
2005), vegetation index (Mercante et al., 2010) and 
soil parameters (Garcia-Paredes et al., 2000) are often 
utilized. Models differ according to the nature of the 
explanatory variables used in the modeling process, for 
which a review on model categories in use can be found 
in Vera-Diaz et al. (2008). 

Considering that determining the values of certain 
variables is often a burdensome and arduous task, in 
some cases analyses are carried out on small samples1. 
This fact may call into question the inferences being 
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Introduction

Soybean (Glycine max (L.) Merrill) is one of the 
most economically significant crops worldwide 
(Kulcheski et al., 2016), and multiple linear regression 
models are constantly being developed to partially 
explain yield variations in that crop. When modeling 
soybean yield, variables concerning agricultural mete-
orology (Penalba et al., 2007; Tao et al., 2008), agri-
culture (Zheng et al., 2009), management (Lobell et al., 

1  There is no accepted definition of what constitutes a small sample, as such sample size depends on a number of factors, including 
the reliability of the estimate, and the relative variance of the variable under consideration (Levy & Lemeshow, 1980). Aiken & 
West (1991) regarded n ≤ 60 as a small sample, whereas Ireland (2010) considered n ≤ 30.
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ymptotic method in small samples. Although bootstrap 
is a well-known technique and is frequently employed 
in agricultural studies – as seen in works by Sabaghnia 
et al. (2010), García-Gallego et al. (2015), Losada et al. 
(2015) and Sutton et al. (2016) – the development of 
statistical and computing models has led to the study of 
new techniques based on the bootstrap method.

The objective of this work was to utilize bootstrap 
methods to select explanatory variables, investigate the 
existence of influential points through diagnostic 
analysis, and obtain confidence intervals for the pa-
rameters of a multiple linear regression model for 
soybean yield considering physical and chemical soil 
properties as explanatory variables. 

Material and methods

Study area and data

The data used are from the agricultural year 
2013/2014 and from a commercial farming area of 
167.35 hectares located in the western region of Paraná, 
Brazil, near the city of Cascavel, with center coordinates 
latitude 24°57’18’’S and longitude 53°34’29’’W and 
average altitude of 714 m (Fig. 1). Climate in the region 
is mesothermal and super humid temperate, climate type 
Cfa (Koeppen) and soil is classified as a dystropheric 

made, since traditional inference methods are asymp-
totic and standard errors and confidence intervals may 
be biased in small samples, as explained by Hao & 
Naiman (2010). Adopting more parsimonious models 
and determining influential points, are procedures that 
can also provide misleading results when working with 
small sample sets. Kamo et al. (2013) explain that the 
Akaike information criterion - AIC (Akaike, 1973) used 
for model selection presents a bias that cannot be ig-
nored, especially with small samples, given that it is 
derived from asymptotic properties. Regarding the 
diagnostic measures of overall influences one problem 
is related to its cutoff points. According to Martin & 
Roberts (2010) they are based on large sample theory 
and therefore may not be suitable for small samples.

An alternative to traditional inference methods is the 
use of the bootstrap, a simulation method developed by 
Efron (1979) which uses resampling with replacement of 
the sample data set to perform statistical inferences such 
as hypothesis testing and determination of confidence 
intervals (Dubreuil et al., 2014). The bootstrap method 
has applications in regression analysis (Rahman, 2014), 
model selection (Al-Marshadi, 2011) and definition of 
global influence diagnostics (Beyaztas & Alin, 2013).

By comparing the results obtained from bootstrap 
methods with results of asymptotic methods, Chaves-
Neto & Faria (2015) conclude that bootstrap performed 
well in samples of all sizes and was higher than the as-
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centile method (Efron, 1982) and BC (bias corrected) 
(Efron & Tibshirani, 1986). The Efron’s percentile 
interval with confidence level (1 – α)% was obtained 
by ordering the bootstrap replicates from the parameters 
θ̂i*, i = 1,…,B, and excluding (α/2)% from the replicates 
situated in its ends. The technique employed to build 
the BC confidence interval utilizes a value known as 
constant-bias-correcting to fit the bootstrap distribution 
of θ̂; a roadmap to determining this interval can be 
found in Shasha & Wilson (2011). 

Models selection using bootstrap

For the models selection the bootstrap method was 
used as proposed by Austin & Tu (2004), and pre-
sented in Algorithm 2, which combines bootstrap 
resampling with automated methods of variables se-
lection.

Algorithm 2: Models selection method using boot-
strap.

(a) Consider the matrix [Y,X] formed with the 
original data; (b) get B resamples of the previous 
matrix using the paired bootstrap method; (c) for each 
resample adjust one model and apply the backward 
method via AIC; (d) for each variable determine how 
often it was selected in the B models and the percent-
age of times in which estimated parameters presented 
positive and negative signs; (e) use the results of the 
previous step to determine candidate models and se-
lect the best model.

Global influence diagnostics using bootstrap 
in the response variable

In order to investigate the existence of influential 
points it was held the method proposed by Martin & 
Roberts (2010), bearing in mind the Cook’s distance 
- Di (Cook, 1977) as a measure of influence. Algorithm 
3 shows the method proposed by Martin & Roberts, 
which is based on JaB (jackknife-after-bootstrap) tech-
nique developed by Efron (1992). 

Algorithm 3: Determining cutting point Di using JaB. 
(a) Adjust the proposed model to the original data-

set and estimate Di, i = 1,…,n; (b) build B bootstrap 
samples using paired bootstrap method; (c) (JaB step) 
for each xi sample of the original dataset consider the 
bootstrap samples set which do not contain the xi 

red latosol with clay texture (EMBRAPA, 2013). Given 
a set of 30 Prod (soybean yield, t/ha) points uncorre-
lated the randomness was confirmed by the runs-test 
algorithm for randomness (Siegel, 1956). The respective 
values of the explanatory variables SRP1, SRP2 and SRP3 
(soil penetration resistances, MPa, from 0 to 0.1 m, 0.1 
to 0.2 m and 0.2 to 0.3 m depths, respectively), Ca (cal-
cium, cmolc/dm3), Mg (magnesium, cmolc/dm3), K 
(potassium, mg/dm3), P (phosphorus, mg/dm3), Mn 
(manganese, mg/dm3), Des1, Des2 and Des3 (soil densi-
ties, g/cm3, from 0 to 0.1 m, 0.1 to 0.2 m and 0.2 to 0.3 m 
depths, respectively) have all been considered for each 
productivity value. The use of physical and chemical 
soil properties as explanatory variables is common prac-
tice in field surveys, as variations in soil properties ac-
count for most of crop yield variations, according to 
Khakural et al. (1999).

Exploratory analysis and modeling 

Descriptive statistics of the variables under study 
were calculated and a multicollinearity2 analysis of the 
explanatory variables was performed. A multiple lin-
ear regression model was built to describe the relation-
ship between soybean yield and soil properties, with 
parameters estimated by the ordinary least squares 
(OLS) method. 

Paired bootstrap

To determine the bootstrap replicates of the param-
eters of the regression model we used the paired boot-
strap method (Freedman, 1981), presented in the fol-
lowing algorithm.

Algorithm 1: Paired bootstrap. 
(a) Consider the matrix [Y,X] formed with the 

original data; (b) get a new matrix [Y*(1),X*(1)] making 
a resampling with replacement of matrix rows [Y,X]; 
(c) find β̂*(1) from [Y*(1),X*(1)] in the same manner as 
β̂ is calculated from the original data [Y,X]; (d) Get the 
bootstrap distribution calculating β̂*(b) , b = 1,…,B.

Confidence intervals using bootstrap

In order to determine the bootstrap intervals for the 
parameters of the regression models we used the per-

2   Multicollinearity refers to high correlation among the independent variables and its existence tends to inflate the variances of the 
parameter estimates (Freud & Littell, 2000).  Multicollinearity is often measured by diagnostics called variance inflation factors 
(VIF = 1/1 – R2) where the R2 is the coefficient of determination of the regression of independent variable x on all other independent 
variables in the postulated model. As a rule of thumb, when the VIF >10 we conclude that multicollinearity is a problem and that 
we should not base our decisions on the magnitude and sign of the regression coefficients (Hoerl & Snee, 2012).
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Computing resources

The analyses carried out in this work were developed 
in R statistical software (R Core Team, 2014). The boot-
strap replicates used to determine the empirical distribu-
tions of model parameters were determined by the func-
tion lm.boot of package simpleboot (Peng, 2008), and 
confidence intervals were implemented manually. In 
order to determine the statistics related to the model 
selection method, function boot.stepAIC of package 
bootStepAIC was used (Rizopoulos, 2009). The algo-
rithm utilized to determine the cutoff point for Cook’s 
distance bootstrap was implemented with Cook’s dis-
tance calculated by function cooks.distance of package 
stats, and JaB graphs were implemented by the authors.

Results

Descriptive statistics of the explanatory variables 
indicated homogeneous behavior of the variables, with 
no multicollinearity found. The multiple linear regres-
sion model of soybean yield, estimated through OLS 
considering all explanatory variables (Eq. [3]), showed 
an adjusted coefficient of determination (R2

Adj) of 0.41 
and root mean square error (RMSE) of 0.33.

Prod = �8.858 – 0.271SRP1 + 0.117SRP2 – 0.003SRP3 + 0.288Ca – 0.367Mg 
+ 1.208K – 0.067P – 0.012Mn – 0.629Des1 – 2.684Des2 + 0.925Des3.	

[3]

It could be observed that estimates for those parameters 
associated with SRP1, SRP3, Des1 and Des2 variables 
showed negative signs, indicating that an increase in the 
value of these variables implies a reduction in soybean 
yield (Eq. [3]). The parameters estimation associated to 
SRP2 and Des3 variables from the Eq. [3] showed differ-
ent signals from the expected scenario, since it indicates 
a direct relation from such variables towards soybean 
productivity (Eq. [3]). The positive estimate signal, from 
the associated parameter of the variable K, indicates that, 
while maintaining other variables constant, an increase in 
one unit in the K variable produces an increase in soybean 
productivity, at a rate of 1.208 t/ha (Eq. [3]). The bootstrap 
intervals were determined with reliability of 95% for the 
parameters of the multiple linear regression model using 
the techniques of bootstrap percentile by Efron and BC 
bootstrap (Table 1).

It was observed that the vast majority of the confi-
dence intervals, determined by the bootstrap technique, 
contained zero indicating, that with exception of the 

sample (approximately B/e groups3) and for each 
sample of this group estimate the n values for Cook’s 
distance; group all n·(B/e) values into a single vec-
tor; (d) the quantile 2.5% and 97.5% of the distribu-
tion generated by n·(B/e) values of Cook’s distanc-
es are used as cutting points and if the Di value is 
outside this interval then xi is marked as an influen-
tial point.

Jackknife-after-Bootstrap graphic

The JaB technique provides another resource for 
establishing the effect of individual observations on 
the bootstrap distribution through development of the 
JaB plot (Efron, 1992). Based on the original [Y,X] 
dataset, consider the dataset [Y(i),X(i)] obtained by 
deleting the i row in the original dataset and calculate 
the statistic of interest, denoted by s(i). The jackknife 
influence function for the statistic of interest is de-
fined by:

	 ui {s} = (n –1) (s(.) – s(i)), 	  [1]

where s(.) = s( i)i=1

n∑⎡⎣⎢ ⎤
⎦⎥ / n .

Intuitively, points with high positive or negative 
values of ui{s} have a high influence on the calculated 
statistic. To provide a clearer interpretation, the relative 
jackknife influence function shown in Eq. [2] is com-
monly used, being the number two the value established 
as the cutoff point (Efron, 1992). These values are 
ascending ordered and marked on the abscises axis.

	
ui↑{s}= ui{s}/ ujj∑ {s}2 / (n−1)⎡

⎣
⎤
⎦
(1/2)

.	 [2]

After calculating the jackknife influence values for 
each point i, of the dataset, seven ordered pairs are de-
termined, namely (ui

↑ {s}, Pk), k = {5,10,16,50,94,90,95} 
where Pk represents the k-th percentile of the bootstrap 
distribution formed with bootstrap replicates calcu-
lated from those bootstrap samples which do not have 
point i. For each percentile the neighboring ordered 
pairs are linked thus forming graphics, which are com-
pared with dashed line segments perpendicular to the 
ordinate axis in points Pk, k = {5,10,16,50,84,90,95}, 
calculated from full bootstrap distribution formed by 
3000 bootstrap replicates. The analysis is performed 
highlighting those points surpassing the cutoff point 
and comparing bootstrap distributions.

3   Given the sample set {y1,…,yn} the probability of yj not being included in a bootstrap sample is (1-n-1)n = e-1, thus in B bootstrap 
samples the number of simulations that do not include yj is approximately B.e-1 (Davison & Hinkley, 1997). Thus, if we want to 
determine whether an individual data point is influential or not, and to obtain 1000 resamples without this individual data point, 
about 1000e ≈ 3000 resamples are required (Beyaztas & Alin, 2013).



Spanish Journal of Agricultural Research� September 2016 • Volume 14 • Issue 3 • e0207

5Soybean yield modeling using bootstrap methods for small samples

that this variable is not significant, therefore, can be 
deleted without causing damage to the modeling. A 
similar case occurs with SRP3 variable, as well as being 
selected in only 460 models, the appropriate sign of its 

variable P, the other explanatory variables may not be 
individually significant. In search for a more appropri-
ate multiple linear regression model it was applied the 
model selection method using bootstrap considering 
1000 resamples (Table 2). It was observed that, of the 
1000 models for which bootstrap resamples had been 
adjusted, by applying the backward selection method 
with statistical Akaike – AIC to each of them, the result 
showed that in 91% of the models the predictor vari-
able P was selected, indicating that phosphorus is an 
important soil attribute for soybean yield prediction. 
Furthermore, it was observed that in 100% of models 
in which phosphorus had been selected, its estimated 
parameter was negative, which ensures that when other 
variables are held constant an increase in phosphorus 
level implies reduction of soybean yield.

Other variables selected for most models were Des2 
with a selection percentage of 87%, Ca with 81% and 
SRP1 with 79%. Analyzing the signs of the estimated 
parameters associated with these variables in the models 
in which they were selected it is highlighted that in 94% 
of models in which the Ca variable was selected the sign 
of its estimated parameter was positive, suggesting the 
increase in value of this variable contributes for increas-
ing soybean yield. For those estimated parameters as-
sociated with SRP1 and Des2 variables, in 98% of models 
in which they were selected the signals were negative. It 
is clear that some variables may not be useful to explain 
soybean yield behavior. For example, among the 1000 
models obtained, the Des1 variable was selected in only 
500 and additionally for 180 of those the estimated pa-
rameter sign was positive and for 320 of those the sign 
was negative, thus, this set of oscillations is a guarantee 

Table 1. Nonparametric bootstrap 95% confidence intervals for the parameters of the multiple regression 
linear model of soybean yield considering all explanatory variables. 

Parameters[1]
Efron’s percentile BC[3] 

θ̂i θ̂u Amplitude[2] θ̂i θ̂u Amplitude

βSRP1
-0.547 0.130 0.677 -0.530 0.197 0.727

βSRP2
-0.457 0.750 1.208 -0.423 0.798 1.221

βSRP3
-1.260 0.923 2.183 -1.336 0.888 2.224

βCa -0.214 0.685 0.898 -0.268 0.643 0.911
βMg -1.219 0.589 1.808 -1.168 0.654 1.821
βK -4.771 6.607 11.378 -5.463 5.928 11.390
βP -0.150 -0.007 0.143 -0.160 -0.012 0.147
βMn -0.027 0.008 0.035 -0.025 0.009 0.035
βDes1

-4.412 5.076 9.487 -3.937 6.213 10.150
βDes2

-6.426 0.585 7.012 -6.505 0.524 7.029
βDes3

-2.052 2.872 4.925 -2.677 2.498 5.175
Intercept 2.903 13.952 11.049 2.965 14.279 11.314
[1]βi: parameters associated with the variable i = {SRP1, SRP2, SRP3, Ca, Mg, K, P, Mn, Des1, Des2, Des3}; SRP1, 

SRP2 and SRP3: soil penetration resistances, MPa, from 0 to 0.1 m, 0.1 to 0.2 m and 0.2 to 0.3 m depths, respec-
tively; Ca: calcium, cmolc/dm3; Mg: magnesium, cmolc/dm3; K: potassium, mg/dm3; P: phosphorus, mg/dm3; Mn: 
manganese, mg/dm3; Des1, Des2 and Des3: soil densities, g/cm3, from 0 to 0.1 m, 0.1 to 0.2 m and 0.2 to 0.3 m 
depths, respectively; [2]Amplitude:  θ̂u – θ̂l;  θ̂l: lower limit; θ̂u: upper limit; [3]BC: bias corrected.

Table 2. Selection percentage of variables and percentage of 
positive and negative signs of the estimated parameters ob-
tained by applying the backward method via Akaike informa-
tion criterion (AIC) in 1000 models generated by bootstrap.

Selection percentage Signs of the estimated parameters

Variables[1] pct Parameters[2] pct + pct –

P 91 βP 0 100
Des2 87 βDes2

2 98
Ca 81 βCa 94 6
SRP1 79 βSRP1

2 98
Mn 75 βMn 6 94
Mg 71 βMg 9 91
Des3 61 βDes3

80 20
Des1 50 βDes1

36 64
K 48 βK 84 16
SRP3 46 βSRP3

50 50
SRP2 42 βSRP2

78 22
[1]SRP1, SRP2 and SRP3: soil penetration resistances, MPa, from 
0 to 0.1 m, 0.1 to 0.2 m and 0.2 to 0.3 m depths, respectively; Ca: 
calcium, cmolc/dm3; Mg: magnesium, cmolc/dm3; K: potassium, 
mg/dm3; P: phosphorus, mg/dm3; Mn: manganese, mg/dm3. Des1, 
Des2 and Des3: soil densities, g/cm3, from 0 to 0.1 m, 0.1 to 0.2 m 
and 0.2 to 0.3 m depths, respectively; [2]βi: parameter associated 
with the variable i = {P, Des2, Ca, Mn, Mg, Des3, Des1, K, SRP3, 
SRP2}; pct: selection percentage; pct+: percentage of positive 
signs; pct-: percentage of negative signs.
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that obtained when considering the model containing all 
the explanatory variables (R2

Adj = 0.41). The M75 (R2
Adj = 

0.42) and M71 (R2
Adj = 0.49) models provided a greater 

degree of explanation between the explanatory variables 
and soybean yield than the full model, while the M79 (R2

Adj 
= 0.41) model provided an equivalent level of explanation, 
however, these models had a higher RMSE compared to 
the complete model (RMSE = 0.33) and that difference 
is most evident in the M79 model (RMSE = 0.39). As the 
M71 model explained 49% of the soybean yield variation 
and RMSE of this model (RMSE = 0.34) is close to 
RMSE of the complete model (RMSE = 0.33) the M71 
model was chosen as best adjusted model to soybean yield 
and analysis was performed using JaB to investigate the 
existence of influential points.

It is noteworthy to mention no points were detected 
as influential when value 1 is established as the cutoff 
point (Fig. 2). The same is true when considering the 
criteria that detects point i as influent if Di is higher than 
the median of the distribution F of Snedecor with free-

estimated parameter cannot be identified considering 
that 230 models had a positive sign and 230 had a nega-
tive sign. As per the parameters estimates associated to 
SRP2 and Des3 variables, it showed opposite signals from 
the expected scenario (Eq. [3]), it is desirable to verify 
the importance of such variables for modeling purposes. 
Although the positive signals from the associated esti-
mated parameters to such variables appear in a great part 
of the models (80% and 78%, respectively), the selection 
percentages were not very elevated (61% and 42%, re-
spectively) and, therefore, there were evidences that they 
were not significant and could be removed from modeling 
(Table 2). In view of these observations four models were 
set to be analyzed, namely M81, M79, M75 and M71 
(Table 3), and each of them was determined according 
to a number of explanatory variables selected in accord-
ance with how many times they had been selected in the 
bootstrap models.

Regressors present in the M81 model can explain only 
37% of the soybean yield variation, a result lower than 

Table 3. Parameters estimation and statistics for the multiple regression linear models of soybean yield.

Models[2]
Parameters[1] Statistics

Intercept βP βDes2
βCa βSRP1

βMn βMg R2
Adj RMSE

M81 7.827 -0.079 -1.994 0.099 0.37 0.41
M79 8.482 -0.074 -2.185 0.103 -0.162 0.41 0.39
M75 8.894 -0.067 -2.346 0.146 -0.179 -0.007 0.42 0.37
M71 9.220 -0.076 -2.367 0.356 -0.221 -0.012 -0.479 0.49 0.34

[1]βi: parameter associated with the variable i = {P, Des2, Ca, SRP1,Mn, Mg}; P: phosphorus, mg/dm3; Des2: soil density, g/cm3, from 0.1 
to 0.2 m depth; Ca: calcium, cmolc/dm3; SRP1: soil penetration resistance, MPa, from 0 to 0.1 m depth; Mn: manganese, mg/dm3; Mg: 
magnesium, cmolc/dm3; [2] Mi: model containing the variables selected in at least i = {81, 79, 75, 71}% of the bootstrap models; R2

Adj: 
adjusted coefficient of determination; RMSE: root mean square error.

Figure 2. Determination of influential points using Cook’s distance (Di) with JaB methodology. Points that 
cross the dashed line are considered influent according to Cook’s distance (Di), while points outside the 
bootstrap interval are considered influent from jackknife-after-bootstrap (JaB) analysis.
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detected as being influential through analysis using 
Cook’s distance (Di) with JaB methodology.

JaB graphs were created to help identify influential 
points, they give a visual interpretation of how a par-
ticular point affects the bootstrap distribution for the 
estimation of parameters in M71 (Fig. 3). Observing the 
graphs in Fig. 3, it was noted that points 10, 15, 23 and 
29 were detected as influent.

dom degrees of p = 6 and n - p = 24 once the cutoff point 
is 2.50 to these, thus they were also not detected as in-
fluential points. Considering 4/n ≈ 0.13 as cutoff point, 
the points 15, 23 and 29 were detected as influential 
indicating these points can change the estimation of the 
parameters in the regression model, so it is important to 
investigate the model behavior without the use of these 
points. It should be emphasized that only point 23 was 

Figure 3. Jackknife-after-bootstrap (JaB) plots for the parameter estimates associated with the explicative variables SRP1: soil penetration 
resistances from 0 to 0.1 m (a), Ca: calcium (b), Mg: magnesium (c), P: phosphorus (d), Mn: manganese (e) and Des2: soil densities from 
0.1 to 0.2 m (f) of the model containing the variables selected in at least 71% of the bootstrap models (M71). ui

↑ {s}: Values of the relative 
jackknife influence function in growing order. Pk: k-th percentile of the bootstrap distribution, k = {5,10,16,50,84,90,95}. The vertical 
dashed lines that pass through values -2 and 2 represent the cutoff interval. The points allocated outside this interval are shown in the up-
per part of each graph and their relative jackknife influence values are highlighted with vertical dashed lines. The red lines represent the 
variations in these percentiles and the intersections with the blue dotted line representative of point i represent the percentiles obtained 
when the bootstrap distribution is formed with the bootstrap replicates calculated from the bootstrap samples that do not contain point i.
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it was decided to choose the M71-{10,15,23,29} model as the 
best model suited to soybean yield and determine boot-
strap confidence intervals for the parameters associ-
ated with the explanatory variables (Table 5).

By comparing the confidence intervals of parameters 
of the M71-{10,15,23,29} model with the respective intervals 
obtained from the multiple linear regression model 
generated with all the explanatory variables and all 
sampling points (Table 1) it can be observed that re-
gardless of the bootstrap method used the confidence 
intervals of parameters for the M71-{10,15,23,29} model had 
lower amplitude, indicating estimates of this model was 
more accurate.

Discussion

The average soybean productivity in the monitored 
area (4.305 t/ha) is considered high compared with other 
regions, according to data from CONAB (2015) in the 
agricultural year 2013/2014 average productivity in 
Brazil was 2.854 t/ha and in Paraná was 2.950 t/ha. 

The negative sign of estimates for parameters as-
sociated with SRP1, SRP3, Des1 and Des2 variables (Eq. 
[3]) are expected once soil density (Des) shows a direct 
relationship with SRP (Busscher et al., 1997), and as 
SRP has great influence on plant growth, root growth 

Two new models were adjusted to the variables P, 
Des2, Ca, SRP1, Mn, Mg as to measure the effect of 
influential points in modeling. The M71-{15,23,29} model 
was adjusted to the data set without points (15, 23, 29), 
as these were detected as influential by traditional Cook 
distance method with cutoff point of 4/n. The M71-{10,15,23,29} 
was also adjusted to the data set without points (10, 15, 
23, 29) for these were considered as influential by 
analysis using JaB (Table 4).

The M71-{15,23,29} model adjusted to data set without 
sample elements 15, 23 and 29, which were identified 
as influential by the traditional method, is more expli-
cative than M71 model attained from the complete set 
of points for after removal of these points the percent-
age of soybean yield variation that can be explained by 
the regressors increased from 49% to 63% (Table 4). 
When considering M71-{10,15,23,29} model prepared without 
points 10, 15, 23 and 29 it was observed that the ad-
justed coefficient of determination (0.65) was higher 
than the adjusted coefficient of determination obtained 
from M71-{15,23,29} model, resulting in a more explana-
tory model. When comparing RMSE of M71-{15,23,29} and 
M71-{10,15,23,29} models (Table 4) it was emphasized that 
the identification of point 10 as influential and its with-
drawal from the data set as a result corroborated reduc-
tion of this statistic, thus resulting in a more accurate 
model for making predictions. In view of these results 

Table 4. Parameters estimation and statistics for the multiple regression linear models considering the exclusion of influential points.

Models[2]
Parameters[1] Statistics

Intercept βP βDes2
βCa βSRP1

βMn βMg R2
Adj RMSE

M71-{15,23,29} 7.453 -0.080 -1.335 0.405 -0.131 -0.013 -0.608 0.63 0.24
M71-{10,15,23,29} 7.971 -0.080 -1.618 0.414 -0.169 -0.012 -0.635 0.65 0.23
[1]βi: parameter associated with the variable i = {P, Des2, Ca, SRP1,Mn, Mg}; P: phosphorus, mg/dm3; Des2: soil density, g/cm3, from 0.1 
to 0.2 m depth; Ca: calcium, cmolc/dm3; SRP1: soil penetration resistance, MPa, from 0 to 0.1 m depth; Mn: manganese, mg/dm3; Mg: 
magnesium, cmolc/dm3; [2] M71-{15,23,29}: adjusted model to the dataset without the points (15,23,29); M71-{10,15,23,29}: adjusted model to the 
dataset without the points (10,15,23,29); R2

Adj: adjusted coefficient of determination; RMSE: root mean square error.

Table 5. Nonparametric bootstrap 95% confidence intervals for the parameters of the M71{10,15,23,29} model.

Parameters[1]
Efron’s percentile BC[3] 

θ̂i θ̂u Amplitude[2] θ̂i θ̂u Amplitude

βP -0.119 -0.053 0.065 -0.122 -0.055 0.067
βDes2

-2.461 0.230 2.691 -2.580 -0.073 2.508
βCa 0.117 0.597 0.480 0.141 0.613 0.472
βSRP1

-0.326 -0.011 0.316 -0.319 0.016 0.335
βMn -0.021 0.000 0.021 -0.021 0.000 0.021
βMg -2.461 0.230 2.691 -2.580 -0.073 2.508
Intercept 5.088 9.601 4.512 5.149 9.727 4.579
[1]βl: parameter associated with the variable i = {P, Des2, Ca, SRP1, Mn, Mg}; P: phosphorus, mg/dm3; Des2: soil 
density, g/cm3, from 0.1 to 0.2 m depth; Ca: calcium, cmolc/dm3; SRP1: soil penetration resistance, MPa, from 0 to 
0.1 m depth; Mn: manganese, mg/dm3; Mg: magnesium, cmolc/dm3; [2]Amplitude:  θ̂u – θ̂l;  θ̂l: lower limit;  θ̂u :upper 
limit. [3]BC: bias corrected.
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model selected by the Akaike criterion is not super-
parameterized, which can occur when the amount of 
samples is small.

Analyzing Fig. 3a, the graph of the bootstrap distri-
bution of the parameter estimates associated with the 
variable SRP1, it is seen that points 15 and 10 are de-
tected as influential. Point 15 has a negative influence 
(-3.7) and its removal reduces bootstrap distribution 
amplitude, a fact that occurs mainly due to a shift in 
the initial percentiles if one considers the empirical 
distribution formed with 3000 replicates, P5 = -0.373, 
P10 = -0.330, P16 = -0.302 and considers the empirical 
distribution formed only by bootstrap replicates with 
bootstrap samples not containing point 15 (1124 sam-
ples), P5 = -0.336, P10 = -0.295, P16 = -0.270. The influ-
ence of point 10 is positive (2.6). It is observed that 
when considering the bootstrap distribution formed 
with those bootstrap samples that do not contain point 
10 (1039 samples) the values considered percentile 
decrease, causing distribution displacement and reduc-
tion of its range from 0.865 to 0.727.

JaB graph in Fig. 3b for Ca variable indicated point 
23 as negative influence (-2.8) and point 15 as positive 
influence (3.5), thus withdrawal of these points also 
causes changes in the empirical distribution of boot-
strap estimates. After disregarding bootstrap replicates 
obtained from bootstrap samples which had point 23, 
the initial percentiles increased and the distribution 
range went from 1.214 to 0.999; and after disregarding 
those replicas obtained from samples containing point 
15, there was a reduction in values of final percentiles, 
which also reduces the amplitude of the empirical dis-
tribution. Analyses of other graphs (Figs. 3c through 
3f) are similar and indicate point 15 has a negative 
influence on bootstrap distributions of the parameters 
associated with the Mg, Mn and Des2 variables; it also 
indicates point 23 has a positive influence on bootstrap 
distributions of the parameters associated with Mg and 
Mn variables and a negative influence on bootstrap 
distribution of the parameter associated with variable 
P. Point 29 has a positive influence on bootstrap distri-
bution of the parameter associated with variable P and 
point 10 has a positive influence on bootstrap distribu-
tion of the parameter associated with variable Des2.

Comparing all the points that were detected as in-
fluential in JaB graphs (Fig. 3), it is clear the sampling 
member 15 stands out due to its influence on most 
bootstrap distributions of estimated parameters, only 
the distribution of the parameter associated with the 
variable P is not influenced by excluding this element. 
The sample elements 23 and 10 also stood out as in-
fluential on various confidence intervals and the sam-
ple element 29 is the least influential of the four. By 
taking sample element 29 out of the empirical distribu-

and crop yields vary inversely proportional to its value 
(Freddi et al., 2006). The parameters estimation as-
sociated to SRP2 and Des3 variables show opposite 
signals from the expected scenario; however, since it 
is verified that multicollinearity was non-existent, it is 
also prudent to investigate the significance of such 
variables. The positive estimate signal from the associ-
ated parameter to K variable is expected, once and in 
accordance with Pettigrew (2008), potassium is one of 
major nutrients considered essential for crop growth 
and yield development.

The comparison of confidence intervals can be done 
in terms of their amplitudes according to Paes (1998), 
to whom a high amplitude interval indicates reduced 
accuracy of estimation as compared with a range of 
lower amplitude, thus comparing the two techniques 
bootstrap confidence intervals (Table 1) it is clear the 
intervals obtained by Efron percentile technique 
showed lower amplitude and therefore is the most ac-
curate. Given the fact that zero is present in most of 
the confidence intervals (Table 1) it is prudent to in-
vestigate whether there are irrelevant variables and/or 
influential points in the data set for they cause an in-
crease in the parameter variance (Rao, 1971; Meloun 
& Militký, 2001) and as a result confidence intervals 
tend to have a greater range and loss of accuracy.

The fact that predictor variable P is selected in a 
large share of models (Table 2) and that its signs of the 
estimated parameters are negative in all of them can 
be explain by the high phosphorus values ​​found (on 
average 12 mg/dm3) which according to Popp et al. 
(2002), may indirectly decrease yields due to micro-
nutrients imbalance. The high percentage (94%) of 
times when the sign of the estimated parameter associ-
ated with variable Ca is positive is also expected, be-
cause calcium deficiency is among the main factors 
that inhibit root growth as reported by Oliveira et al. 
(2009), especially in latosols. Such a deficiency would 
have the plant vulnerable to biotic, biological and nu-
tritional stresses and consequently would lead to re-
duced productivity (Dourado Neto et al., 2014). As 
SRP1 and Des2 variables are used to assess the state of 
soil compaction, their effect on soybean yield is the 
opposite, for plants exhibit alterations in depth, branch 
and distribution of roots in response to soil compaction 
(Rosolem et al., 2002), which undermines the efficient 
use of nutrients and water and limits crop yield 
(Alakukku & Elomen, 1995). 

The model selection method using bootstrap is ef-
fective in determining the significant variables result-
ing in a more parsimonious model. Although the model 
determined by this method (M71) has been the same 
selected by the conventional method using Akaike, the 
application of this methodology serve to attest the 
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ical variables in this essay to be due to the fact of the 
limitation on the spatial representation of the results to 
be obtained from the collected data in weather stations. 
(Junges & Fontana, 2011).

The results showed that the bootstrap methods 
enabled us to select the physical and chemical soil 
properties, which were significant in the construction 
of the soybean yield regression model, construct the 
confidence intervals of the parameters and identify 
the points that had great influence on the estimated 
parameters.
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