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Abstract 

 

This paper presents a comparative study of the measurement features used as inputs of a fault locator based on Support 

Vector Machines, which is aimed to analyse single-phase faults. Studies have shown that a huge database is required 

to obtain high performance, but a problem is associated to the excessive computing time required to analyse such 

databases. This study analyses properly these inputs to determine which are the most significant in terms of 

performance. Tests are performed on a 75 bus 34.5 kV distribution system, with 75000 shunt faults, implemented in 

ATP. According to the results, 12 features related to magnitude variations of phase voltage and current between fault 

and prefault steady states, were relevant to achieve a performance of 96.3%, with a computational time of training and 

cross validation of approximately six minutes. 

 

Keywords: attributes; distribution systems; fault location; measurement features; support vector machines. 

 
Resumen 

 

En este artículo se presenta un estudio comparativo de descriptores utilizados como entradas a un localizador de fallas 

basado en máquinas de soporte vectorial, cuyo objetivo es analizar fallas monofásicas. Estudios han demostrado que 

para obtener un alto rendimiento se requiere una gran base de datos, pero un problema está asociado con el excesivo 

tiempo de computo necesario para analizar dichas bases de datos. Este estudio contribuye a la solución del problema, 

analizando adecuadamente estas entradas del método y descubrir cuáles son las más significativas. Las pruebas se 

realizan en un sistema de distribución de 34,5 kV, 75 nodos con 75000 fallas, implementado en ATP. De acuerdo con 

los resultados, 12 descriptores relacionados con variaciones en magnitud de la corriente y la tensión de fase entre 

estados de falla y pre-falla fueron relevantes al lograr un desempeño de 96,3%, con un tiempo computacional de 

entrenamiento y validación cruzada de aproximadamente seis minutos. 

 

Palabras clave: atributos; descriptores; localización de fallas; máquinas de soporte vectorial; sistemas de distribución. 

 

1. Introduction 

 

Power quality is one of the main issues in power 

distribution systems. The service discontinuity is a 

problem, where the design and the fault management 

play an important role as solution alternatives in 

distribution system. Unfortunately, due to their stochastic 

nature, distribution systems faults are hardly avoidable 

[1], [2], [3]. 

 

Fault locators help to reduce the problem. First, a fault 

location helps to speed up the restoration process. 
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Second, by locating the fault it is possible to perform 

switching operations to reduce the affected area. 

Moreover, location of non-permanent faults allows 

scheduling maintenance tasks to avoid future problems 

[4], [5], [6]. Some fault location methods rely on 

impedance calculation estimated from the substation. 

The main disadvantage is associated to the multiple 

estimation of the fault location and the high dependency 

of the model [6], [7]. 

 

On the other hand, many researchers have recently 

addressed the problem using Learning Based Methods 

(LBM), whose objective is to exploit the existence of 

previous experiences and contextual information [2], [4], 

[8], thereby; it is possible to eliminate the multiple 

estimation. One of the learning algorithms for data 

analysis is the Support Vector Machines (SVM), which 

is based on statistical learning theory, quadratic 

programming, several clearly defined constraints as well 

as kernel transformations. SVM is fed with a database 

that includes voltage and current measurements at a 

single end, and the topology of the power distribution 

system. SVM is known to have good results in diagnosis 

applications, especially to determine the faulted zone. 

Therefore, LBM in this work resorts to SVM as 

classification technique (SVM-c) [2], [8], [9]. 

 

However, SVM has a high computational effort because 

it is required to process a large amount of data to 

adequately represent the problem and achieve 

satisfactory performance results. Studies have focused on 

the computational efficiency, and different strategies 

have been used, namely: the implementation of several 

training methods with the comparison of results [2]; 

parameters calibration of the learning method [10], 

database normalization [11], and analysis of the method 

inputs to discover which ones are the most significant 

[12], [13], [14]. This work is a follow-up to [12], where 

measurement features including variables related to 

voltage and current, had the most significant contribution 

to fault location [15], [16]. The measurement features of 

this work will not consider variables such as reactance, 

apparent power and power factor. The focus herein will 

be exclusively on phasor voltages and currents. 

 

The voltage and current measurements are obtained from 

an IED located in the distribution system main 

substation. The relay takes a predetermined number of 

samples in pre-fault and other in fault situation, to record 

both, the phase voltage and the line current. The 

appropriate sampling frequency of the relays to obtain the 

fundamental of the 60 Hz signal can be 16 or 32 samples 

per cycle. Then, with this data the phasors of pre-fault 

and fault steady states are estimated. Finally, from the 

phasor data, the measurement features used in this paper, 

are extracted. 

 

The input of methods should be the result of the selection 

of measurement features and the identification of the 

most significant characteristics of a database for SVM-c. 

In order to obtain the most optimal predictive 

performance of the classifier with the minimum effort 

[12], [13], [14]. 

 

2. Methodological approach 

 

The methodology is divided into three sections 

represented in the general scheme of 

Figure 1. Firstly, a brief description of SVM-c linear and 

nonlinear cases (stages 3 and 4). The second section 

defines parameters necessary to apply LBM in fault 

location and shows how the LBM performance is 

calculated (stage 2). Finally, the third section specifies 

the general form of the measurement features used in this 

study (Stage 1) [13]. 

 

Figure 1. General scheme of the classification method. Source. [13]. 
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2.1. LBM basics using SVM-c 

 

2.1.1. LBM linear case 

 

Classification using SVM involves training and testing 

data, which is composed of many occurrences 

summarized in (1). In training set, each occurrence 

consists of 𝒙𝒊 attributes (measurement features) in a N 

dimensional space and a target value (𝒚𝒊) called class 

label (usually 1 or -1; two fault zones) [5], [7]. 

 

𝒙𝒊 ∈ 𝑅𝑁  𝑎𝑛𝑑 𝒚𝒊 ∈  {+1, −1} (1) 

 

The aim of this classifier is to create a model, which can 

successfully predict the class label (fault zone) from xi 

(measurement features). 

 

2.1.2. LBM non-linear case 

 

As in the case of non-linear separable feature sets 

(zones), it is possible to transform the input into a new 

higher dimension space, where the data (zones) are 

linearly separable. A transformation function F(.) is 

defined in terms of inner products of the input data in the 

original classification space, such transformation is 

achieved in a single step by applying the corresponding 

kernel function for each case. Thus, linear classification 

algorithms can be extended to non-linear cases [5], [7]. 

When a Radial Basis Function (RBF) is chosen as kernel 

function, two SVM penalization parameters (constant C 

and kernel parameter σ) have to be fixed by means of grid 

search and cross validation, in order to regulate the 

allowance of errors in databases [4], [10].In this paper, 

Gaussian RBF kernel is used and presented in Equation 

(2). 

 

𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
‖𝑥 −𝑦‖2

2𝛔𝟐 
) (2) 

 

In the representation of non-linear cases in Block 

diagram of Figure 2, databases and parameters C and σ 

can be seen as the two inputs of SVM-c.  The database 

includes variable parameters (measurement features) and 

several fixed parameters of the power distribution system 

(zones, fault scenarios, number of fault records and 

normalization) [18]. 

 

2.2. SVM-c as a learning based fault location method 

 

The design process of LBM starts with preparation of a 

suitable training data set comprising of all possible fault 

scenarios that SVM-c needs to learn. Previously, nodes 

of a selected power system must be classified and 

grouped in zones, according to recommendations of the 

grid operator. 

 

Different operating scenarios of the system are 

considered, the respective fault registers are obtained in 

each node of the system, the measurement features are 

extracted and a process of normalization of the data is 

carried out. Normalization limits the values from the 

database within a range, usually between zero and one, 

which can also improve the accuracy, efficiency, and 

computational times of the SVM [11]. 

 

The validation step of LBM is repeated n times by using 

a different subset (cross validation) and consequently a 

different combination of validation subsets. The 

performance is expressed by the ratio of the number of 

faults correctly located and the total number of faults, 

Equation (3) [5]. 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =                                  

=  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠  𝑤𝑒𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠
x100 % 

(3) 
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Figure 2. Block diagram of implementation of fault 

locator method for non-linear cases. Source. Own 

elaboration. 

 

2.3. Measurement features used as inputs in the 

learning based fault location method 

 

The assessment of SVM performance is based on the 

comparison of capacity of measurement features to 

contribute on fault location. Table 1 presents the 

nomenclature corresponding to the measurement features 

considered in this study. Variations are regarded as 
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difference of a variable between fault and pre-fault steady 

states. 

 

Only phasor measurements of phase voltage and line 

current are available. Additional data are obtained 

through the corresponding linear combinations for each 

case. For example, to obtain line voltage data the 

corresponding linear combination is used with the phase 

data. 

 

 

 

 

3. Results 

 

Tests are performed on the power distribution system 

34.5kV-75 bus test feeder implemented in ATP and 

nodes are classified into five zones as recommended by 

the operator (Figure 3). This test feeder is a prototype 

distribution network, which represents a rural circuit of 

the Colombian primary distribution that connects a large 

number of towns with small urban and extensive rural 

areas. The circuit was developed to validate fault location 

methods under conditions close to reality. 
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Figure 3. System 34.5kV-75 bus test feeder implemented in ATP. Source. Own elaboration. 

 

LBM has been implemented in MATLAB environment 

using Lib-SVM toolbox [17], [19]. The fault database is 

obtained from a collaborative strategy between ATP and 

MATLAB ¡Error! No se encuentra el origen de la 

referencia., it contains 75.000 records of single-phase 

faults derived from five values of fault resistance (0.0002 

, 10 , 20 , 30 , and 40  ), 200 operating 

conditions of the system, and 75 nodes located along the 

main feeder of the test feeder (from 2 to 76) ¡Error! No 

se encuentra el origen de la referencia..  Table 2 

summarizes the conditions under which the tests are 

performed on the system. 

 

The SVM-c requires a representative fault database of the 

distribution system. In this paper, 200 operating 

conditions are used. Each operating condition represents 

system scenarios where variations of system parameters 

such as: load, signal frequency and / or magnitude of 

voltage are considered. However, it is possible that a 

specific distribution feeder requires more or less 

conditions, to represent adequately the fault analysis. 

 

 

 

Table 3 discriminates between vectors cases involving 

the three phases and those that compile data exclusively 

from the faulty phase. Vector cases 1, 7, 9 and 10 belong 

to the first group. From them, only faulty-phase vector 

cases 4, 8, 11 and 12 are derived respectively. To clarify 

this classification, features on table suffixed with (a) 

denote one single value for the faulty phase, features 

without the suffix are related to three values, one value 

for each phase. Cases 2 and 3 separate in-phase data from 

in-line data included in Case 1. Likewise, cases 5 and 6 

are derived from case 4. 

 

Table 4 shows the performance, computational time and 

number of measurement features for each case shown in 

Table 3. 
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Table 1: Measurement features of system 

 
Abbreviation Feature description 

dI Variation in phase current magnitude. 

dIL Variation in line current magnitude. 

dV Variation in phase voltage magnitude. 

dVL Variation in line voltage magnitude. 

dVL(a) Variation in line voltage magnitude, phase: a. 

dAngI Variation in magnitude of the phase current 
angle. 

dAngIL Variation in magnitude of the line current angle. 

dAngV Variation in magnitude of the phase voltage 

angle. 

dAngVL(a) Variation in magnitude of the line voltage angle, 

phase: a. 

Ip Phase current magnitude in pre-fault steady state. 

ILf Line current magnitude in fault steady state. 

Vp Phase voltage magnitude in pre-fault steady state. 

Vf Phase voltage magnitude in fault steady state. 

Vf(a) Phase voltage magnitude in fault steady state, 

phase: a. 

AngIf Phase current angle in fault steady state. 

AngVf(a) Phase voltage angle in fault steady state, phase: 

a. 

|𝑑𝑰| Phasor variation magnitude of the phase current. 

𝐴𝑛𝑔(𝑑𝑽) Phasor variation angle of the phase voltage. 

|𝑑𝑰𝑎| Phasor variation magnitude of the phase current, 

phase: a. 

Source. Own elaboration. 
 

Table 2. Test conditions 

Parameter Value 

Kernel  Radial base function (RBF) 

Normalization Min-Max ¡Error! No se 

encuentra el origen de la 

referencia. 

System state Different conditions 

Zone  Default 

Kernel penalty parameters C=512  

σ =0.261215 

Faults number 75000 

Subsets of cross validation 5 

Faults number to be 

validated 

15000  

Measurement features Table 3 

Source. Own elaboration. 
 

According to Table 4, the measurement features for cases 

1 and 2 are useful to obtain the best performances. A 

performance of 97.2% with measurement features 1 is 

obtained and it indicates that in the case of 1000 faults, 

972 of these faults are properly estimated. That is, they 

are within the zone in which it was designated as faulted 

zone. Likewise, case 1 shows a time of approximately 8 

minutes. Which is a bit greater with respect to Case 2, 

due of the difference in the number of used measurement 

features. 

Table 3. Combinations of measurement features. 

Cases of 

Measurement 

Features 

Measurement Features (attributes: 𝑥𝑖) 

1 
dI, dIL, dV, dVL, dAngI, dAngIL, dAngV, 

dAngVL. 

2 dI, dV, dAngI, dAngV. 

3 dIL, dVL, dAngIL, dAngVL. 

4 
dI(a), dIL(a), dV(a), dVL(a), dAngI(a), 

dAngIL(a), dAngV(a), dAngVL(a). 

5 dI(a), dV(a), dAngI(a), dAngV(a). 

6 dIL(a), dVL(a), dAngIL(a), dAngVL(a). 

7 |𝑑𝑰|, |𝑑𝑽|, 𝐴𝑛𝑔(𝑑𝑰), 𝐴𝑛𝑔(𝑑𝑽). 
8 |𝑑𝑰(𝑎)|, |𝑑𝑽(𝑎)|, 𝐴𝑛𝑔[𝑑𝑰(𝑎)], 𝐴𝑛𝑔[𝑑𝑽(𝑎)]. 
9 Ip , If , Vp , Vf , 𝐴𝑛𝑔Ip, 𝐴𝑛𝑔If, 𝐴𝑛𝑔Vp, 𝐴𝑛𝑔Vf. 

10 If , Vf , 𝐴𝑛𝑔If, 𝐴𝑛𝑔Vf . 

11 
Ip(a), If (a), Vp(a), Vf(a), 

𝐴𝑛𝑔Ip(a), 𝐴𝑛𝑔If(a), 𝐴𝑛𝑔Vp(a), 𝐴𝑛𝑔Vf(a), . 
12 If (a), Vf(a), 𝐴𝑛𝑔If(a), 𝐴𝑛𝑔Vf(a). 

Source. Own elaboration. 
 

Table 4. Results summary of the ten cases of 

measurement features. 

Cases of 

Measurement 

Features 

Performance 

[%] 

Time 

[minutes] 

Number of 

Measurement 

Features 

1 97,2 8,013 24 

2 96,3 6,026 12 

3 94,7 9,328 12 

4 87,8 11,285 8 

5 78,5 8,9822 4 

6 75,0 12,2573 4 

7 92,5 16,415 12 

8 70,9 21,958 4 

9 96,1 19,356 24 

10 93,5 17,433 12 

11 91,5 21,642 8 

12 78,7 11,488 4 

Source. Own elaboration. 

 

Figure 4 ranks vector cases according to the performance 

of fault location. Figure 5 ranks them based on 

computational times. Both figures show that cases 

involving data from the three phases outperform their 

respective only faulty-phases cases in respect to the two 

indicators. The only exception is the comparative data of 

computational effort between cases 10 and 12, where the 

only fault-phase case (12) obtained a better 

computational time. 

 

Data including variations in phase magnitudes reported 

less estimation error of faults in shorter computational 

time than those consisting of either phasor variations or 

pre-fault/fault information of the same magnitudes. The 

previous is attested in comparisons of case 2 against 
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cases 7 and 9. Despite reporting a small difference in 

performance, cases 5 and 8 corroborate the superiority of 

variations in phase magnitudes. 

 

For the two comparative indicators of the study, in-phase 

data (cases 2 and 5) and case outperform in-line data 

(cases 3 and 6). However, their combinations (cases 1 

and 4) showed an improvement only in fault location. 

 

 
 

Figure 4. Cases and number of measurement features vs 

performance values for single phase to ground fault, 

phase a. Source. Own elaboration. 

 

 

Figure 5. Cases and number of measurement features vs 

time values for single phase to ground fault, phase a. 

Source. Own elaboration. 

 

The parameters for each combination of measurement 

features in Table 3 are determined before of carrying out 

the process of cross-validation. This parameter 

determination is performed using the automatic method 

of parameter selection of the reference [10]. The fourth 

column of Table 5 shows the computing time to obtain 

the parameters for some combinations of the 

measurement features. The cases of table 5 are compared 

with Figure 4, and it is observed that, for a better 

performance, a greater time of parameterization is 

obtained. However, by analysing the Figure 5, it is no 

observed an influential pattern in the time of selecting the 

parameters and the time of cross validation. 

 

Table 5. Results summary of some cases of 

parameterization times. 

 

Cases of 

Measurement 

Features 

Number 

of 

Measurem

ent 

Features 

Measurement 

Features 

(attributes:𝒙𝒊) 

Parame

ter 

Time 

[hours] 

2 12 
dI, dV, dAngI, 

dAngV. 
5.46 

9 24 

Ip, If, Vp, Vf , 

𝐴𝑛𝑔Ip, 𝐴𝑛𝑔If, 

𝐴𝑛𝑔Vp, 𝐴𝑛𝑔Vf. 
4.93 

7 12 
|𝑑𝐼|, |𝑑𝑉|,

 𝐴𝑛𝑔(𝑑𝐼), 𝐴𝑛𝑔(𝑑𝑉). 
2.12 

 

4. Conclusions 

 

The best performance is obtained in cases 1, 2 and 9. 

Analyzing the test regarding computational cost the best 

cases are 2, 1 and 5. According to these results, it is 

suggested to use the measurement features of dI, dV, 

dAngI, dAngV, which corresponds to case 2, since it 

shows a good performance with the lowest computational 

cost. 

 

Quality of measure features may increase with the 

inclusion of two kinds of data:1) data regarding three 

phases rather than only faulty phase. 2) variations in 

phase magnitude. 

 

The study also found that in-phase data may be more 

relevant than information related to lines. According to 

results, computational time is not related to either 

performance or number of measurement features.  

 

Future works should focus on verifying these findings 

with another type of attributes of SVM-c (power factor, 

apparent power or reactance). 

 

Finally, this localization machine helps improve supply 

continuity indices and thus improve the performance of 

the power system and the customers served. 
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