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Abstract

Into the study of  quasi-relaxation, in the past 
researches it is have concluded that the condition 
of  meta-stability in the metallic specimen is given 
by the plasticity explained by the plastic energy in 
the process of  the quasi-relaxation [18], and [22]. It 
is calculate through of  quasi-relaxation functional 
of  this energy to obtain a spectra in the space D(s 
- e, t), that induced the existence of  functions j(t), 
and Y(t), related with the fundamental curves of  
quasi-relaxation given by s(t), with their poles in t 
= -1/k(s0 - s1), the which it is get in the maximum 
of  stress given by s0 = s1.  Also the tensor of  
plastic deformation that represents the plastic load 
during the application of  specimen machine [1], 
not can be obtained without poles in the space 
D(s, t), corresponding to the curves calculated in 
[19], into the space D(s - e, t), by curves that in 
the kinetic of  the process of  quasi-relaxation are 
represented by experimental curves in coordinates 
lgs - t [5]. This situation not can be eluded, 
since in this phenomena exist dislocations that go 
conform fatigue in the nano-crystalline structure 
of  metals [12]. From this point of  view, is necessary 
to obtain a spectral study related with the energy 
using functions that permits the modeling and 
compute the states of  quasi-relaxation included in 
the poles in the deformation problem to complete 
the solutions in the space D(s - e, t), and try a new 
method of  solution of  the differential equations 
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of  the quasi-relaxation analysis. In a nearly future 
development, the information obtained by this 
spectral study (by our integral transforms) will can 
to gives place to the programming through of  the 
spectral encoding of  the materials in the meta-
stability state, that which is propitious to a nano-
technological transformation of  materials, concrete 
case, some metals. 
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Introduction

In the last 30 years, the experimental technique to 
the characterization of  materials with the use of  
testing machines have experimented a big heyday. 
In the conventional machines of  essays, where the 
specimen previously is loaded up to a initial level of  
the stress, after of  that which the motorize system 
of  the machine is disconnected, it is observe a 
spontaneous fall of  stress. The kinetic of  the fall 
of  the stress is registered during all the process of  
the essays.

Similar experiment must be executed in a 
programmed specially machine, in the which during 
the essay of  automatic manage it stays constant the 
longitude of  the specimen; is to say, the condition 
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of  the essay in regime of  quasi-relaxation can 
expressed in the following form

(1)  constl =

or well,

(2)  

This condition define to the meta-stability as a 
state of  constant deformation only in their plastic 
characteristics in the initial process of  dislocations, 
where the energy of  the nano-crystals accumulate 
the enough energy to maintainer the specimen 
in a stable range of  recovering to original state, 
in a very short time interval [22]. In this respect, 
is necessary to realize a deep study of  traces of  
deformation tensor in function of  the stress tensor 
corresponding of  plastic deformation and use a 
functional of  energy that measures this recover 
energy due the nano-crystals. This come given for 
[], []:

                            					   
(3)  

Into the family of  integrals of  energy it is deduce 
with help of  the integrals hereditary and the trace 
of  the plastic deformation tensor, two integral 
transform in the spectral study of  the quasi-
relaxation including the poles of  quasi-relaxation 
functions, and the phases of  the material in the 
meta-stability process of  the material, for example 
the spectra before of  the enter of  meta-stability 
conditions or after of  this state.   Through of  
the spectral encoding of  this measured energy 
we can to realize diverse actions on the materials 
to introduce codes of  memory and intelligence 
to nano-metric scale, and of  this manage obtain 
special properties of  the materials to diverse 
technological applications. Also the determination 
of  these pair of  transforms helps to reduce the 
compute methods of  quasi-relaxation functions, as 

well as the determination of  density of  relaxation 
distribution that appears in the analysis of  quasi-
relaxation of  all metallic specimens. We will give a 
short table of  transforms to calculate the solutions 
of  the differential equations of  the quasi-relaxation 
in material engineering to more canonical loads.
 
Materials and methods

Functional of  Plastic Energy that Promote 
the Dislocations

The study of  the resultant energy due to the meta-
stables conditions that it is obtains in the quasi-
relaxation phenomena establishes clearly their 
plastic nature for the suffered deformations on the 
specimen. Nevertheless their study can to require 
the evaluation of  the field of  plastic deformation 
on determined sections to a detailed study on 
the liberated energy in the produced dislocations 
when the field of  plastic deformation acts. Thus, 
it is doing necessary the introduction of  certain 
evaluations of  the actions of  the field to along of  
the dislocation trajectories in mono-crystals of  the 
metals with properties of  asymptotic relaxation. 
Thus we consider like specimens, mono-crystals 
of  Molybdenum (Mo), subject to stress tensor that 
produce the plastic deformation given by the 
action of  Ec. (3). By the theorem of  Bulnes-Yermishkin 
[6], all functional of  stress-deformation to along of  
the time must satisfy for hereditary integrals in the 
quasi-relaxation phenomena that    

(4) 

Studies in mathematics [7], [8], [24], cans 
demonstrate that the integral Ec. (4) is a integral 
transform, if  the expression between the brackets is 
a function with analytic properties that join with e-tt, 
determine the kernel of  the integral transform and 
the characterize like a quasi-relaxation transform. 
Our functional of  energy are the evaluations of  
the field of  plastic deformation considering the 
quantity of  energy of  liberated plastic deformation 
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by the specimen for unit of  time DG = Gt, in the 
generated dislocations in the specimen under the 
regimens of  quasi-relaxation. If  we consider the 
average energy of  the longitude unit for line of  
dislocation, the integral Ec. (4), take the form for 
the Burgers vector b, and the initial reserve of  
elastic energy in the specimen [5]

   

(5) 

During the unloaded of  the specimen, stressed in 
the elastic field, these dislocations it is transforms 
in a density of  initial dislocations. The realized 
videos on the evolution of  the dislocation structure 
in mono-crystals of  Molybdenum (Mo) (images of  
the transitory given by the Laplace transform 
involucrate in the functional Ec. (4), (see figure of  
mono-crystal evolution), during the load and unload, 
demonstrates the reversibility of  the sliding character 
of  the dislocations, and of  variation of  the density 
of  these, in the field where the metal it is behavior 
elastically. The dislocations that already could exist in 
the stressed crystal, and that it is annihilated during 
the unload, we call dynamical dislocations. Like 
it is have demonstrate [5], practically all the elastic 
energy of  the specimen it arises during the load and 
it is accumulate in form of  the elastic fields of  the 
dislocations, in base to the conservation law, in the 
volume unit of  the deformed material during the 
load , it is describe through the following equation:           

(6)  

where Er , is the value of  modulus of  normal elastic 
relaxation, is to say, the valued energy considering 
the elasticity of  the essay machine rd , the density 
of  the dynamical dislocations, expressed in the 
right part of  the equation Ec. (6). Here is necessary 
observe that the property of  the integral transforms 
to the obtaining of  the spectral state of  the quasi-
relaxation phenomena, bounded by constants or 
coefficients that it is compute in the corresponding 

energy space of  signals s(t), or e(t), is to say, in 
the space L2(D(r, •

s )), it is reflexes in the norm of  
technology (given to nano-components like can 
be nano-crystal) given by [19] , and bounding the 
Langragian action given by Ec. (3), to know: 

(7)  

Where  is the foreseen action in the Theorem. 1. 1., 
and x(t), is a particle of  the material specimen M 
[19], with values in a = b = 2. The controls to 
(s, e)x(t) ,  are given for logs(t) and log (x(t)), [1], 
[6]. But the one that are isometries in the context 
of  L 2(G), (space of  measures obtained in the panel 
of  control of  the specimen-machine (see Figure 1).  

Figure 1. Specimen-machine to obtain the quasi-
relaxation state of  a material [5].

Figure 2. Spectral densities measured in space 
L2(D(r,

•

s )). Y(0.2 + 0.025exp(-t/7)), is the spectral 
density of  quasi-relaxation function of  j(t) = 0.2 + 
0.025exp(-t/7). It is have used the simulation program 

space-time 4.0.
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Table 1. Example of  Quasi-relaxation integral transforms table considering the factor /b dym 1, 
and using the substitution t’ = t - t.

Pair of  quasi-relaxation transforms

In to the our study is evident a bi-univocally 
correspondence between the quasi-relaxation 
function and their spectra through of  the 
corresponding transformation that it is establish into 
of  the space of  the material. By functional analysis 
it is can prove the uniquely of  this transformation, 
and using the characteristic of  energy given by our 
generalized functional Ec. (3), that involucrate the 
Laplace transform [7] , [19], that expresses the action 
of  the viscous-elasticity phenomena into of  quasi-
relaxation process, we can obtain un pair of  integral 
transforms to this study.      

Considering that in the research realized on quasi-
relaxation in metallic specimens [15], [16], [19], 
[22] it has been achieved identify to the condition 
of  meta-stability that define univocally a state of  
quasi-relaxation [5], through of  plastic deformation 
expressed by the plastic work (theorem II. 1), that invert 
the system of  machine-specimen to the deformation 
of  the nano-crystalline structure of  the metals risking 
the state of  the curves (the history of  deformation 
under stress s, to along of  time t) given by Ec. 
(4), whose quasi-relaxation function given by the 
distribution (distribution in the functional context), is

(8)  tttj t de t /

0

)()( -
∞

∫ Y=

where Y(t), is the density of  distribution of  the 
times of  relaxation or spectra of  relaxation [1], [18]. 

Given that these applications conforms a class of  
functions j(t), such that [7]

(9)  
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nucleus is K(t, t) = e-t/t, and due to that

(10)  

then exists two integral transforms of  quasi-
relaxation of  the curves s(t), under the regime 
of  plastic deformation given by (r), and with the 
following result:

Theorem (Bulnes F, Yermishkin V, and Stropovsvky 
Y) 3. 1[]. The nucleus K(t, t), defined to operator Itt, 
verify

1),(),( ≤Ω≤∫ qq
Specimen

CdtK tst

with = Vd PT = (t) 0 . Then  (t) = 0, , the 
pair of  transforms are:
                                                                           	
(11)
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Proof. By [7], [18] and [24].

dt
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Corollary 3. 1 (Bulnes F and Stropovsvky Y).  All quasi-
relaxation in the stress-deformation process is a 
response of  relaxation type with singulariries in the 
limit after of  obtains the meta-stable conditions in Mt. 
   
Proof. First we must demonstrate that a quasi-relaxation 
function is a response of  relaxation type. After, are 
necessary to show that this function have singularities 
in the limit after of  entre the meta-stability conditions 
yet with the residual relaxation effects given by the 
term e-gt. Using the quasi-relaxation transform given 
by  (11), and the hereditary integrals to a load given by 
U(t – t’), it is have that:

Thus is a function of  relaxation type, and only 
is relaxation into a finite interval [t0, t]. When it 
is carries the conditions of  stress outside of  this 
interval, we pass to the quasi-relaxation (we keep 
the load of  deformation e0U(t – t0)). Here it is had 
used the identity: 

   
)()()()( tUtdt

t

-=-∫
∞-

tjttdtj

and also the fact of  that

For other side, the singularities are confined in 
the negative part of  real axis. This want to say in 

terms of  quasi-relaxation, that in the meta-stable 
conditions only these singularities it is see reflected 
in the imaginary part of Y(p). Relating of  two 
quasi-relaxation spectra (is to say the Y(t), and 
their complex extension), we have by the Carson 
transform [18], [24], that:

(13) 

and their inverse:

(14) 

The singularities of  Y(p)/p, must be considered like 
simple poles (due to that the j(t) must be character 
like response of  type quasi-relaxation yet in the 
conditions to infinite). Then could be given by the 
sum of  terms of  the form Gn e

gnt, gn   0, where the 
sum could be finite or infinite. This can be written in 
terms by the like quasi-relaxation spectra:

(15) llj l deht t-
∞

∫=
0

)()(

with h(l) = Sn Gn d(l + sn), (that is a of  the 
solutions proposed in the table 1) and given that by 
the hereditary integrals a quasi-relaxation function 
is precisely the function of  relaxation type obtained 
by j(t).  A important characteristic of  j(t), is that 
monotonic non-decreasing function and  have 
not oscillatory terms. This goes agree to the 
observations of  the curves of  stress-deformation 
schematized in the figure 7. Then in the meta-
stability conditions (after the simple relaxation), is 
to say with quasi-relaxation, the function j(t), takes 
the form, consider the complex extension of  their 
spectra by (14):

          

(16) 
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Figure 3. i). Quasi-relaxation curves for Molybdenum single crystal: 1.- σ0 = 396 MPa, 2.- σ0 = 346 MPa, 3.- σ0 

=292 MPa, 4.- σ0 = 208 MPa. Mo <100> {100}, at T= 293 ˚C, [19]. ii). Image of  the electronic microscope of  
high voltage, HVTEM  of  Molybdenum single crystal in regime of  quasi-relaxation.

always with a = (p/2) + cos-1(h/r).  The second 
term of  (16) yields Y(0) = Y(  ). The first and 
third terms can be combined; using the fact that 
Y, of  p-conjugate equals the conjugate of  Y (p), 
to give:

(17)  

that which is:

(18)  ll l deht t-
∞

∫=∞Y-Y
0

)()()(
                                       
is to say, it is conserve the relaxation characteristic 
to our quasi-relaxation function, yet after the 
simple relaxation and with their singularities. This 
has proved the result. 

Of  (18), it is have calculated [24] that,

This last spectrum appears in the study of  the 
relaxation in polymeric materials like hard rubbers. 
But this is equivalent to spectra due to the plastic 
energy that is accumulate in metals in the quasi-
relaxation process before of  the dislocations, save 
the multiplicative coefficient of  dislocations  a [5]. 

Meromorphic curves 
in the quasi-relaxation spectra

The spectral function Y(p), have cuts in the quasi-
relaxation curves due to entre of  dislocations phase 
due increasing of  plastic energy in all crystals of  the 
metal. These curves are analytic in all domain except 
in singular points l = 0, or p   , when  the quasi-
relaxation spectra satisfies with help of  the Laplace 
transform that Y(p)F(p) = p2, where the function 
F(p), is the fluency spectra corresponding to the 
fluency function that appear after of  increasing 
too much to  the sliding dislocations being possible 
detect the plastic deformation to macroscopic level. 
The factor p2, define the duplicity of  these actions 
through of  relation between both functions [18], 
(see the corresponding Carson transform to the 
two functions j(t), and y(t), and their functional 
relation, [24]).   

Conclusions

The introduction of  the integral transforms in the 
quasi-relaxation study helps to establish with major 
precision the limits of  the existence of  the quasi-
relaxation of  a material summated to a constant load 
in a interval to along of  the time, before off  to risk 
arrive to the accumulation plastic energy necessary 
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Figure 4.  Meromorphic curves of  quasi-relaxation. These are obtained by experiments of  metal specimens under 
big stress obtaining [5]. These experimental results proved that our quasi-relaxation functions have ideal behavior 
very seemed to that obtained in the reality (compare these curve with the curves of  the figure (4)), save the some 

singularities due to the entered of  the hyperbolic part contemplated of  the functions (31). 

to the crystalline dislocations in metals and after of  
this stage. The quasi-relaxation spectra also give of  
support analytic information on the meromorphic 
behavior of  the quasi-relaxation curves use to 
obtain information that can be codified in the 
field of  the complex frequencies to their possible 
material decoding and with it open the possibility 
of  manipulate in this meta-stable state to the 
material, being able to fill codes that can facilitate 

the transformation of  the metals and their alloys 
[15], [22]. The quasi-relaxation conditions help to 
obtain special properties of  the metals, likewise 
some alloys. For example, a of  the alloys obtained 
to the program of  spatial research in Russia, with 
the object of  obtain metals with anti-corrosive 
memory and lightness (and the same time to 
support major temperatures to 650°, for example, 
in the turbines of  the reaction airplanes) [10], are 

	 a)	 b)	           c)	      d)

Figure 5. a). j(t, s) = 1 + 0.5exp(-t/s), with stress tensor s = U(t’), with t’ = t - s. b). Surface of  quasi-relaxation 
function j(t, s) = 0.02 + 0.0025exp(-t/s). Observes the curves of  quasi-relaxation in the plane XZ, accord of  the 
curves predict in figure 4, after of  a fatigue to Aluminum with Magnesium (Yerminshkin). c). Quasirelaxation surface 

with quasirelaxation curves in black such like the predicted in figure 2, with stress s = exp(-3t) + 1/s, in the 
plane YZ, with the fatigue time t = 50 seconds to AMr-6B. d). s = sR + 1/lg t, with sR = Heaveside(t) + 10/lg(s), 
Observes the curves of  quasi-relaxation in the plane YZ, accord of  the curves predict in figure 4, after of  the 

fatigue to t = 50 seconds.
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the experiments on a alloy of  Zr + 2.5%Nb, after 
of  the quasi-relaxation in the which it is observes 
fine segregations of  the phase II, in a considerable 
count of  effects of  agglomeration. Using our 
transforms (13) and (14), we can demonstrate that 
the behavior of  increasing of  the analytic curves it 
is give this material like [5]:

(19)  4

0)( tet βξξ =

that which have behavior into of  the family 
of  curves, s(t) = s0e

-gt. This is due to the big 
capacity of  resistance of  the material Nb [10]. In 
the Russian aerospace industry they are studying 
diverse metallic alloys to establish ranges of  meta-
stability in the deformation fields produced by 
the materials proposed [9], [10]. It wants obtain 
lightness materials and more resistant to the 
corrosion and deformations. Go of  remains to 
mention that in the last researches, considering 
the analytic characterization proposed by Bulnes 
and Yerminshkin [5], [19], it is want like priority 
the development of  precise methods on the 
multiple manipulations that we can realize of  
the metals in the meta-stable regime using the 
pre-disposition that these presents in accumulate 
energy to can realize actions like re-programming 
their nano-crystal structure and think in the 
possibility of  obtain nano-technological 
transformations of  the materials [], using their 
spectral encoding. Finally we believe that the use 
of  inverse methods of  the functional analysis 
in material physics can to help to development 
and obtaining of  a complete theory of  quasi-
relaxation to characterization and transformation 
of  materials of  any nature [15], [19].            
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