu(A(20)) = 0.

To prove v), let us take a(z,) = ag + 12y + -+ + ap—12)"" and
AM2p) = Ao + A2y + -+ Ay_1227 L Then we have a(z,)A(z,) = apA
(oA + a1 Xog)zy + - + (O éak)\v 1-5)287 L since 28 = 0 if k >
Therefore,

Z Yy(a(zp) A (20)) = Z TU(O&ZU (20))

s 4

A(zv)ELy Azv)ELy
_ Z C;’(Zz;é R Ay—1-k)
A zv)ELy
— Z Zk 07‘ Oék:/\v 1— k)
Azv)ELy
- Z C;"(Aoavfl) .. g;"(Avflao) )
A zv)ELy
This last sum equals the sum over all v—uples (g, A1, -+, A\y—1) where

Ai € L,. From this it follows that:

Z Cp /\Qau 1) . C;-/()\u—lOIO)

Azy)ELy
= Z (7' Qoaw—1) . (7' (Av100)
P P
(Ao, A1, A1)
_ Z CT/(AOCY'Ufl) Z CT v—100)
p
Ao€L Ay—1€EL
= Z e(Aouy—1) “ -+ Z e(Ap—10y)
Ao€L Av_1€L
_ qu
when ay = -+ = a,_1 = 0, and 0 otherwise, making use of proposition
9. O

Next we extend functions 7, and v, to A, by defining
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T A(z0) = D 0 (A=) s (10)
i=1

where A(zy,) € Ly, and 7,, is the corresponding 7 function on each L,,,
i =1,---,r. In this way we obtain the following analogous to proposition
8.

Proposition 11. The function 7* is a F,~linear mapping from A onto
F,.
p

To extend 1, we define the function ¢* : @;_; L,, — K, by

P (A(20)) = C;*()\(Zv)) — szjz:lﬂ’i()‘(z“i))
— C;'ul ()\(Z'Ul))CZ?)T ()\(Zq,r))
= Py, ()\(Z'Ul)> <y, ()‘(Zvr)) .

In the following proposition we prove some of their properties.

Proposition 12. The function ¢* satisfies the following properties:

i) ¥*(0,---,0) = 1.

ii) ¥* is an epimorphism of the additive group of A onto the multi-
plicative group p,,.

iii) There exists A(zy,) € Ly, such that ¥*(X(zy)) # 1.
iv) E)\(zv)e/\ V" (A(zv)) = 0.

if a(zy) =0,
otherwise.

WY weat) = {8

A(zv)EA

where m = dyvi + - -+ + d,v,.

Proof. Part i) follows immediately from the definition of ¢*. Parts ii)
and iii) follow from the fact that the function 7,, is onto ( Proposition
8). To prove iv) we use iii). In v), the sum is ¢"" if a(z,) = 0. So we
only need to consider the case «(z,,) # 0 for some ¢. Thus
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Y (A=) alz)

A(zv)EA

Z %1 Zm (Zvl)) wyl( (ZUZ) (quz))

A(zv)€EA
X wv,« ()\(qur) Oé(ZUT))
= Z TZJm(A(zUl)oz(zvl)) wvl( (zvz) (sz))

(A(zvq )y A (20 )) €A
X Yo, (A(20,) @(20,))
= Z Yo, (A(z0,) a20,)) -+ Z Yo, (A(z0;) alz;)) -+

AMzvy )ELw,y A2, )E Ly,
X Z ’l/}'Ur( (ZUT) (Z'Ur))
)‘('ZUT‘)ELH'I‘
=0,
where we use the fact that a(z,,) # 0 and Proposition 10,v). O

Next we show the existence of finite Fourier series for the arithmetical
modular functions. To begin with, for a(z,) € L, we define

5a(zv)(a(zv)) = Yy(azp) 0(20)) -
The next proposition contains the most relevant properties &,;,)-

Proposition 13. If a(zy), B(zy), V(zv), 0(2y) and o1(z,) € Ly, we
have:

) €o(z)((2)) = €a(z,) (0(20))-
i) €z (@(20) + B(20)) = €o(z,) (A(20))E5(2,) (B(20))-
iii)

)

)

Q)

o(z0)+01(20) ((Z0)) = €5 (2,) (U(20) gy () ((20))-
V) €5(z0)((20)) = €0, (2) (a(20)) if; and only if, 0(z,) = 01(2v)-

A%

(ga(zv) ’ Ea1(zU))<a(Zv))
= Eo(zv)(ﬂ(zv)) 501(%)(7(%))
o(z0)=B(z0)+7(20)
_ {q 2Szf(zv)(O‘(Z'U))v jfa(zv) = Ul(zv)7

0, otherwise.
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Proof. The statements in i), ii) and iii), follow immediately from the
properties of 1, as in Proposition 10. To prove iv), we use the result
y(—a(2y)) = Yu(a(z,)) L. To prove v), we observe that

S o (B) ey (1(2)

a(z0)=B(zv)+7(20)

= Z 50(%)(0((21,) - ’V(ZU))gal(zv)(’Y(Zv))

= Ea(z0) (A(20)) Eay (20)—o(20) (V(20))

Y(z0)€Lw
= go(zv)(a(zv)) Z 601(2’11)*0'(211)(7(2”))
Y(zv)E Ly
= €U(Zv)<a<2v)> Z Yul(o1(20) — 0(20))7(20)]
V(z0)€Lw
= EU(ZU)(a(Z'U)) qu ’

when o1(2,) = 0(z,) and 0 otherwise, according to Proposition 10,v. [

Since €,4(;,) depends on 0(zy), when this quantity runs over L,,, we see

that at most there are ¢*?¢ functions of this type. The next Proposition
will tell us that there are exactly ¢*¢ of such functions.

Proposition 14. The ¢"¢ functions €o(z,) are linearly independent.

Proof. Let us consider the linear combination g =) o(20)€ Ly Fo(20)E0(20)
= 0 where a,,,) € C. Using v) in the last Proposition, we get

Ieor(e) = D o) (Eola) * Eor(e) = or(z) € i) = 0,
o(zv)ELy
which requires that a,,(.,) = 0 since €5, (., # 0 (by definition). O

Proposition 15. If F' is an arithmetical modular function over L.,
then uniquely we have

F= Z fa(zv) €o(zy) s

0(zv)ELy
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where

fm)zq},d S F(1(20)) ey (—1(20))

(Zv)eLv
1
= qid Ea(z )(_7(2’0)) ga(zv)(a(zv))
o(zv)ELy 'y(zU)GLU
1
=i 2 ) €t (@(z) = 71(20)
0(20)€Ly y(2v)ELy
1
= qyd Z F(’V(ZU» Z Ea'(zv)(a(zv) - ’Y(qu))
Y(zv)ELy 0(2y)ELy
- F(y Z Yo (o(20)(a(z0) — v(20))
q Z’U ELU (ZU)ELU
= Fla(z)),
according to Proposition 10,v). O

This Proposition shows that for each arithmetical function F' defined
on L,, there is a finite Fourier expansion with respect to the C-base

Ea(zv):

(F- G)(a(z)) = > F(B(z0)) G(v(20)) -

a(z0)=B(zv)+7(20)

If for a(z,) € A we define

Eo(z) (@(20)) = ¥ (a(z0) 0(20))

we obtain for A analogous to Propositions 13, 14 and 15, and whose
proofs are similar.

Thus, similarly, for each arithmetical function F' on A, there is a finite
Fourier expansion with respect to the C-base 4., of the C-algebra of
arithmetical functions defined on A, where
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(F-G)(a(zy)) = > F(B(z)) G(v(20)) -
=B(zv

a(zv) )+7(20)

3 Gauss and Ramanujan sums in L,

A Gauss sum is an expression of the form

g(B(z)); x) = Y x(alz)) Pulalz) B(z)),

a(zy)ELY

where y is a character of L,. This sum is taken over the invertible
elements of L,. Next we prove some basic properties of these sums.

Proposition 16. Let x be a character of L, and [5(z,) € L. Then

90(B(20); X) = X(B(20)) gu(1; X) -

Proof. For a character x of Ly, x(8(zv))X(B(2y)) = 1, if B(z,) € LY.
Therefore,

x(e(z0)) = x(e(20)) x(B(20)) X(B(20)) = x(e(z0) B(20)) X(B(20)) -

From this the result follows easily. O

A Gauss sum is said to be separable if

9o(B(20); X) = X(B(20)) gu(15 ) -

The above Proposition shows that g, (5(2y); x) is separable if 5(z,) € L.
When 5(z,) ¢ L, we get the following result

Proposition 17. If y is a character of L, and (B(z,) ¢ L), the sum
90(8(2); X) is separable if, and only if, g,(8(,); ) = 0

Proof. By definition, X(8(z,)) = 0 if p(zy) ¢ LY. Consequently,

X
9u(B(z0);x) = 0 if, and only if, g,(B(20);x) = X(B(20))gv(1;X), that
is, if, and only if, g,(8(zy); x) is separable. O

Proposition 18. Given a Gauss sum g, and x a character of L,, we
have
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¢ V(g = 1),  six=xoand B(z,) =0
0, si x = Xo and B(zy) # 0,
0, si X # Xo and fB(z,) =0
X(B(z0))gv(1,x), X # Xo and B(zy

Proof. The proof follows from the definition of the principal character,
Proposition 10, Proposition 5 and Proposition 16, respectively. O

gv(ﬂ(%;)? X) -

— N
m
h
<X

Proposition 19. If g,(a(zy); x) is separable and x # X,, then

|gu(1; X)’Q = Card L, = qu
Proof. We have

l9o(L )P = 90(15 x) g0(L; X)
(z

= 0(L;x) Y, X(a(z) Yo(alz)
a(zy)€ELy
= o) Y, X(a(z0)do(—a(z))
o(zv)€ELy
= Z 9u(15 x) X((20)) Yo(—a(20))
o(zy)€ELy
= > golalz); ) Yo(—a(z))
o(zy)€ELy
= Z Z X (oz(zu)ﬁ(zv))%(*a(zv))
a(zv)€Ly B(zv)€ELy
= Y B telala) (B - 1)

a(zy)€Ly B(zv)€Ly

x(B(zv)) Z Uo(a(z0))(B(z0) — 1))
B(zv)ELy a(zv)ELy

= x(1)¢*? = Card L,

I
M

if 5(z,) = 1, according to Proposition 10,v. O

Example: For y # xo, let us take y(z,) € L. From the Gauss sum
definition is easy to see that in each summand we can replace «(z,) by
v(2y)a(z,) without altering the value of the sum. Thus
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go(1; x) =

Y(zv)ELy

Using Proposition 19, we obtain

x(a(zy)) ¢*

From this it follows that

wa(z) = 25X S~ o) Bz aa))

q Y(zv)ELy

If a(zy) = 0, and since x(a(zy)) = 0, and 3., yer, X(7(20)) = 0 the
equality is preserved. The above expression is the expansion in a finite
Fourier series of y(a(zy)).

The following expression is called a Ramanujan sum:

CU(/B(ZU)) = Z %[a(%) ﬁ(zv)]
a(zy)ELY
Let us remark that if we take x = x¢ in the definition of a Gauss sum
we see that a Ramanujan sum is a special case of a Gauss sum, and the
following Proposition can be easily proved.

Proposition 20.
i) ¢,(0) = Card L.
i) cy(a(zy)B(z0)) = co(B(20)) if a(zy) € L.
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Now we define Gauss and Ramanujan sums in A. For a Gauss sum
we set

9n(B(z0)); X) = Z x(e(20)) V™ (a(z0) B(20))

azy)EAX

where y is a character of A.
From the characterization done in Proposition 3, we obtain

9n(B(2v)); X)
= Z X(a(2v>) Y (a(2y) B(2v))

azy)EAX

= 9o, (B(201)); X1) =+ 90 (B(20:)); Xi) -+ 9o (B(20,))5 Xr) 5

where x = [[i_; xi-
Taking x = xo in the above definition we obtain the definition of a
Ramanujan sum over A

a(Bz) = Y. v(a(z)Bl(z).

oz, ) EAX

4 Applications

In this section we use the above results to extend some classical results
of Libri [18, 19, 13]) on the number of integral solutions of algebraic
equations with coefficients in the ring of integers. This extension will
allow us, in the first place, to compute the number of solutions of some
algebraic algebraic equations with coefficients in L, and A. In the second
place, we extend a result on partitions due to Nageswara Rao in the case
of the ring of polynomials [F,[X] to the algebra L, [21].

Before going further, let us recall that if N, represents the number
of solutions in L] of the algebraic equation

f(t17 ,tn)zov
where f(t1,--- ,tn) € L[[Z]][t1,- - ,tn], the expression

o0
14> N, T,

v=1
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is called the Poincaré series of the polynomial f(t1,--- ,t,). It has been

conjectured, as in the rational case (proved by Igusa [1, 3], that this series
R(T

is always the quotient QE Rg of two polynomials R(T), Q(T) € Z[T]. As

a consequence of the following results we can verify that this is so in the

cases considered here.

4.1 An analogous of an old result of Libri [18, 19, 13]

The analogous that theoretically allows us to compute N, for each v, is
the following

Proposition 21. Let F(ty,--- ,t,) € Ly[t1, - ,tn] and let N, be the

number of solutions of the equation F(t,,--- ,t,) = 0. Then
1
No = o S Y wla(z) Pty - t)]
CM(ZU)GLU tleLv tnEL'u

= LYY whaE) o)

a(zv)GLU (tl,tz,”- ,tn)GL:}l

Proof. The right hand side of this equation can be written as

S S oz Flt, )]

q o(zv)€ELy (1, tn)ELT
F(t1, - ,tn)=0
+ Z wv[a(zv)F(tla Tt tn)]
(t1, tn)ELY
F(t17"' 7tn)¢0
1
= W Z Ny, + Z Z ¢v[a(2v) F(tla Tty tn)]
Oé(Z'u)GLv (tlv“' 7t’ﬂ)€L:)L a(Z’U)GL'U
F(t1,tn)#0
= N, )
where we have used Proposition 10, v). O

For each a(z,) € L, we define w(a(z,)) to be the smallest exponent
of the powers of z, which appear in «a(z,) # 0 and w(0) = 0. Thus
0 < w(a(zy)) < v — 1. From this definition, if a(z,) € L), w(a(zy)) =0
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since o, # 0; on the other hand, if w(a(z,)) # 0, we have a(z,) ¢ L
and a(zy) # 0.

Proposition 22. Let o(z,) € Ly, w(a(zy)) = j, and v(zy) = Y0 +
Y1Zp+ - '+%7jzfjfj + -+ 7,-1287 be such that a(z,)v(z,) = 0. Then
Yo =71 = - = Yo—j—1 = 0. That is to say, v(z,) = ,Yv_jzg—j N
’711*123_1'

Proof. Since w(a(zy,)) = j we have a(z,) = ozjzj oy 1271, where
thea; € L, i =j,--- ,v—1and a; # 0. Doing the product and making
it equal to zero we obtain:

Yo Oéj = 0,
Yoaj+1+ma; = 0,
Yo Qy—1t+V1Q2+ Y1 = 0,

recalling that 2! = 0 if ¢ > v. Since o # 0, from the first equation it
follows tha 79 = 0. From the second one we obtain y; = 0 since 79 = 0

and o # 0. Recurrently we get 7o = v1 = -+ = 7p—j—1 = 0. Let us
remark that the values taken by v for £ > v —j do not matter, and that
when these values are null they show that L, has zero divisors. O

Next we apply Proposition 21 to the simplest case of linear equations.

Proposition 23. Let F(t) = a(z,)t + B(zy) € Lylt], a(z,) # 0,
w(a(zy)) = j and let N, be the number of solutions of the equation
F(t) =0 Then

q¥, if j >0 and B(z,) =0,
N,=<{q%, ifj>0and w(B(zv)) = J,
0, otherwise.

Proof. From the above Proposition we get
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N, = S vz F)

Y(2y)ELy tELy

= Z Z Yy[y(20) (a(2) t + B(20))]

Y(2v)ELy, tELy

= >0 wulr(z) alz) vy (z) Blz)]

Y(z2v)ELy tELy

= Z % h’(zv) ,B(ZU)] Z wv [’Y(ZU) a(ZU) t]

'Y(Zv)eLv teLy,
= Z boly(z0) B(z0)] 4" (11)
Y(zv)ELy

Y(zv)a(z0)=0

Since w(a(zy)) = j we have a(z,) = aqu]; + o+ ap_12°! where the
o € L, i = j,---,v—1, and oj # 0. From Proposition 22 we get
Y(zy) = 'yv,jz}j*j + -+ 7_122"! and a simple count shows that there
are q¥ of these v(z,), i.e, the sum (11) has ¢% summands.

If F(t) = 0 has a solution, then there exists o(z,) € L, such that

a(zy)o(zy) + B(zy) = 0, hence [(zy) = —a(zy)o(zy). Therefore,
w(B(zy)) = w(a(zy)o(zy)). If we take w(o(zy)) = k, and since
w(a(zy)) = j we have B(z,) = 0 or w(B(2y)) > j. Indeed, a(zy)o(2,) =0
if k+j > v since z{, = 0 for all t > v; otherwise, P # 0 and
w(f(zv)) = k+Jj > j. Replacing the value 3(z,) in the sum (11) we
obtain:

Z Uu[y(20) B(z0)] q"

Y(zv)ELy

7 (zv)(z0)=0
= Y (=) (—alz) o(z0))] ¢
'Y(ZU)GLU
¥(zv)a(20)=0
= > b=z alz) o(20)] ¢
’Y(ZU)GLU
7(2v)a(zy)=0
:quqd]

and therefore N, = ¢%. O

Proposition 24. Let
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F(tly Ty tn) = /B(Zv) +041(Zv)t1 + - +an(2v) tn € Lv[tla Tty tn]a

w(ai(zy)) = Ji, g =mn{j;}, i = 1,--- ,n and let N, be the number of
solutions of equation F'(t1,--- ,t,) = 0. Then

d]:(qu)n_l, if j >0 and 3(z,) =0,
N,U e qd](qu)nfl7 lfj O and ’LU(B(Z )) >j 7
0, otherwise.

Q

Proof. By Proposition 21 we have

UdN

Z Z Z wv Zv tla T, tn)]

Y(zv)ELy t1€Ly tn €Ly

D D SRS SETES

’Y(ZU)ELU tleLv tnGLv
X (ﬁ(zv) + o (zv) th+---+ an(zv) tn)]

= 3 S S ) B vz anlz) ] -

Y(zv)ELy t1E€Ly tn€Ly

X hy[v(20) an(2v) tn)

Z Vo[v(20) B(20)] Z Yo[y(z0) a1(zo) ta] -+
Y(2v)ELy t1€Ly

X Z Yoy (20) an(20) t]

tn€Ly

Z Yo[v(z0) B(20)] -+
Y(zv)ELy

X Z Yol (20) an—1(z0) tn—1] qu

tn—1€Ly

an(20)7y(20)=0

- > bu[y(20) B(20)] ("), (12)

Y(zv)ELy
a1(2v)7(20)=0, ,an (20)7(20)=0

making reiterative use of Proposition 10,v. By Proposition 22,
w(y(2y)) = v — j and since j = mn {j;}, it is clear that a;(2,)7v(2) = 0,
i=1,---,n, and the sum (12) has thus q¥ summands.
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If F(tl, b)) = has a solution then there exist
01(zp), -+ ,on(zy) € Ly uch that

B(z) = —(c1(20) o1(20) + -+ + an(z0) on(20)) - (13)

Therefore, w(f(z,)) = w(al(zv)al(zv) + -+ an(zy)on(zy)). Let us put

w(oi(2zy)) = ki and k = mn {kl}, i=1,---,n. Since w(w;(zy)) > j, we

get B(zy) = 0 or w(B(zy)) > j. Indeed az(zv)ai(zv) =0,i=1,---,n,
if K+ j > v since 2! = 0 for all ¢ > v and therefore 3(z,) = 0; also
it may happen that while doing all the sums in (13) we obtain 0 and
thus B(zy) = 0. Otherwise, there is a z;, # 0 with k+j < r < v, so
that w(5(zy)) = r > j. Replacing the value 5(z,) in (12) we obtain
Ny = (g")""q¥. O

Proposition 25. Let F(t1,--- ,t,) = B(zy) + t1 + ag(zv)t]z€2 + -+
an(2p)thn € Ly[ty, -+ ,t,], where k;, i = 2,--- ,n, are positive integers
and let N, be the number of solutions of the equation F(t,--- ,t,) = 0.
Then

N, = (qu)n—l )
Proof. Again by Proposition 21 we get

quNv = Z Z Z Yoy (20)

’}/(Zv)eLv tleLv tneL'u

X (B(z0) + ty 4 (zo) 52 4 - 4 (2, t57))]

= Z Vo[v(20) B(20)] Z Yo[v(20) an(zv)tlrin]

Y(zv) €Ly tn €Ly
x> Yuy(z) 1]
tleLv
= (g
if v(z,) = 0 according to Proposition 10,v. O

4.2 A result of Nageswara Rao

Let n be an integer greater than zero and let ny,---,n, be integers
greater or equal to zero satisfying the condition n = ny + --- 4+ n,. Let
us take my =mn; +---+ng, k=1,--- ,v. For a(zy) € Ly let Ny(a(zy))
be the number of solutions (y1(2y), -+ ,7.(2y)) of the equation
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Y1(20) + 0+ Yu(20) = (20),

satisfying:

w(yj(z0)) = 0,
w(’sz(Zv)) = 1,

wivp(2) = v—1,

Wlth]l :17 7m177fyj1(zv) #07 j2:m1+17"' , 2 andj’u:mv_1+
1, my = n.

Proposition 26. With the above notations we have

v—1 v
Ny(e(z)) = qid Z {H Czi_z'+1(7';(zvi+1))} co—j(@ (20—5)) -
7=0 \i=1

Proof. 1t is clear that N,(-) is an arithmetical function. Thus by virtue
of Proposition 15 we get:

No(a(z)) = D fr(z) Ereny(@(z0)) (14)

T(2v)ELy

where fr(;) = q%d 2 8(z0)eL, N (B(20))er(z,)(—B(2v)), that is,

Fr) = =1 D NulB(2) o[~ (20) B(20)]

5(Zu)€Lv

1
= qu Z Z ’Lﬂy[—T(ZU)
B(zv)ELy (B1(2v),,Bn(2v))

w(Bj; (z0))=i—1
X 51('31}) + 52(211) +-+ /Bn(zv))] )
where the sum is taken over the (f1(zy), -, B.(2y)) satisfying

B(Zv) = Bl(zv) + /82(21)) + 4+ 571(21)) )

and
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Wi () = v,

Wlth jl = ]-7 , My, /8]1(21)) 7&0 .]2 m1+]— c, M2 and jv :mvfl_’—
1,---,my, =n, Whose number is precisely N, (3 ( »)). Using Proposition
10 we get:

oy = — 0 ST veloz) Bz,

T BzeLy (Bi(z0)im Bu(z0)) k=1

w(B; () =i—1

Making 8, (2v) = Bji(zv) we can write

fT(zv) = % Z H H d}v Zv B]l(zv)]7

4 Br(ee) =1 j=1
w(Bji(zv))=i—1

replacing f;i(2y) by o(2y) € L, such that w(o(z,)) =i — 1 we obtain

Fre) = Z HH% 7 ()]

Zv) =1 j=1
w(o’(zv)) i—1

- LI S welro). (5)

i=1 j=1 o(zv)
w(o(zy))=i—1

Since w(o(2,)) = i — 1, we see that o(z,) = 0,120+ - + 0,127}

where o,_; 7é 0 and o;,--- ,0,_, € L are arbitrary. If we take T(2y) =

To+ T12y + -+ 7,_12Y "1 we have

v—1i
0(2y) T(2p) = To 01 zfj_l 4.+ (Z Op_k—1 Tk) z;"1 ) (16)
k=0

and applying 1, we arrive at
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oo (z) T(z)] = G TR,

From here it is clear that in order to find the value of ¥, [—0(2,)7(2y)]
only the v — i 4+ 1 values 7y, 71, -+ ,7T,_; are relevant in the expression of
T(2y), and the v — i 4+ 1 values o,_y,- -+ ,0,_; in the expression of o(z,).
Moreover, all these values are arbitrary, with the exception de o;_;. Due
to this fact, we will consider the following elements over L, _; 1,

* v—1
o (Zv—i—i-l) = 041 T OiZy—it1 " T 0uo1Zy_ 17,

* v—1
T (Zv—it1) = To+TiZo—iv1+ -+ TuiZy_i1 >
so that

trp e, (— bt Cv—k—1Tk)
Yo—iv1[—0" (2o—it1) T (2o—ir1)] = (& H k=0 Tumhm

= %[—U(Zv) T(Z”L))] :

That is, we can replace the sum

Z Vo =7 (20) 0 (20)]
w(o(zv))=i—1

of (15) by the sum

Z wv—i—l—l[_T*(zv—i—i—l) U*(Zv—i-l-l)] 5

w(o* (2p—i+1))=0

corresponding to the Ramanujan sum ¢,—;41(7*(zy—i+1)). From this we
get

fT(zv) = % H H Z wv—i-i—l[_T*(Zv—i—&—l)U*(Zv—i—i-l)]

i=1 ]:1 'LU(O'*(ZU H_l))—(]

= % H H Cy— z—l—l ZU z+1))

21]1

g H i1 (77 (i) - (17)
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Replacing (17) in (14) we obtain,

Noy(a(20))
- qll)d Z H Cy— z—l—l ZU l+1))€7'(zv)(_a(zv))
T(2v)ELy =1
- X T 2 coa(* i) vl =rlz) )
T(zv)E€Ly =1
v—1

BER YIS va (zo=i+1)) Yol =T (20) a(20)]

3=0 \w(r(z0))=j i=1

v—1

We had 7*(zy—i+1) = 7o + T12v—it1 + - + Toizy_jq- I w(r(2)) =
define

] v—1 P .
x N Imm i T T Teniny Ty, sy <v—i+ 19
7 (Foi1) {0, sjzv—it1, Y

and applying (19) to (18) we get,

Nv(a(zv))

- =2 Hcv ) Y oz alz)]
0 )

J w(7(2v))=J

Since w(7(2zy)) = j and doing the same reasoning as in (16) we have:

No(alz) = =7 5 {H 1 (75 2o m»} v-i(0 (2uy)),

7=0 \i=1

as required. O
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