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Abstract
Identifying options of climate change mitigation is of global interest to researchers. Whereas wide range of techniques of reducing 

greenhouse gas (GHG) emissions and carbon sequestration have been studied in row crops and forest systems, little research has been 
done on the ornamental horticulture. The ornamental industrial sector has indeed some negative impacts on the global environment, but 
also presents opportunities to reduce GHG emissions and increase C sequestration. Thus the objective of this study was to synthesize 
the potential contributions of some substrates used in the horticultural sector to carbon sequestration. The specific focus of the review 
is on the possible use of compost, vermicompost and biochar as soilless substrate substitutes for containerized ornamental plants 
production. Around 11 million kilograms of sphagnum peat moss are used annually in the world for horticultural production. Therefore, 
the potential of using compost, vermicompost and biochar as growing media is assessed on the basis of data from greenhouse studies. 
Peat-based substrate can be substituted up to 30% to 35% by compost or vermicompost and up to 20% to 25% by biochar. Some 
examples from field studies are included to conduct the life cycle assessment of using these growth media. An estimate of C storage on 
the long-term basis in soil indicates up to 3 million tons of CO2 equivalent as the maximum C potential storage per year in the global 
productive sector if the peat-based growing media are substituted by compost/vermicompost and biochar at the ratios mentioned above. 
Finally, synergies between compost vermicompost and biochar are discussed when these materials are combined as growing media 
additives and research gaps in this area of activity have been identified for further research.

Additional keywords: biochar; compost; substrate additive; peat replacement; carbon storage; ornamental containerized plants.
Abbreviations used: CEC (cation exchange capacity); CO2e (carbon dioxide equivalent); GHG (greenhouse gas); LCA (life cycle 

assessment); RMP (recommended management practices); SDW (shoot dry weight); SOC (soil organic carbon).
Authors’ contributions: The five co-authors participated in all stages of the work, including the conception and design of the 

research, the revision of the intellectual content and the drafting of the paper.
Citation: Alvarez, J. M.; Pasian, C.; Lal, R.; Lopez-Nuñez, R.; Fernández, M. (2018). A biotic strategy to sequester carbon in the 

ornamental containerized bedding plant production: A review. Spanish Journal of Agricultural Research, Volume 16, Issue 3, e03R01. 
https://doi.org/10.5424/sjar/2018163-12871

Received: 17 Jan 2018. Accepted: 15 Oct 2018.
Copyright © 2018 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 

International (CC-by 4.0) License.
Funding: The authors received no specific funding for this work. 
Competing interests: The authors have declared that no competing interests exist.
Correspondence should be addressed to José M. Alvarez: josemaria.alvarez254@alu.uhu.es 

Introduction

Climate change and CO2 sequestration

There is a concern in the scientific field about climate 
change and its present and future impacts on human 
wellbeing. An increase in the atmospheric concentra
tion of CO2 may increase the Earth’s mean temperature 
and change the precipitation patterns (IPCC, 2014). 
Thus, there is a growing interest in identifying strategies 
of decreasing the amount of atmospheric CO2 by 
reducing anthropogenic emissions (Lal, 2009). In the 
meanwhile, carbon (C) sequestration capacity of natural 

sinks (i.e., oceans, forests, peat bogs) is also decreasing 
because of human activities (Raviv, 2013). The process 
of transfer and secure storage of atmospheric CO2 
into other long-lived C pools that would otherwise be 
emitted or remain in the atmosphere is called ‘carbon 
sequestration’ (Lal, 2008). Therefore, in this context, C 
sequestration may be a natural or an anthropogenically 
driven process. The objective of an anthropogenically 
driven C sequestration process is to balance the global 
C budget such that future economic growth is based on 
a ‘C-neutral’ strategy of no net gain in atmospheric C 
pool. Such a strategy would necessitate sequestering 
almost all anthropogenically generated CO2 through 
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safe, environmentally acceptable and stable techniques 
with low risks of leakage (Lal, 2008).

Strategies to C sequestration

There are three main strategies of reducing CO2 
emissions to mitigate climate change: (i) reducing 
global energy use; (ii) developing low or no-C fuel 
sources; and (iii) sequestering CO2 from point sources 
or atmosphere using natural and engineering techniques 
(Schrag, 2007). Regarding the last option, engineering 
techniques of CO2 injection in deep ocean, geological 
strata, old coal mines and oil wells, and saline aquifers 
along with mineral carbonation of CO2 constitute 
abiotic techniques. These techniques are expensive and 
prone to leakage. In comparison, biotic techniques are 
based on natural and cost-effective processes but have 
finite sink capacity (Lal, 2008). 

Thus far, agriculture has been a major source 
of gaseous emission. Adoption of agricultural best 
management practices (i.e., conservation agriculture, 
integrated nutrient management, precision agriculture, 
cover cropping, agro-forestry, micro-irrigation) can 
enhance resilience of soils and ecosystems against 
perturbations and also mitigate climate change. In this 
context, there are numerous land use and management 
practices, which must be discouraged. Notable among 
these are tropical deforestation, drainage of wetlands, 
cultivation of marginal/poor soils, intensive tillage, 
removal of crop residues, flood irrigation and biomass 
burning. Crop residues and animal dung must be used 
as soil amendments rather than as sources of household 
energy (Lal, 2013). Carbon sequestration in agricultural 
soils enhances sustainability of the land use systems. 
Increasing soil organic carbon (SOC) concentration in 
the root zone is beneficial in any situation to generate 
or maintain healthy soils (Lal, 2004a; Pardo et al., 
2017) and it also restores environmental quality and 
associated ecosystem services over the long time 
horizon (Lehmann, 2009). Carbon sequestration in 
ecosystems is measured by infrared gas analyzer to 
measure CO2 eddy flux (Goulden et al., 1996). In soils, 
C sequestration is estimated by difference in biomass 
and soil carbon content over time (Lal, 2004a). 

In this regard the “4 per thousand” proposal at the 
21st Conference of the Parties to the United Nations 
(UN) Framework Convention on Climate Change 
(COP21) in Paris on 2015, has called for a voluntary 
action plan to enhance SOC content of world soils to a 
40 cm depth at the rate of 0.4% per year. The strategy is 
to promote SOC sequestration through adoption of the 
above mentioned recommended management practices 
(RMPs) of C farming (Lal, 2016). Thus, it is important 
to identify the specific plant cultures with a high 

capacity of C sequestration; however, the rate of SOC 
sequestration with adoption of RMPs may depend on 
soil texture and structure, rainfall, temperature, farming 
system, and soil management (Lal, 2004b).

Substrates in ornamental horticulture

Much of the research towards reducing GHG 
emissions and C sequestration has been conducted in 
row crop and forest systems. In comparison, a limited 
research has been conducted on the specialty crop 
industry such as ornamental horticulture. The latter 
is an industry that impacts rural, suburban, and urban 
landscapes. Although this industry may have some 
negative impacts on the global environment (Nicese 
& Lazzerini, 2013), it also has opportunities to reduce 
GHG emissions and increase C sequestration (Marble 
et al., 2011). The horticultural industry was responsible 
for emitting 8.0 million tons of CO2 in 1996. This was 
12% more than in 1989/90 (RSFGV, 1999), and has 
been growing since then. The ornamental horticulture 
global production reached a value of $37.1 billion 
in 2014. European Union (34.3%), China (15.9%) 
and USA (13.9%) contributed 64% of the economy 
(AIPH, 2017). In USA, five states (California, Florida, 
Michigan, North Carolina, and Ohio) accounted for 69% 
of that value. Principal plant´s categories are annual 
bedding/garden plants 33.2%, potted flowering plants 
20.9%, indoor/patio use 18.4%, herbaceous perennial 
plants 14.8%, propagative floriculture materials 0.9%, 
cut flower 9.7% and cut cultivated greens 2.1%.The 
wholesale value for annual bedding and garden plants 
totalled $1.29 billion in 2015. This value represents 
69% of the total bedding and garden category. Petunia 
sp., Geranium sp., Viola sp., Impatiens sp. and Begonia 
sp. cultivars were the top five bedding plant crops 
grown in flats. These cultivars are usually grown in 
greenhouses. Initially, seeds/cuttings are cultivated in 
trays. Young seedlings are transplanted into containers/
hanging baskets and grown to maturity (USDA-NASS, 
2016).

Containerized plant production in horticulture 
primarily utilizes soilless substrates. In general, these 
substrates are primarily composed of organic materials 
such as peat moss and inorganic materials such as 
vermiculite and perlite (Bilderback et al., 2013). 
However, to date, little is known concerning the C 
sequestration potential of the horticulture industry as a 
whole; which is also critical to assessing its potential 
contribution to mitigating the climate change (Prior et 
al., 2011). 

It is in this context that the review below is an attempt 
to synthesize the potential contributions of some 
substrates used in the horticultural sector to carbon 
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sequestration. The specific focus of the review is on 
the possible use of compost, vermicompost and biochar 
as soilless substrate substitutes for containerized 
ornamental plants production.

Peat environmental concerns and peat substitutes

Nursery and greenhouse activities worldwide have 
been challenged to optimize their water and nutrients 
management (Majsztrik et al., 2011). Sphagnum peat 
moss is the main substrate used in horticulture because 
of its homogeneous and ideal physical characteristics 
and high nutrient exchange capacity. As much as 10 to 
11 Tg of this material may be used annually in the world 
for horticultural production (http://minerals.usgs.gov/
minerals/pubs/commodity/peat/mcs-2015-peat.pdf). 
Globally, the total volume of materials used in growing 
media is difficult to estimate because recent data are 
not available for many areas of the world, including the 
Americas (both South and North), Australia, as well 
as Southeast Asia, where the process of growing out 
of soil has expanded in recent years but mainly into 
hydroponic systems in China, Japan, Thailand, and 
Malaysia (Carlile et al., 2015).

Schmilewski (2017) reported that 34.6 Mm3 of 
growing media were manufactured on 2013 in Europe, 
of which 93.8% was organic materials. Peat was the 
predominant bulky ingredient (75.1%), followed by 
organic constituents other than peat and compost 
(10.8%) and then compost (7.9%). An increase of 100% 
in green compost utilized as growing media in EU 
occurred since 2005 (Schmilewski, 2009). Traditional 
peat extracting countries have a strong focus on peat 
but there is an ever increasing interest and trend to 
replace peat by using other organic materials including 
composts. Countries without indigenous peat resources, 
i.e. the Netherlands, Italy and Belgium, also strongly 
depend on peat as the main growing media constituent. 
The principal objective of using mineral materials in 
growing media is to fine-tune their physical properties, 
and not to replace peat. In countries like Germany, 
Austria and Italy with emphasis on recycling bio-waste 
as part of their circular economies, the use of composts 
in growing media has increased (~ 6% between 2005 
and 2013) (Schmilewski, 2009, 2017) and is likely to 
develop in other EU member states as targeted by the 
Circular Economy Strategy of the EU (EC, 2015). 

In addition, environmental concerns questioning the 
peat use in horticulture are growing due to the number 
of environmental services provided by peatlands (Ostos 
et al., 2008). They include their habitat value, carbon 
sink function, regulation of the local water regime and 
quality and flood protection (Alexander et al., 2008). In 
fact, peat is no longer considered a renewable resource 

because it requires thousands of years (Hugron et 
al., 2013) to be able to generate. Although peatlands 
represent an important component of the global carbon 
cycle, storing 23 g m-2 y-1 of C (Waddington et al., 
2002), that today means more than 600 Pg C (Harenda 
et al., 2018), there are serious doubts about how current 
peatland will evolve under the climate change situation 
since these systems require very specific levels of 
moisture, temperature and insolation (Bragazza et al., 
2016). 

In any case, there is a consensus about the need 
to find alternatives to peat as growing media for 
horticulture in order to reduce the current exploitation 
and degradation of peatlands when they are in phase of 
extraction (Waddington et al., 2002). This point of view 
comes not only from the horticulture industry but also 
because the influence of macroeconomic issues based 
on the movements of consumers and decision-makers. 
Therefore, the challenge lies in identifying and using 
renewable materials with low costs of production and 
transportation (Gruda, 2011) and those having adequate 
physical-chemical characteristics. For instance in UK, 
environmental groups, government, and horticulture 
companies have organized themselves to recognize the 
environmental consequences of peat use in horticulture. 
In fact the industry is looking increasingly towards 
renewable raw materials such as green compost or 
processed timber by-products (Michel, 2010; Caron & 
Rochefort, 2013).

 Composts appear to be a sound alternative to peat 
within growing media, in volumetric ratio anywhere 
between 30 to 50% (even up to 100% in specific cases), 
depending on their origin, composition, maturity and 
end use (Masaguer & López-Cuadrado, 2006; Raviv, 
2013). Coco fibres may partly fulfil this role (Abad 
et al., 2002). However, since the overall peat demand 
is growing on the market and the volume needed for 
peat replacement as a component of substrates greatly 
exceeds the availability of coco resources, replacement 
by coco will remain to be low. Moreover, it is expected 
that the price of coco is going to rapidly increase relative 
to other biomass in such situations (Caron & Rochefort, 
2013). Therefore, the principle focus of this study has 
been on compost, vermicompost, and biochar, which 
are some of the industrial peat-based growing media 
substitutes (Carlile et al., 2015).

Compost and vermicompost

Numerous studies have been undertaken to establish 
the potential substitution of peat with commercial 
compost and vermicompost, enhancing plant´s rooting 
and growth while also reducing the negative side effects 
(Garcia-Gomez et al., 2002; Sardoei, 2014). 

http://minerals.usgs.gov/minerals/pubs/commodity/peat/mcs-2015-peat.pdf
http://minerals.usgs.gov/minerals/pubs/commodity/peat/mcs-2015-peat.pdf
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plants grown with these new materials. So, better 
growth (Do & Scherer, 2013; Mendoza-Hernández et 
al., 2014; Sultana et al., 2015) increases in shoot dry 
weight (SDW) (López et al., 2003; Belda et al., 2013; 
De Lucia et al., 2013) and root collar diameter (RCD) 
(Álvarez et al., 2001), better container capacity (CC) 
and water holding capacity (WHC) (Tyler et al., 1993) 
were recorded in different experiments where the peat-
based substrate was partially replaced by compost or 
vermicompost.

The list presented in Table 1 is not exhaustive and 
could be extended through other studies (Carrión et 
al., 2007) where for instance, disease suppressive 
microorganisms which have been extracted from 
compost are able to colonize the surface and roots 
of plants when applied properly (Al-Mughrabi et al., 
2008). 

Ansorena et al. (2014) also argued that it is 
necessary to consider the limitations that bio-waste 
compost presents as a component of substrates and 
as an organic fertilizer because of its high salinity 
and low N concentration. Another limiting property 
of the compost being used as substrate may be high 
alkalinity. To address the latter, elemental micronized 
sulphur is usually added to compost (Carrión et al., 
2005, 2008). Also compost stability may be a key factor 
when compost is used as growing media to produce 
ornamental plants in container, so only mature compost 
should be utilized (Raviv, 2008, 2014). 

Biochar

Biochar is another organic amendment that has the 
potential to be used as growing media additive and 
as peat substitute. Biochar is defined as a solid by-
product obtained from the thermochemical conversion 
of biomass in an oxygen-limited environment. The 
process relies on capturing the off-gases from thermal 
decomposition of organic materials to produce heat, 
electricity, or biofuels (Lehmann, 2007). 

‘Terra preta do Indio’ Amazonian soils, characterized 
by high levels of soil fertility, described by Sombroek 
(1966) started a worldwide interest to search how 
biochar would help to mitigate climate change (Laird, 
2008; Woolf et al., 2010; Montanarella & Lugato, 
2013). Addition of biochar to soils can result, on 
average, in increased above ground productivity, crop 
yield, nutrient availability, microbial biomass and 
rhizobia nodulation among a broad range of pedo-
climatic conditions. The limited number of case studies 
showing a negative effect of biochar on crop yield are 
consolidating the idea that biochar has either a null or 
positive effect on crop productivity (Souchie et al., 
2011; Alburquerque et al., 2013; Biederman & Harpole, 

The UK was a pioneer in the research of compost as 
a substitute for peat (Prasad & Maher, 2001) due to the 
government decision to establish a deadline for the use 
of peat in horticulture, thus promoting research in this 
field (Sohi et al., 2013). Compost from garden pruning 
and maintenance (green compost) was successful in 
that research and has since been widely used. Also 
compost of urban organic waste, bio-solids of sewage 
treatment plants together with green compost have been 
effectively tested as growing media in the industrial 
production of horticultural, forestry and ornamental 
seedlings (López et al., 2005).

As composting technique has been expanding, each 
region/country has been testing the composting of its 
organic waste of silvo-agro industrial origin that has 
had more at hand. For instance, in Spain, the Lourizan 
Forestry Research Centre worked on composting of 
pine bark from sawmills (Miranda & Fernandez, 1992) 
to be used as growing media for forestry seedling. 
Later this bark-derived compost was used for the 
production of ornamental woody plants in container. In 
regions and countries where containerized ornamental 
production was important, this initiative was emulated 
by using organic materials from agro-industries. Such 
as in Valencia region (Spain) where an inventory of 
organic agro industrial by-products was carried out 
with the same goal of manufacturing substrates by 
composting aiming to utilize them in ornamental 
container production (Abad et al., 2001). Some of these 
raw materials were included cork powder (Carmona et 
al., 2003), two-phase olive oil mill waste ("alperujo") 
(Fernández-Hernández et al., 2013), organic fraction 
of the guacamole industry (González-Fernández et 
al., 2015), organic wastes of greenhouse horticultural 
production (Mendoza-Hernández et al., 2014), citrus 
pulp (Gelsomino et al., 2010), grape marc (Trillas et 
al., 2006), brewery sludge (Sánchez-Monedero et al., 
2004), etc. 

In vermicompost, researchers used different manures 
for their transformation by means of lombriculture 
techniques to identify products that could be used in 
horticulture. So, mainly pig manure (Atiyeh et al., 
2000; Arancon et al., 2005; Bachman & Metzger, 2008; 
Lazcano et al., 2009) and cattle manure (Tringovska 
& Dintcheva, 2012; Sultana et al., 2015) were used 
and also sometimes green and vegetable crop wastes 
(Fornes et al., 2012; Belda et al., 2013; Morales-Corts 
et al., 2014). 

Peat based substrates were substituted at a 30-
35% average ratio by compost and vermicompost in 
the experiences mentioned in Table 1. Both compost 
and vermicompost trials showed a beneficial effect 
related to substrate physical properties and different 
morphological parameters of the tested ornamental 



A biotic strategy to sequester carbon in ornamental containerized bedding plants: A review

Spanish Journal of Agricultural Research September 2018 • Volume 16 • Issue 3 • e03R01

5

Table 1. Growing media researches where compost and vermicompost have been used as substrate components.

Substitute 
type

Growing 
media Raw material

% 
rate 
v/v

Plant species Effectsa Reference

Compost peat based 
substrate

organic fraction of 
urban waste

25 Pelargonium, Salvia  better growth Do & Scherer, 2013

Compost peat based 
substrate

sewage sludge, yard 
trimming and 
organic fraction of 
urban waste

25, 
50

Rosmarinus 
officinalis 

root collar 
diameter (8 to 
10)% greater than 
control

López et al., 2008

Compost peat based 
substrate

sewage sludge and 
pruning rejects

55 Bougainvillea 60% increase 
SDW

De Lucia et al., 2013

Compost pine bark 
substrate

turkey litter up to 
16

Cotoneaster 
dammeri

 increased (12 to 
16)% CC and (17 
to 30)% WHC

Tyler et al., 1993

Compost peat based 
substrate

green yard waste 20 Solanum 
lycopersicum

growth equal than 
control

Prasad & Maher, 
2001

Compost peat based 
substrate

nursery pruning 40 Lantana camara, 
Rosmarinus 
officinalis

higher overall 
quality

Russo et al., 2016

Compost peat based 
substrate

pruning from Olea 
europaea, Pinus 
sp. and Picea sp. 
and Lolium perenne 
clippings

20 Lycopersicon 
esculentum, 
Cucumis melo, 
Lactuca sativa

better growth Ceglie et al., 2015

Compost peat based 
substrate

sludge, yard 
trimming and
organic fraction of 
urban waste

20, 
40

Ceratonia siliqua, 
Olea europea, 
Quercus ilex 

RCD increased 
(23, 30 and 10)% 
respectively than 
control

Álvarez et al., 2001

Compost peat based 
substrate

sludge and urban 
waste

20, 
40

Pistacia lentiscus (509 to 730)% 
higher SDW than 
control

López et al., 2003 

Compost peat based 
substrate

two-phase olive mill 
waste (71%) with 
olive leaves (29%) 
and urea (9 kg t-1)

25, 
50

Solanum 
lycopersicum, 
Citrullus lanatus

better seed 
germination

Fernández-Hernández 
et al., 2013

Compost peat based 
substrate

sweet sorghum 
bagasse, pine bark 
and brewery slude

up to 
67

Brassica oleracea similar growth Sánchez-Monedero et 
al., 2004

Compost peat based 
substrate

cow manure 10 Solanum 
lycopersicum

10% increase in 
roots volume

Lazcano et al., 2009

Compost peat based 
substrate

 pruning waste 100 no plants pH > 8, OM 
similar, CEC 
higher than control

Benito et al., 2006

Compost peat based 
substrate

crops waste sawdust 
and laying hen 
manure

25 Solanum 
lycopersicum, 
Cucurbita pepo, 
Capsicum annuum

better growth Gavilanes-Terán et 
al., 2016

Compost peat based 
substrate

acacia pruning 45 Lactuca sativa better growth Brito et al., 2015

Compost peat based 
substrate

sewage sludge 30 Brassica oleracea better growth Perez-Murcia et al., 
2006

Compost peat based 
substrate

cork, grape marc, 
olive marc and spent 
mushroom

100 Cucumis sativus better resistance to 
damping-off Trillas et al., 2006

Compost bark based 
substrate

organic fraction of 
urban waste

50 Physocarpus 
opulifolius

increased 60% 
SDW

Chong, 2005
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Substitute 
type

Growing 
media Raw material

% 
rate 
v/v

Plant species Effectsa Reference

Vermicompost peat based 
substrate

green and pruning 
wastes

30 Petunia similar growth 
than control

Morales-Corts et al., 
2014

Vermicompost peat based 
substrate

 pig manure 30, 
40

Calendula officinalis more vegetative 
growth and flowers

Arancon et al., 2005

Vermicompost peat based 
substrate

chopped air-dried 
tomato-crop waste

75 Calendula officinalis 20% increase in 
SDW

Belda et al., 2013

Vermicompost peat based 
substrate

pig slurry 100 Solanum 
lycopersicum

15% increase roots 
volume

Lazcano et al., 2009

Vermicompost  top soil cattle manure up to 
10

Passiflora edulis nursery commer-
cial quality

Hidalgo et al., 2009

Vermicompost peat based 
substrate

from tomato crop 
waste

50 Rosmarinus 
officinalis

better growth Mendoza-Hernández 
et al., 2014

Vermicompost dried sandy 
loam top-
soil

cow manure 10 Zinnia elegans better growth Sultana et al., 2015

Vermicompost peat based 
substrate

pig manure 20 Solanum 
lycopersicum, 
Calendula officinalis

better growth Bachman & Metzger, 
2008

Vermicompost peat based 
substrate

N/A 20 Solanum 
lycopersicum

similar emergence, 
growth and bio-
mass allocation

Zaller, 2007

Vermicompost peat based 
substrate

 pig manure 20 Solanum 
lycopersicum

increased 12.5% 
fruit weight 

Atiyeh et al., 2000

Vermicompost peat based 
substrate

cow manure 10 Solanum 
lycopersicum

60% increase in 
SDW

Tringovska & 
Dintcheva, 2012

aSDW: shoot dry weight; CC: container capacity; WHC: water holding capacity; RCD: root collar diameter.

Table 1. Continued.

2013; Carter et al., 2013; Mulcahy et al., 2013; Akhtar 
et al., 2014; Thomazini et al., 2015; Lima et al., 2016; 
Olmo et al., 2016). 

In fact, the production of biochar from farm wastes 
and their application in farm soils offer multiple 
environmental and financial benefits (Srinivasarao et 
al., 2013).

The priming effect concept was initially introduced 
by Bingeman et al. (1953) and may happen when 
biochar is added to soil. If used to describe C turnover it 
means an added decomposition of organic C following 
an inclusion of easily decomposable organic materials 
to the soil (Dalenberg & Jager, 1989). In the present 
study, the most prominent interest is related to the 
negative result of the priming effect of biochar because 
a higher retention of carbon in the substrate. No study 
to this effect has been found when biochar was added to 
peat based horticultural growing media. Nevertheless, 
there are several references of biochar incorporation 
in soil causing a negative priming effect in sandy soils 
which may be the most easily assimilated into the peat-
based horticultural substrates (Lu et al., 2014; Keith et 
al., 2015).

Biochar has also been considered as a possible 
peat replacement in horticulture (Peterson & Jackson, 
2014). It has shown potential as replacement for 
aggregates like peat moss in growing media (Sohi et 
al., 2013). Adding biochar to growing media can result 
in several benefits in terms of substrate quality. Biochar 
generally has a high cation exchange capacity (CEC) 
and a high nutrient holding capacity, thereby reducing 
nutrient leaching. Biochar can also be considered as 
a source of nutrients (nitrate-N, K, Fe, Mn, and Zn) 
(Nemati et al., 2015). This property must be taken into 
consideration during nutrient management planning. 
Most biochars are alkaline and can neutralize the 
acidity of a peat-based substrate, hence reducing lime 
requirements (Zaccheo et al., 2014; Bedussi et al., 
2015). However, the increase of pH following a biochar 
application in growing media limits its application as 
its affects growth in plant´s germination (Buss et al., 
2016). In general, biochar has a low bulk density and 
when incorporated into a growing mix helps to reduce 
the risk of substrate compaction and related problems 
(Nemati et al., 2015). Biochar can affect both water 
retention (Cao et al., 2014) and substrate´s aeration 



A biotic strategy to sequester carbon in ornamental containerized bedding plants: A review

Spanish Journal of Agricultural Research September 2018 • Volume 16 • Issue 3 • e03R01

7

properties depending on its particle size distribution. 
The incorporation of fine-textured biochar in growing 
media promotes water retention properties (easy and 
total available water) (Nemati et al., 2015). Biochar 
particle size distribution is affected by type of biomass 
and the pyrolysis temperature. Choosing a biochar 
with the right particle size distribution is important 
in producing a growing mix with the desired physical 
properties. High-temperature biochars can bind soil-C 
and other nutrients on a long-term basis. In addition, 
higher temperature biochars have higher surface area 
and more micropore volumes than those of lower 
temperature biochars (Mukherjee & Lal, 2013).

One of the main limiting factors to the use of biochar 
in the growing media industry is the production of 
black dust during handling. Increasing the initial 
water content of biochar or using pelleted biochar can 
overcome the dust issues (Dumroese et al., 2011). 

It has also been reported in some phytopathological 
studies that biochar and its associated microorganisms 
have a suppressive effect on plant diseases similar to 
those possessed by the compost (Elad et al., 2010; 
Elmer & Pignatello, 2011; Kolton et al., 2011; Zwart 
& Kim, 2012; Gravel et al., 2013).

Several successful propagating ornamental plant 
experiments have been reported where peat and some 
other components were replaced by biochar (see Table 
2). The inclusion of biochar into substrates showed 
that plant´s quality and growth were similar to those 
from the standard peat substrates. Besides, some extra 
benefits were also observed in reducing nutrients and 
water loss, decreasing substrate bulk density, and 
creating a beneficial environment for microorganisms. 
In these experiments the peat-based substrate was 
substituted by biochar at a 20 to 25% average ratio 
(Table 2).

The wide range of raw materials to produce biochar 
include wood, bark and remains of coniferous (Zwart 
& Kim, 2012; Gravel et al., 2013; Gu et al., 2013; 
Fascella, 2015; Dispenza et al., 2016) deciduous 
trees (Graber et al., 2010; Elmer & Pignatello, 2011; 
Northup, 2013; De Tender et al., 2016), agricultural 
(Dumroese et al., 2011; Sharkawi et al., 2014; Vaughn 
et al., 2015a; Kim et al., 2016) and gardening residues 
(Tian et al., 2012; Nieto et al., 2016) and biosolids 
(Méndez et al., 2016). The benefits derived from 
the addition of biochar included improvements of 
morphological parameters of plants growth but also 
those of the physical (Kaudal et al., 2015; Dumroese 
& Landis, 2016), chemical (Altland & Krause, 
2012; Kaudal et al., 2015) and biological (Elmer & 
Pignatello, 2011) properties of the substrate and the 
resistance of plants to fungal infections (Elad et al., 
2010; Zwart & Kim, 2012).

Carbon footprint reduction in containerized 
ornamental plants production

Several LCA (Life Cycle Assessment) studies have 
been conducted in different regions to determine which 
materials and activities contribute more to the GHG 
effect in ornamental horticulture. One of these studies 
assessed the material and energy inputs required 
to produce a Petunia × hybrida plant from initial 
propagation to delivery at a regional distribution centre. 
Impacts were expressed in terms of their contributions 
to the carbon footprint or global warming potential of 
a single finished plant in a 10-cm diameter container. 
Results showed that peat consumption represented 
7.7% of the overall CO2e (carbon dioxide equivalent) 
emissions (Koeser et al., 2014).

Two LCA studies conducted in Italy (De Lucia, 
2013; Vecchietti et al., 2013) considered compost as 
growing media substitute. The use of different rates of 
sewage sludge compost in the preparation of growing 
media for potted Bougainvillea was evaluated to assess 
its efficiency for the replacement of peat and to quantify 
the environmental impact of such alternative substrates. 
The data from LCA showed that the addition of compost 
reduced the environmental impact of the plant nursery. 
Specifically, the use of compost reduced ODP (ozone 
layer depletion index) by 23-42% and also the primary 
non-renewable energy consumption index by 40-80% 
when compost was added to the mixture (as 25%-70% 
of compost inclusion respectively in both indexes). 

Altieri & Nicholls (2012) and Martínez-Blanco 
et al. (2013) reported the positive effects of compost 
application as nutrient supply and carbon sequestration 
and also opined that the benefits were quantifiable, and 
tools for their consideration with LCA were available. 
Regarding the supply of plant nutrients, between 5 and 
60% of the N applied with compost was mineralized, 
depending on the time frame considered. Figures 
range between 35 and 100% for P and between 75 and 
100% for K. Carbon sequestration rates have shown to 
be higher in the short term (up to 40% of the applied 
C) and decreasing to 2–16% over a 100-year period 
(Martínez-Blanco et al., 2013). Hence, those benefits 
should be regularly included in LCA studies, although 
their quantification needs to be improved. 

Russo et al. (2008), in another LCA study on 
cyclamen in container production reported that as 
the peat is a non-recyclable organic material, it can 
find a substitute in the green composts obtained by 
the treatment of municipal garden green wastes and 
pruning wastes. 

Finally, another study, conducted in Germany 
reported the amount of reduced GHG emissions by 
substitution of peat with biochar. This substitution could 



Jose M. Alvarez, Claudio Pasian, Rattan Lal, Rafael Lopez-Nuñez and Manuel Fernández

Spanish Journal of Agricultural Research September 2018 • Volume 16 • Issue 3 • e03R01

8

Table 2. Growing media researches where biochar has been used as substrate component.
Substitute 

type
Growing 

media Raw material % rate 
v/v Plant specie Effectsa Reference

biochar peat based 
substrate

Pinus sp wood 5, 10, 
15, 20, 
25 and 

30

Gomphrena 
‘Fireworks’

similar growth as 
control

Gu et al., 2013 

biochar peat based 
substrate

Pinus sp wood 5, 10, 20 Acer rubrum, 
Quercus rubra

alleviate disease 
progression and 
physiological stress 
caused by 
Phytophthora 
canker pathogens

Zwart & Kim, 2012

biochar peat based 
substrate

Abies alba, Larix 
decidua, Picea 
excels, Pinus nigra

60 Euphorbia × 
lomi

better growth Dispenza et al., 2016

biochar peat based 
substrate

Quercus ilex wood 3% w/w Fragaria × 
ananassa

160% increase in 
SDW

De Tender et al., 2016

biochar peat based 
substrate

hardwood 20, 30, 
40

Calendula 
officinalis, 
Petunia × 
hybrida, 
Impatiens

SDW similar or 
greater than control

Northup, 2013

biochar peat based 
substrate

hardwood dust 10 Asparagus increased 
arbuscular
mycorrhizal root 
colonization

Elmer & Pignatello, 
2011

biochar peat based 
substrate

hardwood pellets 
and pelletized 
wheat straw

10,15 Calendula 
officinalis

increased plant 
height

Vaughn et al., 2013

biochar peat based 
substrate

Abies balsamea, 
Picea glauca and 
Picea mariana 
softwood bark

50 Pelargonium 
hortorum

similar growth as 
control

Gravel et al., 2013

biochar peat based 
substrate

crushed wooden 
boxes

25, 50, 
75

Helianthus 
annuus

similar growth as 
control

Steiner & Harttung, 
2014

biochar peat based 
substrate

pruning residue 50, 75 Lactuca sativa better growth as 
control

Nieto et al., 2016

biochar peat based 
substrate

green waste 50 Calathea 
rotundifola cv. 
Fasciata

22% total biomass 
increase

Tian et al., 2012

biochar peat based 
substrate

biomass 1, 5, 10 no plants moderation of ex-
treme fluctuations 
of nitrate levels

Altland & Locke, 
2012

biochar peat based 
substrate

agricultural or 
forestry residues

25 no plants enhanced hydraulic 
conductivity and 
greater water 
availability

Dumroese et al., 2011

biochar peat based 
substrate

biosolids 10 Lactuca sativa better growth as 
control

Méndez et al., 2016

biochar 
+digestate

peat based 
substrate

wood pellets, 
pelletized wheat 
straw and field 
pennycress 
presscake + potato 
anaerobic digestate

25 Solanum 
lycopersicum, 
Calendula 
officinalis

increased growth of 
tomato plants and 
equal marigold as 
compared to control

Vaughn et al., 2015a
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Substitute 
type

Growing 
media Raw material % rate 

v/v Plant specie Effectsa Reference

biochar peat based 
substrate

conifers wood 60 Euphorbia × 
lomi

higher stem 
diameter, leaves 
area, root length 
and number of 
flowers than control

Fascella, 2015

biochar coco fiber forestry and 
gardening waste

10 Calendula 
officinalis, 
Petunia × hybrid

better growth as 
control

Fornes et al., 2013

biochar coconut fiber 
and tuff

Citrus wood 5 Capsicum 
annuum, 
Solanum 
lycopersicum

better pepper 
growth and 
enhanced tomato 
plant height and 
leaf size.

Graber et al., 2010

biochar coconut 
fiber-tuff

Citrus wood 1, 3, 5% 
w/w

Capsicum 
annuum, 
Solanum 
lycopersicum

resistance against 
two foliar fungal 
pathogens (B. 
cinerea and L. 
taurica)

Elad et al., 2010

biochar coir peat biosolids and 
greenwaste

up to 60 no plants similar physical and 
chemical benefits 
than control

Kaudal et al., 2016

biochar coir peat+pine 
bark compost

biosolids and 
greenwaste

20, 40, 
60

no plants desirable physical 
properties such as 
high water holding 
capacity, low bulk 
density, air filled 
pore space and high 
surface area

Kaudal et al., 2015

biochar rice husk rice husk 25 Cucumis sativus better growth as 
control

Sharkawi et al., 2014

biochar coir dust, 
perlite and 
vermiculite

rice husk 5% w/w Brassica oler-
acea

150% increase in 
SDW

Kim et al., 2016

aSDW: shoot dry weight.

Table 2. Continued.

avoid emissions of up to 4.5 Mg of CO2e by each Mg of 
peat substituted (2.8 Mg CO2/Mg by biochar inclusion 
plus 1.7 Mg CO2 Mg by peat substitution) (Steiner & 
Harttung, 2014).

In the studies and experiments mentioned above, peat 
based substrates were substituted at a 30-35% average 
ratio by compost and vermicompost and 20-25% by 
biochar. We have calculated reduced GHG emissions 
by considering these substitution ratios as well as 
average bulk density levels of peat based growing 
media, compost/vermicompost and biochar. We have 
taken into account that every year about 11 Tg of peat 
are consumed in horticulture. If 20% of worldwide peat 
used in horticulture would be in containers production, 
about 3 Tg CO2e will be the C potential storage per 
year that this container productive sector will be able 
to generate when peat based growing media has been 
substituted as above mentioned.

Research gaps

Globally, there is a lack of information about the 
total volume of materials used in growing media in 
countries with an important production in South and 
North America, Australia and Southeast Asia (Carlile, 
2008; Schmilewski, 2017). 

Research on how to use compost and vermicompost 
as partial replacement of peat based growing media to 
produce ornamental plants has been more addressed 
by research studies (Raviv et al., 1986; Edwards & 
Burrows, 1988; Carrión et al., 2007) than the use of 
biochar. There are also a number of research gaps about 
how to combine either compost or vermicompost with 
biochar to substitute peat in this ornamental horticulture 
industry. That is why we have tried below to identify 
potential research projects able to get answers to the 
pending questions.



Jose M. Alvarez, Claudio Pasian, Rattan Lal, Rafael Lopez-Nuñez and Manuel Fernández

Spanish Journal of Agricultural Research September 2018 • Volume 16 • Issue 3 • e03R01

10

Assuming that biochar is a panacea without strong 
scientific evidence and credible data, may aggravate 
controversies and dilemmas (Perry, 2011; Mukherjee & 
Lal, 2013; Lal, 2015). This is a key point considering 
biochar’s characteristics variability due to raw materials 
and production systems (Lorenz & Lal, 2014). For 
instance, in some studies identical biochars produced 
different results with different plant species (Vaughn et 
al., 2015c). Some but not all biochars have been shown 
to improve water retention and increase overall plant 
growth in sand-based rooting media. Impact of biochar 
on improvement of water retention and increase overall 
plant growth in sand-based root zones may happen with 
some but not with all biochars (Vaughn et al., 2015b). 
Also, it would be necessary to identify from which tree 
species or type of waste material biochar would be 
most desirable for use in horticultural potting substrates 
(Vaughn et al., 2015a).

Results from some biochar studies begin to provide 
evidence of mitigation strategies, which can be 
implemented in container plant production to help 
growers benefit from C offset programs, adapt to future 
legislation, and improve the environmental impact from 
container plant production without negatively affecting 
crop growth (Marble et al., 2012). So, more product 
carbon footprint analyses are necessary to map out the 
climate impact in different horticultural production 
systems (Soode et al., 2015). It would be also useful 
to know what CO2 percentage could ornamental 
horticulture represent respect to global horticulture 
production.

Additionally, there are some experiments that 
demonstrate the synergy of combining biochar with 
compost in soil (Schmidt et al., 2014). This positive 
association is caused mainly because the combination of 
both materials improved its fertility, not only in a short 
time span, but also on a medium and long term basis 
(Fischer & Glaser, 2012). Compost and vermicompost 
have shown a good synergy with biochar, but literature 
about this combination in ornamental horticulture is 
rather scanty. Just one study using vermicompost and 
biochar to produce ornamentals in containers was found 
(Alvarez et al., 2017). Both materials were mixed with 
no prior composting. A complete set of 24 combinations, 
where a peat-based substrate was partially replaced 
by 0 to 50% of dairy manure vermicompost and 0 
to 12% of biochar produced by pyrolysis of Pinus 
monticola wood at high temperature (600 to 800 ºC). 
Better Petunia hybrida and Pelargonium peltatum 
plant growth and flowering was obtained in some of 
the mixtures of biochar/vermicompost with no more 
than 30% of vermicompost content than in the control 
group. Even if most plant responses are related to 
morphological parameters it would be interesting to 

also test physiological parameters as they may provide 
results regarding plants growth after transplanting into 
soil (Alvarez et al., 2018). 

There are some other studies where that kind of mix 
was applied to soil and assessed plant or soil responses 
(Schulz & Glaser, 2012; Ngo et al., 2013; Rodríguez-
Vila et al., 2014). So, more experience combining 
compost or vermicompost with biochar to substitute 
peat-based substrates in ornamental horticulture should 
be promoted to learn whether their synergy would be 
interesting for the industry and with the objective of 
carbon sequestration. There are a number of publications 
where biochar was added to other organic materials to 
be co-composted or composted together and a synergy 
was evident during this combined process enhancing 
the final compost produced. Even if there is no evidence 
yet of the proven results when using this kind of final 
product to replace peat in ornamental production, these 
trends are briefly discussed herein because it would 
be pertinent to research this subject (Dias et al., 2010; 
Jindo et al., 2012, 2016; Schulz et al., 2013; Antonius et 
al., 2015; Barthod et al., 2016; Malińska et al., 2016).

The ornamental containerized plant sector needs 
to develop a better understanding of plant nutrient 
requirements, better technology to assess root zone 
conditions, and better fertilizers or practices that would 
be able to match ornamental plant nutrient requirements 
during the growing season in containers. With a 
satisfactorily resolution of this sector, Majsztrik et al. 
(2011) and Raviv (2013) concluded that horticulture can 
provide ecological services such as efficient and long-
term carbon sequestration, while restoring soil fertility 
through the use of organic amendments. In this context 
evaluating how to include compost, vermicompost and 
biochar (and their mixes) may minimize leaching of 
nutrients from containers due to irrigation. This subject 
is also a researchable priority.

As Nemati et al. (2015) commented, compost, 
vermicompost and biochar are still not a standardized 
product, and its properties may differ depending on the 
source or the production process. The growing media 
industry cannot accept these variations and requires a 
high quality, homogenous, and consistent components. 
Therefore, it is important to launch a standardization 
program to certify those materials which meet quality 
standards for use in the growing media industry. In 
this sense, it is important to bridge the gap between 
research findings and commercial production of 
ornamental plants by assessing the experimental results 
at a commercial scale (Vaughn et al., 2015c; Derrien et 
al., 2016).

Economically, biochar has a greater potential to 
replace aggregates than peat in growing media mainly 
due to the high cost of these aggregates compared with 
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that of the peat. Additional research is needed to evaluate 
the impact of biochar on growth and development of 
plants.

Conclusions

The use of organic materials as compost, vermi
compost, and biochar as peat substitutes in the 
ornamental containerized bedding plant production, 
is an interesting biotic strategy to store carbon in 
garden soil. In the case of biochar the stored C could 
be maintained for centuries improving the life cycle 
analysis of this process.

Several studies have produced interesting results, 
but additional research is needed to evaluate those 
materials and how to combine them as compost-biochar 
or vermicompost-biochar which may produce similar 
or better plants while also similarly or better support the 
transplanting process.
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