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1 Introduction

Differential invariants appear in many problems related to differential

equations or differential geometry, as the reduction of differential equa-

tions, or the equivalence problem. They were introduced by S. Lie [12].

The theorem of the finiteness invariant for actions of finite–dimensional

groups was demonstrated by Lie himself, and extended by Tresse [21].

The modern proof is attribuited to Kumpera [11]. A more general result,

in the local smooth context, is exposed in [16].

Very frequently, the differential invariants appearing in applications

are rational or algebraic functions. Some research has been devoted to

the computation of rational and algebraic differential invariants [6, 7].

A recent article [10] presents a global version of Lie–Tresse theorem.

However, they deal with a larger class of functions, that are rational in

some of the variables and smooth in others.

In this notes we deal with the rational and algebraic differential in-

variants of an algebraic action. With respect to the computation of the

invariants, we mostly follow the results developed by Hubert and Ko-

gan [4, 5]. With respect to the theory of differential invariants we use

the language of nearby point bundles proposed by Weil [22] and devel-

oped by Muñoz, Rodŕıguez, Kolář, Michor, Shurygin, Slovak and others

[8, 15, 19]. Finally we present some new results on the finiteness of the

rational differential invariants, namely the Theorems 4.15 and 4.28.

We consider an algebraic group G of transformations of a smooth

algebraic variety Z. This means that each element of G is an invertible

regular (polynomial) map σ : Z → Z. The group G does not only act on

Z but also in any other structure that we can assign functorially to Z.

For instance if C(Z) is the field of rational functions Z then each σ ∈ G

induces σ∗ : C(Z) → C(Z), f 7→ σ∗f = f · σ. A rational invariant is a

rational function such that σ∗f = f for all σ ∈ G. An algebraic invariant

is a function which is algebraic over the field of rational invariants. In

the same way we can define invariant metrics, invariant submanifolds,

invariant vector fields and so on.

We can also consider that some of the coordinates in Z are not com-

plex numbers, but functions of some independent variables that do not

appear explicitly. In this way the space Z is substituted by a natural

bundle. The first example we can give of natural bundle is the tangent

bundle of order k, T (k)Z. The elements of T (k)Z are order k Taylor se-

ries of curves in Z, and therefore if M is coordinated by x1, · · · , xn then
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T (k)Z is coordinated by x1, x
′
1, x
′′
1 , · · · , x

(k)
1 , x2, · · · , xn, · · · , x

(k)
n , because

the values of these variables determine the Taylor series of a curve,

γ(ε) =

(

x1 + · · ·+ x
(k)
1

εk

k!
+ o(εk+1),

· · · , xn + · · ·+ x(k)n

εk

k!
+ o(εk+1)

)

.

The group G also acts on the space T (k)Z and therefore in the field

C(T (k)Z) of rational functions in the variables x
(j)
i , 1 ≤ i ≤ n, 0 ≤ j ≤ k.

A rational function f ∈ C(T (k)Z) which is invariant under the action of

G is called a rational differential invariant or order k. For instance, if

we consider the group of Moebius tranformations in P1(C),

x 7→
ax+ b

cx+ d
,

with

a d− b c 6= 0 ,

then the Schwartzian derivative,

S =
2x′x′′′ − 3x′′2

x′2
,

is a well known rational differential invariant of order 2. An algebraic

differential invariant is by definition a function which is algebraic over

a field of rational differential invariants. For instance, if we consider the

action of Euclidean movements in C2 then the curvature,

κ =
x′y′′ − x′′y′
√

(x′2 + y′2)3
,

is also a well known algebraic differential invariant.

2 Lie algorithm for ordinary differential

equations

In this section we review a classical algorithm for order reduction of

ordinary differential equations. This algorithm allows us to introduce

differential invariants and their computation. We expose the theory in
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the classical language of differential equations, later we will go back to

the language of algebraic varieties.

2.1 Symmetries of a differential equation

Let us consider an arbitrary non linear ordinary differential equation,

F (x, y, y′, · · · , y(r)) = 0 , (1)

where F : Rr+2 → R is a smooth function.

Definition 2.1. We say that a smooth transformation,

σ : R2 → R2 ,

σ : (x, y) 7→ (x∗ = X(x, y), y∗ = Y (x, y)) ,

is a symmetry of (1) if for any solution y = y(x) of (1) σ carries its graph

to a curve,

σ(Γy) = {(X(x, y(x)), Y (x, y(x)))|x ∈ dom(y)} ,

which is locally the graph of solutions of (1).

Example 2.1. The following example helps us to understand the mean-

ing of the word locally in the above definition. Let us consider the dif-

ferential equation:

y′′
2
− y′ − 1 = 0 . (2)

It is, in fact, the general equation satisfied by all the circles of radius 1 in

the plane.2 Its general solution depending on three arbitrary constants

is:

y(x) = λ1 ±
√

1− (x− λ2)2 ,

with λ2 − 1 ≤ x ≤ λ2 + 1. It is clear that the rotation of π/2 radians

with respect to the origin,

2 It can be derived easily from the well known curvature expression κ = y′′√
1+y′2

.

The equation just fix the curvature to be ±1.
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x∗ = −y

y∗ = x ,

sends circles of radius 1 to circles of radius 1. Hence, it is a symmetry of

(2). Take a particular solution,

y(x) =
√

1− (x− 1)2 ,

for 0 ≤ x ≤ 2. The curve σ(Γf ) is now the union of two graphs of

solutions,

y∗±(x
∗) = 1±

√

1− (x∗)2 ,

for −1 ≤ x∗ ≤ 0, and the point (−1, 1) in with the implicit function

theorem fails and σ(Γy) can not be described as the graph of a function

y of x:

Γy = Γy∗+
∪ Γy∗−

∪ {(−1, 1)} .

2.2 Prolongation of a transformation of the plane

There is something tricky about the above example. We a priori know

that the rotation transformation is a symmetry of (2) because we actually

know the general solution. How can we check that a certain transforma-

tion is a symmetry or not of a differential equation? Let us consider a

general transformation σ of the plane,

x∗ = X(x, y) ,

y∗ = Y (x, y) . (3)

Let y = y(x) be a smooth function of x. Along the graph of the function,

the transformed coordinates above, become functions of the independent

variable x,

x∗ = X(x, y(x)) ,

y∗ = Y (x, y(x)) .
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Assuming that the function x∗(x) = X(x, y(x)) can be considered as a

new coordinate function along the curve Γy = {(x, y(x))|x ∈ dom(y)} we

can write y∗ as a function of x∗ defined by y∗(X(x, y(x))) = Y (x, y(x)).

Let us show how the r–th derivative of the transformed function

(y∗)(r)(x∗) depends on the values x, y(x), y′(x), · · · , y(r)(x). In order to

get a general formula let us consider a function φ(x) depending of x, the

function y(x) and the derivatives of y(x) up to r–th order,

φ(x) = F (x, y(x), y′(x), · · · , y(r)(x)) .

The total derivative is computed using the chain rule:

dφ

dx
(x) = Fx(x, y(x), y

′(x), · · · , y(r)(x))

+y′(x)Fy(x, y(x), y
′(x), · · · , y(r)(x))

+ · · ·+ y(r+1) Fy(r)(x, y(x), y
′(x), · · · , y(r)(x)) .

Therefore we can define a total derivative operator that acts on the func-

tions depending on the variables x, y, y′, y′′, · · · ,

d

dx
=

∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ y(k+1) ∂

∂y(k)
+ · · · ,

therefore,

d

dx
F (x, y(x), · · · , y(r)(x)) =

(

dF

dx

)

(x, y(x), · · · , y(r+1)(x)) .

Note that the total derivative dF/dx is a function that depends on the

variables x, y, · · · , y(r+1).

Now, let us consider again the smooth transformation (3) acting

upon a smooth function y(x) and yielding y∗(x∗) defined by x∗(x) =

X(y(x), x), y∗(x∗(x)) = Y (x, y(x)).

By the chain rule we have,

dy∗

dx
(x) =

dy∗

dx∗
(x∗(x))

dx∗

dx
(x) ,

and therefore,
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dy∗

dx∗
(x∗) =

(

dx∗

dx
(x)

)−1 dy∗

dx
(x) =

dX
dx (x, y(x), y

′(x))
dY
dx (x, y(x), y

′(x))
.

Thus, we extend the transformation σ of the plane to a transformation

σ(1) of the space R3 with coordinates x, y, y′ defined:

x∗ = X(x, y) ,

y∗ = Y (x, y) ,

y′
∗

= Y ′(x, y, y′) =
dX
dx (x, y, y

′)
dY
dx (x, y, y

′)
.

The transformation σ maps the graph of any function that on the

point x takes the value y and first derivative y′ to the graph of a function

that of the point x∗ takes the value y∗ and first derivative y′∗. Note that

the denominator of the expression for y′∗ above may vanish. Hence, σ(1)

is not defined in the whole space, but just outside the surface

∆X =

{

(x, y, y′) ∈ R3 |
dX

dx
(x, y, y′) = 0

}

.

This surface corresponds to the functions y = y(x) whose graph does

not admit x∗ = X(x, y(x)) as a local coordinate. Geometrically it means

that the graph of the function y = y(x) becomes tangent to the axis OY

after transformation by σ.

Indeed, for any order k, by successive differentiation we have that

d

dx
(y∗(k))(x) = y∗(k+1)(x∗(x))

dx∗

dx
(x) ,

and therefore,

y∗(k+1)(x∗) =

(

dx∗

dx
(x)

)−1

y∗(k)(x) .

This allows us to write recursively a transformation σ(r) : R2+r \∆X →

R2+r \∆X , that we call the r–th prolongation of σ:
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x∗ = X(x, y) ,

y∗ = Y (x, y) ,

y′
∗

= Y ′(x, y, y′)

y′′
∗

= Y ′′(x, y, y′, y′′) ,

...

y(r)∗ = Y (r)(x, y, y′, · · · , y(r)) .

where,

Y (k+1)(x, y, y′, · · · , y(k+1)) =
dY (k)

dx (x, y, y′, · · · , y(k+1))
dX
dx (x, y, y

′)
.

The transformation σ(r) says that the graph of a function that takes at

the point x the value y and derivatives y′, · · · , y(r) is transformed by σ

into the graph of a function that takes at the point x∗ the value y∗ and

derivatives y′∗. · · · , y(r)∗. Note that σ(r) is defined outside the hyper-

surface ∆X whose that does not depend of the order r. The following

proposition is a direct implication of the definitions.

Proposition 2.1. The transformation σ is a symmetry of the differen-

tial equation (1) if and only if the r–th prolongation σ(r) transforms the

hypersurface {F = 0} of R2 into itself. That is, there exist a function

λ defined in a neighbourhood of the hypersurface {F = 0} in Rr+2 such

that,

F (x∗, y∗, y′
∗
, · · · , y(r)∗) = λ(x, y, y′, · · · , y(r)) · F (x, y, y′, · · · , y(r)) .

2.3 One–parameter groups of symmetries

In applications we use continuous families of symmetries of differential

equations. A one–parameter group {σt}t∈R of transformations of the

plane is a family of transformation for each t ∈ R such that σ0 = Id and

σt+s = σt ◦ σs. We say that a one–parameter group is a group of sym-

metries of a given differential equation if all its elements are symmetries

of the equations.
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Example 2.2. The group of scaling transformations,

σt : x∗ = λx ,

y∗ = λ y , (4)

where λ = et is a one–parameter group of transformations of R2.

Example 2.3. Let us check that the group of scaling transformations

(4) is a group of symmetries of the equation

x2 y′′ + x y′
2
= y y′ . (5)

The formula for the second order prolongation gives,

y′
∗

=

(

d

dx
λx

)−1
d

dx
λ y = λ−1 λ y′ = y′ ,

y′′
∗

=

(

d

dx
λx

)−1
d

dx
y′ = λ−1 y′′ . (6)

Replacing the coordinate variables x, y, y′, y′′ in (5) by the transformed

variables x∗, y∗, y′∗, y′′∗ we obtain,

x∗2 y′′ + x∗ y′
∗2

− y∗ y′
∗

= λ2 x2 λ−1 y′′ + λx y′
2
− λ y y′

= λ (x2 y′′ + x y′
2
− y y′) .

It is then clear that the scale transformation σλ is, for all λ, a symmetry

of equation (5).

Example 2.4. Let us consider a general polynomial differential equation

of r–th order,

P (x, y, y′, · · · , y(r)) =

N
∑

j,k0,k1,··· ,kr=0

a(j,k0,k1,··· ,kr) x
j yk0 y′

k1 · · · y(r)kr

= 0 . (7)

Let us compute the necessary and sufficient conditions on the coefficients

a(j,k0,k1,··· ,kr) so that the scale transformations (4) are symmetries of (7).
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First, the r–th prolongation of (4) is given by,

σ
(r)
λ : x∗ = λx ,

y∗ = λy ,

y′
∗

= y′ ,

y′′
∗

= λ−1y′′ ,
...

y(r)∗ = λ−r+1 y(r) .

Substituting in 7:

P (x∗, y∗, y′
∗
, · · · , y(r)∗)

=

N
∑

j,ks=0

λj+k0−k2−2k3−···−(r−1)kr a(j,k0,k1,··· ,kr) x
j yk0 y′

k1 · · · y(r)kr .

It turns out that each monomial a(j,k0,k1,··· ,kr)x
jyk0y′k1 · · · · · y(r)kr is

scaled by certain power of λ with an exponent which is a fixed linear

combination of the exponents of x, y, y′, · · · , y(r). It turns out that σλ
is a symmetry of (7) if and only if P (x, y, y′, · · · , y(r)) is the sum of

monomials having the same scaling exponent. Therefore, it should be of

the form:

P (x, y, y′, · · · , y(r))

=

N
∑

ks=0

a(k0,k1,··· ,kr) x
j−k0+k2+2k3+···+(r−1)kr yk0 y′

k1 · · · y(r)kr

= 0 , (8)

for certain integer j. This is the general form of a polynomial ordinary

differential equation admitting the scaling transformations (4) as a group

of symmetries.

Let {σt}t∈R be a one–parameter group of transformations of Rn.

Given a point p ∈ Rn its orbit is the curve {σt(p)}t∈R. A point p ∈ Rn

is called regular if its orbit is not reduced to the point {p} itself. A

function u : U → R defined in an open subset U ⊂ R is called an invari-
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ant if it is constant along the orbits of the action of {σt}t∈R. It is well

know that if p is a regular point then there exist a system of coordinates

z1, · · · , zn defined in a neighbourhood of p for which the equations of the

transformations of the group are written:

σt : z∗1 = z1 ,

...

z∗n−1 = zn−1 ,

z∗n = zn + t . (9)

Those coordinates are called canonical coordinates for the group {σt}t∈R.

The orbits correspond to lines, and z1 · · · , zn−1 form a complete set of

functionally independent invariants of the actions. To find an invariant

defined in the whole space, or a large portion of it, is not possible in this

general setting and depends on some topological considerations about

the action. However, we see that we can expect to find, at least locally,

n − 1 functionally independent invariants. If the one–parameter group

acts in R2, then we have a unique invariant up to functional dependence.

Example 2.5. An invariant of the group of scaling transformations is

the function z = y/x. It is not defined along theOY axis, were z−1 = x/y

can be chosen as an invariant. They are functionally independent in the

intersection of their domains of definition. The point (0, 0), around which

no invariant is defined, is a singular (that is, non regular) point of the

action of scaling transformations.

The first application of one–parameter groups of symmetries is in

solving first order differential equations. The following theorem is true in

a broader sense, but we state it in the particular case in which we can find

the canonical variables (9) for the group action. In the general setting it

is enough to know an infinitesimal symmetry and the integration is done

by means of an integrating factor. However we state the theorem in this

narrower case because the proof use the invariants for reduction.

Theorem 2.2 (S. Lie). Assume that a first order differential equation,

F (x, y, y′) = 0 , (10)

admits a one–parameter group of symmetries {σt}t∈R and that can be

written in canonical variables (9). Then the equation (10) is integrable
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by means of a change of variables and a quadrature.

Proof. Let z(x, y), w(x, y) be the coordinates in which the group is writ-

ten in the canonical form (9), being z the invariant. We restrict our

considerations to the the region in which the transformation

τ : z = z(x, y) ,

w = w(x, y) ,

is invertible. By means of the first prolongation of the inverse transfor-

mation τ−1 we compute the differential equation for the variables z, w,

G(z, w, w′) = F (x(z, w), y(z, w), y′(z, w, w′)) .

But now, we know that if w = w(z) is a solution then w = w(z) + t is

another solution. It follows that,

G(z, w, w′) = 0 ⇔ ∀t G(z, w + t, w′) = 0 .

Therefore, the variable w does not have a role in the differential equation,

and up to a multiplicative constant λ(z, w,w′) that does not vanish in

the hypersurface {G = 0} we have:

G(z, w, w′) = λ(z, w, w′) · H(z, w′) .

We solve this last equation with respect to w′ obtaining,

w′ = h(z) ,

w(z; k) =

∫

h(z) dz + k .

Finally we find the solutions of the original equation applying the trans-

formation τ−1 to the graphs of the functions w = w(z; k).

Example 2.6. Let us assume that the equation (10) admits the group of

scale transformations (4). Applying to the point of coordinates (x, y, y′) a

suitable scaling transformation it follows that the equation (10) is equiv-

alent to

F

(

x

y
, 1, y′

)

= 0 .
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On the other hand, the following z, w are a set of canonical coordinates

for the group,

z =
x

y
,

w = ln(y) ,

x = z ew ,

y = ew .

We obtain

y′ =
dy
dz (z, w,w

′)
dx
dz (z, w,w

′)
=

w′

1 + w′z
,

and therefore the differential equation (10) is equivalent to

G(z, w′) = F

(

z, 1,
w′

1 + w′z

)

= 0 ,

in the coordinates z, w.

2.4 Differential invariants

Let {σt}t∈R be a one–parameter group of transformations of R2. The

prolongations of order r form a one–parameter group of transformations

of R2+r {σ
(r)
t }t∈R, called the r–th prolongation of the group {σt}t∈R.

Definition 2.2. A differential invariant of order r of the action of the

one–parameter group {σt}t∈R is a function f(x, y, y′, · · · , y(r)) which is

an invariant of the action of the r–th prolongation {σ
(r)
t }t∈R. Invariants

defined in open subsets of R2 are called invariants of order zero.

In order to make sure that f is of order r and not of order r − 1

we also require the derivative of f with respect y(r) to be different from

zero. Since we expect to have a family of r + 1 independent invariants

from order zero to r−1, we expect that there exist only one functionally

independent differential invariant of order r.
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Example 2.7. In the case of scaling transformations, z = y/x and w =

y′ form a set of functionally independents differential invariants up to

order 1.

Let us consider z = z(x, y, y′, · · · , y(k)) a function defined in R2+k,

including the case k equal to zero. Let y = y(x) be a function of x. We

can consider z as a local coordinate along the curve

{(x, y(x), y′(x), · · · , y(k)(x))|x ∈ dom(y)} .

For any w(x, y, y′ · · · , y(r)) defined in R2+r and,

φ(x) = w(x, y(x), y′(x), · · · , y(r)(x)) ,

we can compute the derivatize of φ with respect to z by using the total

derivative operators,

dφ

dz
(x(z))

=

(

dz

dx
(x, y′(x), · · · , y(k+1)(x))

)−1
dw

dx
(x, y′(x), · · · , y(r+1)(x)) .

Therefore, we write:

d

dz
=

(

dz

dx

)−1
d

dx
,

as a differential operator that sends a function w defined in R2+r to

dw/dz defined in R2+r+1, provided that r > k. In the particular case in

which z and w are differential invariants, then it is clear that dw/dz is

also a differential invariant and the following results hold.

Proposition 2.3. Let z, w be differential invariants of {σt}t∈R of order

k < r respectively. Then dw
dz is a differential invariant of {σt}t∈R of order

r + 1 and thus, functionally independent from z and w.

Theorem 2.4. Let z, w be differential invariants of {σt}t∈R of order 0

and 1 respectively,
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z = z(x, y) ,

w = w(x, y, y′) ,

w′ =
dw

dz
,

w′′ =
d2w

dz2
(x, y, y′, y′′) ,

...

w(r−1) =
d(r−1)w

dz(r−1)
(x, y, y′, · · · , y(r)) ,

is a complete set of functionally independent differential invariants of

order up to r.

Example 2.8. In the case of scaling transformations,

z =
y

x
,

w = y′ ,

w′ =
dw

dz
=

(

∂

∂x

y

x
+ y′

∂

∂y

y

x

)−1

y′′ =
x2y′′

xy′ − y
, (11)

is a complete system of differential invariants up to order 2.

2.5 Lie algorithm

Let us now assume that {σt}t∈R is a one–parameter group of symmetries

of the equation (1) and that z, w,w′, · · · , w(r−1) is a complete system of

differential invariants up to order r computed using the Theorem 2.4.

By hypothesis, the hypersurface {F = 0} is invariant under the action

of {σ
(r)
t }t∈R and therefore its equations can be given in terms of the

invariants. There exist a function λ non vanishing on {F = 0} and a

function G depending only on z, w, · · · , w(r−1) such that,

F (x, y, y′, · · · , y(r)) = λ · G(z, w, w′, · · · , w(r−1)) .

For each solution w = w(z) of the above equation we obtain a first order

equation,
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w(x, y, y′)− z(x, y) = 0 ,

that admits {σ}t as a group of symmetries and therefore it can be inte-

grated by means of Theorem 2.2.

Example 2.9. Let us reduce the equation (5) by means of the group of

scale transformations (4). As computed in the Example 2.8 above, z = y
x ,

w = y′, w′′ = x2y′′

xy′−y form a complete system of differential invariants up

to order 2. A direct substitution gives us,

x2 y′′ + x y′
2
− y y′ = x(w − z) (w′ + w) .

The reduced equation is then,

(w − z) (w′ + w) = 0 ,

that has a singular solution w(z) = z and a family of solutions w(z) =

ke−z. Reverting them back to the original equation we obtain,

y′ =
y

x
,

y′ = k e−y/x ;

the first one is solved by y = kx, the second one is solved implicitly by

∫

d(y/x)

ke−(y/x) − (y/x)
+ ln(x) = k2 .

3 Rational and algebraic invariants

3.1 Notation and conventions on algebraic varieties

In what follows we consider algebraic groups and varieties defined over

an algebraically closed field C of zero characteristic. In our notation an

affine C–variety is an algebraic subset Z of the affine space Cm. That is,

Z is the space of solutions of a system of polynomial equations,

Z : {P1(x1, · · · , xm) = 0, · · · , Pr(x1, · · · , xm) = 0} .

By definition a regular function f : Z → C is a polynomial function

in the coordinates of Cm. Let us denote by C[Z] the ring of regular
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functions in V . Let I(Z) be the ideal of polynomials in the variables

x1, · · · , xm vanishing on Z. By the Hilbert Nullstellensatz I(Z) is the

radical ideal spanned by P1, · · · , Pr. Two polynomials define the same

regular functions if and only if its difference lie in I(Z). Therefore:

C[Z] = C[x1, · · · , xm]/I(Z) .

In Z we consider the Zariski topology. A basis of open subsets is given

by the affine open subsets. Let f be a regular function, then

Uf = {x ∈ Z | f(x) 6= 0} .

Note that Uf is identified with an algebraic subset of Cm+1 by setting:

Uf : {P1(x1, · · · , xm) = 0, · · · , Pr(x1, · · · , xm) = 0,

xm+1 f(x1, · · · , xm)− 1 = 0} .

Therefore we have,

C[Uf ] = K[Z] [f−1] ⊃ C[Z] .

This allows us to define the sheaf of regular functions through localiza-

tion. For each open subset U ⊂ V we have,

C[U ] = S−1 C[Z] =

{

f

g

∣

∣

∣

∣

f ∈ C[Z], g ∈ S

}

,

where

S = {g ∈ C[Z] | ∀x ∈ U g(x) 6= 0} .

Let us recall that affine C–varieties are quasicompact and T1–separated.

In general Z is the union of a finite number of irreducible components,

Z = Z1 ∪ · · · ∪ Zc. We define the ring of rational functions on Z as the

ring of total fractions,

C(Z) = lim
→

Udense

C[U ] =

{

f

g

∣

∣

∣

∣

f, g ∈ C[Z], ∀i = 1, · · · , c, g|Zi
6= 0

}

.

An affine C–variety Z is irreducible if and only if I(Z) is a prime ideal.

In such a case we have a field of rational functions
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C(Z) = lim
→

Uopen

C[U ] =

{

f

g

∣

∣

∣

∣

f, g ∈ C[Z] g 6= 0

}

.

We have spectral representation for affine algebraic varieties. Let

us denote SpecC(C[Z]) the set of C–algebra homomorphisms from C[Z]

on C, endowed with the Zariski topology. Then there is a canonical

homeomorphism Z ≃ SpecC(C[Z]).

Given a point p ∈ Z the ring of germs of regular functions is,

OZ,p = lim
→
p∈U

C[U ] =

{

f

g

∣

∣

∣

∣

f, g ∈ C[Z] g(p) 6= 0

}

⊂ C(Z) ,

which is a local ring with maximal ideal mp ⊂ OZ,p. The point p is

said to be regular if the Krull dimension of OZ,p coincides with the min-

imal number of generators of its maximal mp. Otherwise we say that

p is a singular point. A numerical criterium for regularity is the fol-

lowing: assume that Z is irreducible and let {P1, · · · , Pr} be a minimal

system of generators of I(Z). Then, p is regular if and only if the set

{dpP1, · · · , dpPr} ⊂ T ∗x (C
m) consists of C–linearly independent 1–forms.

We say that Z is smooth if all points of Z are regular.

The Cartesian product of two affine algebraic varieties Y ⊂ Cm and

Z ⊂ Cn is an affine algebraic variety Y ×Z ⊂ Cn+1. The Zariski topology

in Y × Z is tamer than the product topology. In the spectral represen-

tation we have Y × Z ≃ SpecC(C[Y ]⊗C C[Z]).

Definition 3.1. A pre-C–variety is a quasicompact topological space Z

endowed with a sheaf of regular functions U ; C[U ] induced by an atlas

{(Ui, φi)} verifying:

a. The coordinate maps φi : Ui → Vi ⊂ Cmi identify Ui with an alge-

braic subset of Vi ⊂ Cm
i endowed with the Zariski topology.

b. Gluing maps φij : φi(Ui∩Uj) ⊂ Cmi → φj(Ui∩Uj) ⊂ Cmj are given

coordinate–wise by regular functions.

The ring of rational functions C(Z) of a pre–C–variety is defined in

the same way. Again C(Z) is a field if and only if Z is irreducible. The

notion of regular and singular points was defined locally, therefore it is

defined in the same way for points of pre–C–varieties. In the same way,

we say that a pre–C–variety is smooth if all their points are regular.
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Definition 3.2. We say that Z is a separated if the diagonal embedding,

∆ : Z → Z × Z ,

x 7→ (x, x) ,

is closed.

Affine C–varieties are separated. Therefore any pre–C–variety is al-

ways locally separated. It follows that the non–separatedness is always

a consequence of the gluing maps.

Definition 3.3. A C–variety Z is a separated pre–C–variety.

Example 3.1. The projective space of dimension n, P(n,C) is a C–

variety.

Definition 3.4. A C–regular map between pre–C–varieties is a map,

ϕ : Y → Z, which is given coordinate–wise by regular functions. We say

that ϕ is separated if the diagonal map

∆Z : Y → Y ×Z Y = {(p, q) ∈ Y × Y |ϕ(p) = ϕ(q)} ,

is closed.

If Y and Z are affine C–varieties then there is a one–to–one corre-

spondence between regular maps ϕ : Y → Z and C–algebra morphisms

ϕ∗ : C[Z] → C[Y ]. We have ϕ∗(f) = f ◦ ϕ.

We say that two C–varieties are isomorphic if there is an invertible

regular map between them. A C–variety is said to be affine if it is isomor-

phic to an affine C–variety. A sub–C–variety Z ′ of Z is the intersection

of a closed and an open subset of Z. There is a unique structure of C–

variety in Z ′ that makes the identity id : Z ′ → Z a regular map. Closed

sub–C–varieties of affine C–varieties are affine C–varieties. A closed sub–

C–variety of the projective P(n,C) is called a projective variety. The

following classical result holds. It is essential to many applications.

Theorem 3.1 (Chevalley). Let ϕ : Y → Z be a regular map. Then

the image of Y is a finite union of algebraic sub–C–varieties of Z, not

necessarily closed.

Recall that an open subset U ⊂ V is called affine if there it is C–

isomorphic to an algebraic subset of the affine space Cm. If U is affine,

and f ∈ C[U ] then Uf = {x ∈ U | f(x) 6= 0} is also affine and C[Uf ] =

C[U ][f−1].
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Algebraic groups

Definition 3.5. An algebraic C–group G is a group object in the cate-

gory of C–varieties.

The definition implies that each connected component of G is an

irreducible C–variety and that composition and inversion morphisms are

regular maps.

Algebraic subgroups are closed. If H �G is a normal algebraic sub-

group, then the quotient G/H is an algebraic group. The connected

component of the identity of G is the minimal normal algebraic subgroup

of finite index G0. Therefore, the group G/G0 is finite.

Exercise 3.2. Prove that algebraic C–groups are smooth.

If G is an affine algebraic group then it is isomorphic to an algebraic

subgroup of GL(n,C) for some n > 0. Therefore, affine algebraic groups

are often referred as linear algebraic groups.

An Abelian variety is an algebraic group which is a projective vari-

ety. One dimensional Abelian varieties are elliptic curves. In general,

Abelian varieties are Abelian groups, in particular Abelian varieties over

the complex numbers are compact complex torii. The following result

exhibits the structure of algebraic groups.

Theorem 3.3 (Chevalley-Barsotti). Let G be an algebraic group. There

exist a normal linear algebraic group H�G such that G/H is an Abelian

variety.

3.2 Algebraic actions

Definition 3.6. An algebraic action of an algebraic group G on C–

variety Z is a group action,

α : G× Z → Z ,

(σ, p) → a(σ, p) = σ · p ,

which is a regular map. A C–variety endowed with an action of G is

called a G–variety.

An action of G on an irreducible variety Z induces actions of G by the

right side on the ring of regular functions C[Z] and the field of rational
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functions C(Z). The set of invariants are the so called ring of regular

invariants C[Z]G and field of rational invariants C(Z)G.

The construction of quotients by algebraic actions, known as geomet-

ric invariant theory, is an important research topic, which is beyond the

scope of this article. For the general theory, we mostly follow the classical

book of Mumford et al. [14] and the notes of Brion [3].

Theorem 3.4. Let Z be a G–variety. The following statements hold:

a. Orbits G · p are locally closed sub–C–varieties of Z.

b. Stabilizers Gp are C–algebraic subgroups of G.

c. Every component of G · p has dimension dimC(G) − dimC(G
p).

d. The closure G · p is union of G · p and orbits of smaller dimension

than G · p.

e. Any orbit of minimal dimension is closed.

f. For any p ∈ Z, dimC(G · p) + dimC(G
p) = dimC(G).

g. The dimension of orbits is lower–continuous. For each n the set

{p ∈ Z | dimC(G · p) ≤ n} is closed.

h. The dimension of stabilizers is upper–continuous. For each n the

set {p ∈ Z | dimC(G
p) ≥ n} is closed.

Let Z be a G–variety with action α, the map

Ψα : G× Z → Z × Z ,

(σ, p) 7→ (σ · p, p) ,

is called the the graph map of α. In virtue of Chevalley’s theorem the

image of Ψα is a finite union of locally closed subsets of Z × Z. Let us

denote by Γα this image, called the graph of alpha,

Γα = {(p, q) ∈ Z × Z |G · p = G · q} .

Definition 3.7. An algebraic action α of G in Z is said to be algebro–

geometrically...

a. ...closed if for all p ∈ Z the orbit G · x ⊂ Z is closed in Z.
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b. ...separated if the graph Γα is closed.

c. ...proper it the graph map Ψα is proper.

d. ...free if the map Ψα above is a closed immersion.

e. ...regular if all orbits have the same dimension.

We have the following sequence of implications:

free =⇒ proper =⇒ separated =⇒ closed ⇐= regular.

Lemma 3.5 ([17] Lemma 2.1). Let Z be an irreducible G–manifold.

There is a G–invariant open subset U ⊂ Z such that the induced action

of G in U is separated and regular.

Algebraic G–modules

Note that a finite dimensional C–vector space E is in a natural way

an affine irreducible C–variety. The group of linear transformations

GL(E,C) is an algebraic group acting regularly on E. Let G be an

algebraic group, an algebraic linear representation of G is a linear repre-

sentation given by a regular group morphism Φ: G → GL(n,C).

Let G act on a C–vector space E (not necessarily of finite dimension).

We say that E is a G–module if E is the union of finite linear represen-

tations of finite dimension. Equivalently, for each ~v ∈ E the orbit G ·~v is

contained in a finite dimensional G–invariant vector subspace in which

G acts algebraically.

Theorem 3.6 (Chevalley). Let G be a linear algebraic group and H a

closed subgroup. Then there exist a finite dimensional G–module E and

a line l ⊂ E such that H is the stabilizer of the line,

H = {σ ∈ G |G · l ⊆ l} .

The above theorem can be rewritten in terms of projective actions.

If we take the projective space P(E) and the p the point defined by l, we

have that H = Gp. Therefore, any closed algebraic group is the stabilizer

of a point in the projectivization of a finite dimensional G–module.
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Categorical and geometric quotients

Definition 3.8. A categorical quotient of Z is a pre–C–variety Q to-

gether with a G–invariant regular map π : V → Q such that for any

G–invariant regular map ϕ : V → W there exist a unique ϕ̄ : Y → Q

such that

Z
π

//

ϕ

��

Q

ϕ̄
~~~~

~
~
~
~
~
~

W

with ϕ̄ ◦ π = ϕ.

From its categorical definition, it follows that categorical quotients

are unique up to regular C–isomorphisms. However, the points of a

categorical quotient needs not to be in one–to–one correspondence with

the orbits of Z. We have the tamer notion of geometric quotient.

Definition 3.9. A geometric quotient of Z is a pre–C–variety Q together

with a G–invariant regular map π : Z → Q satisfying:

a. For each x ∈ V , π−1(π(x)) = G · x.

b. π is submersive, i.e. U ⊂ Q is open if and only if π−1U is open.

c. For each U ⊂ Q, π induces an isomorphism between C[U ] and

C[π−1U ]G.

Example 3.2 (in [14], page 11). A closed and set–theoretically free

action which admits a smooth geometric quotient and is not algebro–

geometrically proper nor free. Let us consider C[x, y]n the space of ho-

mogeneous polynomials of degree n in the variables x, y. The group

SL(2,C) acts algebraically by linear substitutions3:

(

a b

c d

)

· P (x, y) = P (dx− b y, −c x+ a y) .

We consider the subset Z ⊂ (C[x, y]1 \{0})×C[x, y]4 whose elements are

pairs (P1(x, y), P2(x, y)
2) consisting of a non zero homogeneous polyno-

mial of degree 1 and the square of a quadratic form with discriminant

1:

3 Note that we have to invert the matrix in order to have a left action
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Z =
{(

αx+ β y, (a x2 + b x y + c y2)2
)

|αx+ β y 6= 0,

∆(a x2 + b x y + c y2) = a c−
b2

4
= 1

}

.

Z is a non–singular 4–dimensional SL(2,C)–variety. We also check that

for all q = (P1(x, y), P2(x, y)
2) ∈ Z the stabilizer SL(2,C)q is reduced to

the identity. We define,

π : Z → C ,
(

αx+ βy, (ax2 + bxy + cy2)2
)

→
(

aβ2 − bβα+ cα2
)2

.

We have that π is an open surjective regular map, and that the preimage

π−1(λ) for λ ∈ C consists in one orbit. In fact it is a geometric quotient

(see Definition 3.9) Z/G ≃ C and C[Z]G = C

[

(

aβ2 − bβα+ cα2
)2
]

.

However, the graph map Ψ is not even closed. Let Y ⊂ SL(2,C)× Z be

the closed subvariety,

Y =

{((

0 −λ−1

λ 0

)

, (λx+ y, x2y2)

)
∣

∣

∣

∣

λ ∈ C∗
}

.

Then,

Ψ(Y ) =
{(

(−λx+ y, x2y2), (λx+ y, x2y2)
)∣

∣ λ ∈ C∗
}

.

But Ψ(Y ) is not Zariski closed, its closure is:

Ψ(Y ) = Ψ(Y ) ∪ {((y, x2y2), (y, x2y2))} .

Therefore, the action of SL(2,C) on Z is not separated, not proper, not

algebro–geometrically free.

Let us recall that a regular map ϕ : Y → Z is an affine morphism

if for any affine open subset U ⊆ Z the fibre ϕ−1(U) is an affine open

subset of U . The following facts can be consulted in [14] chapter 0.

Proposition 3.7. Le Z be a G–variety. Assume that a geometrical

quotient π : Z → Q exists.

a. The action of G in Z is closed.



Bol. Mat. 19(2), 133–188 (2012) 157

b. Q is a categorical quotient and therefore unique up to isomorphism.

c. The action of G in Z is separated if and only if Q is a C–variety.

d. If G and Z are affine then π is an affine morphism.

The following result (due to Roselicht [18]) guarantees the existence

of a geometric quotient of a dense Zariski G–invariant open subset U of

Z. Note that if Q is a geometric quotient of U , then C(Z)G ≃ C(Q).

Theorem 3.8 (Roselicht, 1963). Let Z be a G–variety. There exist a

dense Zariski open subset U ⊂ Z invariant under the action of G such

that there exist a geometric quotient Q of U .

A corollary to Rosenlicht theorem is that if H is a subgroup of G,

then the quotient

G/H = {[σ] = σH |σ ∈ G} ,

is a geometrical quotient. The dense open subset U the theorem must

be invariant by left translations —which are H–equivariant maps of G

on itself— and therefore U is G.

Quotients by reductive groups

In the case of actions of reductive groups we have the existence of a

categorical quotient, and a geometric quotient if the action is closed. Let

us recall that the radical of an algebraic group is its maximal normal

solvable algebraic subgroup.

Definition 3.10. A linear algebraic group G is called reductive if its

radical is a torus, i.e. a direct product of multiplicative groups, Tm =

(C∗)m.

Theorem 3.9. Let G be a linear algebraic group . The following asser-

tions are equivalent:

a. G is reductive.

b. G contains no closed subgroups isomorphic to the additive Cn.

c. Every finite dimensional G–module is semi–simple.

d. Every G–module is semi–simple.
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Let us assume that G is a linear algebraic group over the field C of

complex numbers. The above statements are equivalent to:

e. G has a compact Lie subgroup K ⊂ G dense in the Zariski topology.

Proposition 3.10. Let G be a reductive algebraic group and Z and affine

G–variety. The C–algebra C[Z]G is finitely generated.

Let G be reductive and Z an affine G–variety. Let us denote by Q the

spectrum SpecC(C[Z]G). Since C[Z]G is finitely generated, it is an affine

C–variety. One way of seeing Q constructively is to take y1, · · · , ym a

system of generators of C[Z]G. Then, the image of the map,

π : Z → Q ⊂ Cm ,

p 7→ (y1(p), · · · , yn(p)) ,

is Q, realized as a Zariski closed subset of Cm.

Theorem 3.11. Let G be reductive algebraic group, Z an affine G–

variety, and Q = SpecC(C[Z]G). Consider the canonical map π : Z → Q.

The following statements hold:

a. SpecC(C[Z]G) is a categorical quotient.

b. Each fibre of π contains a unique closed orbit.

d. If Z is irreducible so is SpecC(C[Z]G).

e. If Z is smooth so is SpecC(C[Z]G).

Then, the affine C–manifold Q can be seen as the space of closed

orbits, the action of G on Z. In virtue of Theorem 3.8 there must be a

G–invariant Zariski open subset U ⊂ Z such that a geometric quotient

U/G. For reductive groups we have the following construction.

Definition 3.11. A point p ∈ Z is called stable if the G · p is closed and

Gp is finite. The set Zs of stable points is a possibly empty G–invariant

open subset.

Proposition 3.12. The map π|Zs : Zs → π(Zs) is a geometric quotient.

Theorem 3.13 ([14] Th. 1.1 and Am. 1.3, case of ch. 0). Let G be a re-

ductive algebraic group, Z an affine G–variety, and Q = SpecC(C[Z]G).

Consider the canonical map π : Z → Q. Then Q is a geometric quotient

if and only if the action of G in Z is closed.
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3.3 Rational actions

Birrational geometry

Definition 3.12. Let Y and Z be C–varieties, φ : U → Z, ϕ : U ′ → Z

regular maps defined in some dense open subsets U,U ′ ⊂ Y . We say that

φ and ϕ define the same rational map if φ|U∩U ′ = ϕ|U∩U ′ .

We denote by ϕ : Y 99K Z the rational map defined by ϕ.

A birrational map ϕ has a domain of definition Dom(ϕ) which is the

union of the domains of definitions of all its representatives. By gluing

those representatives, it is clear that ϕ is defined as a regular map in its

whole domain ϕ : Dom(ϕ) → Z.

A regular map Y ×Z is said to be dominant if its image contains an

open dense subset. A rational map is dominant if any of its represen-

tatives is dominant. If ϕ : Y 99K Z is a dominant rational map then it

induces a C–algebra morphism ϕ∗ : C(Z) →֒ C(Y ).

A rational dominant map ϕ : Y 99K Z is said to be birrational if

it is dominant and admits a rational inverse map. Then, ϕ∗ is a C–

algebra isomorphism C(Z) ≃ C(Y ). Birrational geometry leads with

the classification of algebraic varieties up to birrational equivalence. For

any irreducible algebraic variety Z we consider the group BirrC(Z) of

birrational automorphisms, which is naturally anti–isomorphic to the

group AutC(C(Z)) of C–algebra automorphisms of C(Z).

Rational actions and their regularization

Definition 3.13. A rational action of G in Z is a rational map,

a : G× Z 99K Z ,

that induces a group morphism,

Φa : G → BirrC(Z) .

We say that the action of G in V is good if for all x ∈ V we have

(x, e) ∈ Dom(a).

The subset of points x in Z such that (e, x) ∈ Dom(a) is a open

dense subset Z ′ of Z. Therefore, replacing Z by Z ′ we can assume that

any rational action is good. The following results relate rational and

algebraic actions.
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Theorem 3.14 (Weil group chunk theorem 1955). Supose that G acts

rationally on Z. The variety Z can be G–equivariantly embedded as a

dense open sub–C–variety of some C–variety Y where G acts regularly if

and only if the action is good.

Corollary 3.15. Suppose that G acts rationally on Z. Then there exist

Y birrationally isomorphic to Z where G acts regularly.

Rational quotients

Let Z be an irreducible G–manifold. We say that a rational invariant

y ∈ C(Z)G separates the orbits G · p and G · q if y(p) 6= y(q). We say

that a set {y1, · · · , ym} separates orbits in general position if there exist

a non empty open G–invariant subset U ⊂ Z such that the orbits in U

are separated by at least one function in {y1, · · · , ym}.

Theorem 3.16. Let Z be an irreducible G–variety. There is a finite

set of rational invariants {y1, · · · , ym} that separates orbits in general

position. Conversely, if {y1, · · · , ym} separates orbits in general position

then C(Z)G = C(y1, · · · , ym).

Definition 3.14. Let G act rationally in Z. A rational quotient is a

dominant rational map, π : Z 99K Q such that π∗ : C(Q) → C(Z) induces

an isomorphism C(Q) ≃ C(Z)G.

It is clear that rational quotients are models of C(Z)G, and therefore

they are unique up to birrational equivalence. The existence of rational

quotients follows from the Theorem 3.8. If G acts regularly on Z, and U

is an invariant dense open subset such that the geometric quotient U/G

exists, then any rational quotient of Z is birrationally equivalent of U/G.

3.4 Computation of rational invariants

In this section G will be a C–algebraic group acting rationally on an

affine irreducible C–variety Z. We also assume that the action is good;

therefore, there is an underlying regular action on some Z̄ which contains

Z as a dense open subset. By the Lemma 3.5 we may assume that the

action of G in Z̄ is regular and separated.

In order to clarify the notation of this section it is useful to distinguish

the two components of the Cartesian product Z × Z. Therefore we will

write Z× Ẑ, where Z and Ẑ represent two copies of the affine variety Z.
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Let us consider the (rational) graph map Ψα and its image, the graph

Γα ⊂ Z × Ẑ. Since the action of G is separated, the graph Γα is a closed

affine sub–C–variety in C[Z × Ẑ]. The graph ideal is:

I(Γα) = {f ∈ C[Z × Ẑ] | f ◦Ψα = 0} .

Let us consider the canonical embedding C[Z × Ẑ] ⊂ C(Z)[Ẑ]. The

elements f(z, ẑ) ∈ C(Z)[Ẑ] are polynomials in the second variables ẑ

with rational coefficients in the first variables z. We will call the generic

graph ideal to the extension,

J = I(Γα) · C(Z)[Ẑ] .

In order to compute the rational invariants, we will prove that the

generic graph ideal is generated by a polynomial with rational invariant

coefficients. Let us remind the following general algebraic lemma from

[17], page 155.

Lemma 3.17. Suppose L is an extension of the field F and G is a group

of its automorphisms. Suppose V is a vector space over F and W is a

subspace of the vector space L⊗F V which is invariant under the natural

action of G. Then W is generated by invariant elements.

The above lemma, applied to the particular case of C ⊂ C(Z1), where

the algebraic group G is seen as a group of algebraic automorphisms of

C(Z1) gives us the following result.

Theorem 3.18. Let us consider the ideal J = I(Γα) ·C(Z)[Ẑ]. There is

a system of generators of J in C(Z1)
G[Z2]. If {F1 · · ·Fp} is a finite set

of generators of J in C(Z1)
G[Z2] and,

Fi(z, ẑ) =

ni
∑

k=1

fi,k(z)ui,k(ẑ) , (12)

with

fi,k(z) ∈ C(Z)G, ui,k(ẑ) ∈ C[Ẑ] ,

then {f11(z), · · · , fk,nk
(z)} separates orbits in general position and there-

fore C(Z)G = C(f11(z), · · · , fk,nk
(z)).

Proof. Let L = C(Z). We consider the action of G in Z, and therefore

as a group of C–algebra automorphisms of C(Z). The ideal J is a G–

invariant C(Z)–subspace of C(Z) ⊗C C[Ẑ] = C(Z)[Ẑ]. By the Lemma
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3.17 it is generated as a vector space over C(Z) by G–invariant elements.

Among those elements we can choose a finite set of generators, {F1 · · ·Fp}

as in equation (12).

Let us see that the fi,j(z) separate orbits in general position. We

replace Z by a suitable principal open subset Z∗ such that:

i) fi,k(z) ∈ C[Z∗].

ii) Fi(z1, z2) ∈ I(Γα) for all i = 1, · · · , p.

iii) I(Γα) = (F1(z1, z2), · · · , Fp(z1, z2)).

Under these conditions, the orbit of a point p ∈ Z is defined by the

equations for the variables z,

Fi(p, z) =
∑

k

fi,k(p)ui,k(z) ,

with i = 1, · · · , p. Thus, it follows that two points p and q in Z∗ have

the same orbit if and only if fi,k(p) = fi,k(q) for all i, k.

The theorem above says that C(Z1)
G is the defining field of the ideal

J. In order to compute a system of generators of an ideal with coefficients

in its defining field, we can make use of Gröbner basis. Now, let us

consider that Z is birrational to Cm, therefore we can assume that C[Z]

is the ring of polynomials in m variables and take any monomial order

in C[Ẑ] = C[ẑ1, · · · , ẑm].

Theorem 3.19 (Hubert-Kogan, 2007). Let us consider a good rational

action of G in Z = Cn. Let {F1, · · · , Fp} be a reduced Gröbner basis of

the generic graph ideal J:

Fi =
∑

α

fi,α(z) ẑ
α ,

with fi,α(z) ∈ C(Z). Then, the coefficients {fi,α(z)} form a set of ratio-

nal invariants separating orbits in general position.

Example 3.3 (Scaling transformations). Let us consider the group C∗

acting on C2 by λ · (x, y) = (λx, λy). The graph Γα is the image of

the graph map Ψα : (λ, ξ, η) 7→ (x, y, x̂, ŷ) = (λξ, λη, ξ, η). We consider

the variables λ, ξ, η as parameters and we eliminate them. We obtain

J = (x̂y − ŷx). A reduced Gröbner basis is {x̂ − x
y ŷ} and therefore

C(x, y)G = C

(

x
y

)

.
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Example 3.4 (Quasi homogeneous transformations). Let p and q be

coprime integer numbers. Let us consider the action of C∗ on C2 by

λ · (x, y) = (λpx, λqy). As above, we compute the parametric equations

for Γα, (x, y, x̂, ŷ) = (λpξ, λqη, ξ, η) and we eliminate the parameters ob-

taining J = (x̂qyp− ŷpxq). Using lexicographic order, a reduced Gröbner

basis is {x̂q − xq

yp ŷ
p}, and therefore C(x, y)G = C

(

xq

yp

)

.

Example 3.5 (Rotations). The group SO(1,C) is identified with the

unit circle. SO(1,C) = {(a, b) ∈ C2|a2 + b2 = 1}. It acts in C2 in

the following way, (a, b) · (x, y) = (ax − by, bx + ay). The parametric

equations of Γα are now (x, y, x̂, ŷ) = (aξ− bη, bξ+ aη). The elimination

of the parameters gives us J = (x̂2 + ŷ2 − x2 − y2). If follows that

C(x, y)G = C(x2 + y2)

3.5 Cross sections and replacement invariants

Let us consider G acting separatedly and regularly on Z; let s be the

dimension of the orbits.

Definition 3.15. A cross section of degree d of the action of G in Z is

a closed subvariety ⊂ Z that intersects generic orbits in d simple points.

That is, there exist a G–invariant dense open subset U ⊂ Z such that

any orbit contained in U intersects S in d simple points.

Let S ⊂ Z a variety of codimension s. Let us consider the graph

Γα ⊂ Z× Ẑ. We consider Ŝ a copy of the variety in S in Ẑ, and its ideal

I(Ŝ) ⊂ C[Ẑ]. We call the generic graph section ideal of S to,

JS = I(Ŝ) · C(Z)[Ẑ] + I(Γα) · C(Z)[Ẑ] .

The following result holds.

Proposition 3.20. The variety S ⊂ Z is a cross section if and only if

JS is a zero dimensional radical ideal of C(Z)[Ẑ]. The degree of S is the

dimension of C(Z)[Ẑ]/JS as C(Z)–vector space.

Since the generic graph ideal J is defined over the field C(Z)G and

the section ideal I(Ŝ) is defined over the field of constants C it follows

that the generic graph section ideal is also defined over C(Z)G. In many

cases to compute the Gröbner basis of a zero dimensional ideal is rather

easier, and then cross sections can be useful to compute rational ideals.
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Theorem 3.21 (Hubert-Kogan, 2007). Let us consider a good rational

action of G and S a cross section. in Z = Cn. Let {F1, · · · , Fp} be a

reduced Gröbner basis of the generic graph section ideal JS:

Fi =
∑

α

fi,α(z)ẑ
α ,

with fi,α(z) ∈ C(Z). Then, the coefficients {fi,α(z)} form a set of ratio-

nal invariants separating orbits in general position.

Theorem 3.22 (Hubert-Kogan, 2007). Assume Z is birrational to Cm,

and the generic orbit of G in Z is of dimension s. Then, to each point

(aij)1≤i≤s; 0≤j≤m outside an algebraic subset of Cs(m+1) we can associate

a linear cross section:

S : ai0 −

m
∑

j=1

aijzj ,

with i = 1, · · · , s, where z1, · · · , zm are the affine coordinates in Z.

Example 3.6 (Quasi homogeneous transformations). Let us revisit the

example 3.4 of quasihomogeneous transformations, λ·(x, y) = (λpx, λqy),

with p, q coprime integers. The line S = {y = 1} is a cross section

of degree q. We can add the equation of Ŝ to the equations of Γα to

obtain the generic graph section ideal JS = (x̂qyp − ŷpxq, ŷ − 1) and

therefore obtain a reduced Gröbner basis,
{

ŷ − 1, x̂q − xq

yp ŷ
p
}

, containing

the rational invariants as coefficients.

Replacement invariants

As before let us consider a good rational action of G on an affine variety

Z, which comes from a regular and separated action on Z̄. Let us consider

a cross section S.

Definition 3.16. An algebraic invariant f(z) is an algebraic element

over the field C(Z)G. The field of algebraic invariants is the algebraic

closure C(Z)G.

Remark 3.23. Let us assume that C is the field of complex numbers.

Let S be a cross section of degree d. There is a closed subset X of orbits

which does not intersect S in d simple points. Let us define Z∗ = Z \X

and S∗ = S \X. We have a cross section S∗ of degree d of the action of
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G in Z∗ in the sense of Lie group actions. Therefore, there is a natural

map of analytic manifolds ρ : S∗ → Z∗/G, which is a covering of degree

d.

Theorem 3.24. Let S be an irreducible cross section of degree d. Then

the inclusion map i : S → Z induces an algebraic extension C(Z)G →

C(S) of degree d. The rational functions on S are algebraic invariants.

Proof. Let us consider ρ : Z 99K Q a birrational model of Z/G. Then

we have a rational map ρ0 : S 99K Q, which is a covering of degree d

and produces an algebraic extension C(Q) →֒ C(S) of degree d. By the

identification C(Q) ≃ C(Z)G we finish the proof.

The generic graph section ideal JS defines an algebraic subset in

S∗ ⊂ Ẑ(C(Z)), the algebraic variety Ẑ with coordinates in the algebraic

closure C(Z).

Definition 3.17. A replacement invariant is a point of S∗.

By definition JS is a zero dimensional radical ideal. The variety S∗

consists of d simple points, and therefore there exist exactly d different

replacement invariants.

Proposition 3.25. Let ξ be a replacement invariant, then ξ ∈

Z(C(S)) ⊂ Z(C(Z)G). In particular if Z is birrational to Cn then

ξ = (ξ1, · · · , ξn) with ξi ∈ C(S) algebraic invariants of degree d.

Proof. It comes from a canonical isomorphism C(S) = C(Ŝ) ≃

C(Z)[Ẑ]/JS .

The following result, which allows to rewrite rational invariants as

functions of the replacement invariants, can be seen as an algebraic form

of the Thomas replacement theorem [20].

Theorem 3.26 (Thomas replacement). Let Z be Cn and let f(z1, · · · , zn) ∈

C(Z)G be a rational invariant. Then, for any replacement invariant

(ξ1, · · · , ξn) we have,

f(z1, · · · , zn) = f(ξ1, · · · , ξn) ∈ C(Z)G .

Example 3.7 (Quasi homogeneous transformations). Let us revisit the

examples 3.4 and 3.6 of quasihomogeneous transformations, λ · (x, y) =

(λpx, λqy), with p, q coprime integers. The line S = {y = 1} is a cross
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section of degree q. We compute JS = (x̂qyp − ŷpxq, ŷ− 1). The replace-

ment invariants are the solutions (x̂, ŷ) of the above equations. We obtain
(

1, q

√

xq

yp

)

, q different solutions for the q different determinations of the

q–th root. By Thomas replacement theorem, for any rational invariant

f(x, y) we have,

f(x, y) = f

(

1, q

√

xq

yp

)

.

4 Algebraic Lie–Tresse theorem

In this section we develop a general theory of differential invariants and

give an algebraic version of Lie–Tresse theorem, the finiteness of the dif-

ferential invariant algebra. Usually, differential invariants are developed

using jet bundles. Here we develop the theory for Weil bundles; it has

two advantages: many natural operations are easier to handle in the Weil

bundles context, and we avoid Tresse derivatives. Since the jet bundles

are geometric quotients of Weil bundles, any rational function defined on

a jet bundle lifts naturally to a Weil bundle. Therefore there is no loss of

generality in the use of Weil bundles instead of jet bundles. In the last

part we will expose our results in the jet bundle language.

4.1 Weil algebras

Let C be an algebraically closed field of zero characteristic.

Definition 4.1. AWeil C–algebra is a local (rational4) finite dimensional

commutative C–algebra.

From now on we will drop the prefix C–, and we will assume that all

the algebras and algebra morphism are linear over C. Let A be a Weil

algebra. We denote by mA the maximal ideal of A. There is a canonical

decomposition A = C ⊕ mA. We denote by ωA its rational point, which

is the projection ωA : A → C.

Example 4.1. Let C(1,1) = C[[ε]]/ε2 be the algebra of dual numbers,

with multiplication (a+bε)(c+dε) = ac+(ad+bc)ε. It is a 2–dimensional

4 This assumption is not necessary in our definition, since we assume that C is a
algebraically closed field. However, it appears in the general definiton of Weil algebra
over any field.
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Weil algebra. Its maximal ideal is the vector space spanned by ε. The

rational point is C(1,1) 7→ C, a+ bε 7→ a.

Since A is finite dimensional its maximal ideal mA has a finite number

of generators. The minimal cardinal of a system of generators of mA is

called the width of A, and coincides with the dimension of the vector

space mA/m
2
A. The elements of a ∈ mA are nilpotent. In fact, there is a

number l such that m
l+1
A = (0) and ml

A 6= (0). This number l is called

the order of A. Every element a ∈ A which does not belong to mA is

invertible.

Example 4.2. Let C(m,r) = C[[ε1, · · · , εr]]/(ε1, · · · , εr)
r+1 be the alge-

bra series in the variables ε1, · · · , εm truncated to the degree r:

a(ε) =
∑

|α|≤r

aα
εα1
1 · · · εαm

m

α1! · · ·αm!
,

α = (α1, · · · , αm) ∈ Zn
+ ,

|α| =

n
∑

i=1

αi .

The multiplication law is given by

a(ε) · b(ε) =
∑

|α|+|β|≤r

aα bβ
εα1
1 · · · εαm

m

α1! · · ·αm!

εβ1
1 · · · εβm

m

β1! · · · βm!
.

We have that C(m,r) is a Weil algebra of width m and order r, its max-

imal ideal m(m,r) consists of the truncated power series a(ε) with zero

independent term, i.e. such that a(0) = 0.

We also denote C(m,∞) the algebra C[[ε1, · · · , εm]] of formal series in

m variables. The algebra C(m,∞) is not a Weil algebra (it has infinite

dimension) but it is a rational local algebra. Its maximal ideal m =

(ε1, · · · , εr) consists of formal series having zero independent terms.

A Weil algebra morphism is an algebra morphism ϕ : A → B. In gen-

eral, any algebra morphism sends nilpotent elements nilpotent elements,

Thus, any Weil algebra morphism ϕ is local, i.e. it sends the maximal

ideal of A to the maximal ideal of B, ϕ(mA) ⊆ mB .

Proposition 4.1. If A has order ≤ r and width ≤ m then there is a

surjective Weil algebra morphism π : C(m,r) → A. In particular all Weil

algebras of width ≤ m are quotients of C(m,∞).
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Proof. The width of A is less or equal than m, so that we can find a

system of generators of mA with m elements. Let a1, · · · , am form a

system of generators of of mA. There is a unique algebra morphism,

ϕ : C(m,∞) → A ,

εi 7→ ai ,

that sends εi to ai for 1 ≤ i ≤ m. This morphism is surjective. The

ideal (ε1, · · · , εm)l is in the kernel of ϕ since ϕ((ε1, · · · , εm)l) =

ϕ((ε1, · · · , εm))l ⊆ ml
A = 0. Thus, ϕ induces a surjective morphism

ϕ̄ : C(m,r) → A.

Groups of automorphisms

Theorem 4.2. Let A and B be Weil algebras. Let a1, · · · , am be a

minimal system of generators of mA and b1, · · · , bn be a basis of B as

vector space. Then there is a natural structure of affine variety in the set

HomC−alg(A,B) such that coefficients Cij : HomC−alg(A,B) → C defined

by,

ϕ(ai) =
n
∑

j=1

cij(ϕ)bj , ∀ϕ ∈ HomC−alg(A,B) ,

are regular functions.

Proof. Any algebra automorphism is a linear map, then we have

HomC−alg(A,B) = HomC(A,B) = A∗ ⊗C B. The coefficients cij are

regular functions in A∗ ⊗ B by definition. We just need to prove that

HomC−alg(A,B) is a Zariski closed subset of A∗⊗B. Let us complete the

generating system a1, · · · , am to a linear basis a1, · · · , am, am+1 · · · , aM
of A. We have that the M × n coefficients,

φai =

n
∑

j=1

cij(φ)bj , ∀φ ∈ HomC(A,B) ,

is a linear system of coordinates in A∗ ⊗C B. Thus, in particular, the

m× n first coefficients cij , 1 ≤ i ≤ m are regular functions.

We have that the linear map φ is an algebra homomorphism if and

only if φ(aiaj) = φ(ai)φ(aj) for all 1 ≤ i ≤ m. The algebra structure in

A and B is determined by some structure constants,



Bol. Mat. 19(2), 133–188 (2012) 169

ai aj =
M
∑

k=1

λk
ij ak ,

bi bj =
n
∑

k=1

µk
ij bk .

Substituting, we obtain,

M
∑

k=1

n
∑

s=1

λk
ij cks bs =

n
∑

l=1

n
∑

r=1

n
∑

s=1

cjr cil µ
s
rl bs ,

and therefore,

n
∑

s=1

(

M
∑

k=1

λk
ij cks −

n
∑

l=1

n
∑

r=1

cjr cil µ
s
rl

)

bs = 0 .

We obtain the system of algebraic equations

M
∑

k=1

λk
ij cks −

n
∑

l=1

n
∑

r=1

cjr cil µ
s
rl = 0, ,

with 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ s ≤ n. Thus, HomC−alg(A,B) is an

algebraic subset of A∗ ⊗C B.

Remark 4.3. Taking into account that Weil algebras decompose A =

C ⊕ mA and that Weil algebra morphisms are local, we have a lower

dimensional embedding HomC−alg(A,B) ⊂ m∗A ⊗C mB .

Let us consider now the complex analytic case. Let (Cn, 0) denote the

pointed affine space, and f, g : (Cn, 0) → (Cm, 0) a germ of an analytic

map at zero. Let us consider x1, · · · , xn and y1, · · · , ym the canonical

coordinate systems on the source and target respectively. The map f is

determined by its Taylor series,

yi = fi(x1, · · · , xm) =
∑

|α|≥1

∂|α|fi
∂xα1

1 · · · ∂xαn
n

xα1
1 · · · xαn

n

α1! · · ·αn!
.

We say that f and any other analytic map g : (Cn, 0) → (Cm, 0) coincide

up to order r if the cofficients of their Taylor development up to order r
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coincide. Let a = a(y1, · · · , ym) be a formal series a(y) ∈ C[[y1, · · · , ym]].

By replacing y in the above expression we define

f∗(a)(x1, · · · , n)

= a(f1(x1, · · · , xn), · · · , fm(x1, · · · , xm)) ∈ C[[x1, · · · , xn]] .

The map

f∗ : C[[x1, · · · , xn]] → C[[y1, · · · , ym]] ,

is a local map, f∗( (x1, · · · , xn) ) = (y1, · · · , yn). We can truncate it up

to order r, obtaining a Weil algebra morphism f∗(r) : C
(m,r) → C(n,r). It

is clear that f and g coincide up to order r if and only if f∗(r) = g∗(r)
—it also follows from here that the notion of coincidence up to order r is

independent of the choice of coordinates—. On the other hand, for each

Weil algebra morphism ϕ : C(m,r) → C(n,r) there is a unique polynomial

map of degree ≤ r, f : (Cn, 0) → (Cm, 0) such that f∗ = ϕ. Therefore,

we have the identification,

HomC−alg(C
(m,r),C(r,m)) = {classes of analytic maps

f : (Cn, 0) → (Cm, 0)

up to order r coincidence } .

If we apply the Theorem 4.2 to the case A = B, and we consider only

algebra automorphism we obtain the following result.

Corollary 4.4. Let A be a Weil algebra, the group Aut(A) of Weil alge-

bra automorphisms has a natural structure of algebraic group defined over

C. Let n be the dimension of mA, then there is an inyective morphism

Aut(A) ⊂ GL(n,C).

The group Aut(C(m,r)) is called the r–th prolongation of the general

linear group of rank n and is denoted by GL(r)(m,C). In particular

Aut(C(m,1)) = GL(m,C). The elements of Aut(C(m,r)) are Taylor series

of degree r of analytic transformations, invertible near 0, of Cm. Note

that the order of the composition is reversed, (f ◦ g)∗r = g∗(r) ◦ f
∗
(r).
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4.2 Partial differential fields

Let R be a commutative ring and M be a R–module. We recall that

a derivation of R with values on M is an additive5 map ∂ : R → M,

satisfying Leibniz formula, i.e. for all a, b ∈ M we have ∂(ab) = b∂(a) +

a∂(b). The set of derivations from R in M is denoted by Der(R,M)6.

The commutator [∂, ∂′]7 of two derivations ∂, ∂′ ∈ Der(K,K) is also

a derivation8. We say that two derivations ∂, ∂′ ∈ Der(K,K) commute

if [∂, ∂′] = 0.

Definition 4.2. A partial differential field with m commuting deriva-

tions, (from now on a ∆–field) is a pair K = (K,∆K) where K is a field

and ∆K = (∂1, · · · , ∂m) ∈ Der(K,K)m is a m–tuple of pairwise com-

muting derivations of K. The subfield K∆ = {f ∈ K|∂if = 0 for i =

1, · · · ,m} is called the field of constants of K.

Example 4.3. Let us consider C(z1, · · · , zn) the field of rational func-

tions in m variables. Then (C(z1, · · · , zn), (∂z1 , · · · , ∂zm)) is a differential

field with field of constants C.

Definition 4.3. A ∆–field extension ι : K(K,∆K) ⊆ K′ = (K ′,∆K ′)

with ∆ = (δ1, · · · , δm) and (∆K ′) = (δ′1 · · · , δ
′
m) is a field extension

ι∗ : K ⊆ K ′ such that ι∗ ◦ δi = δ′i ◦ ι∗ for all i = 1, · · · ,m.

Definition 4.4. Let K ⊂ K′ be a ∆–field extension. Let f1, · · · , fn be in

K′9. We denote by K〈f1, · · · , fm〉 the smallest partial differential subfield

of K′ containing f1, · · · , fm. We say that K′ is ∆–finitely generated over

K if K′ = K〈f1, · · · , fn〉 for certain elements f1, · · · , fn ∈ K′.

The following theorem can be found —in a stronger form— in[9],

page 112, Proposition 14.

5 ∂(a+ b) = ∂(a) + ∂(b).
6 If R is a C–algebra, then we write DerC(R,M) for the space of derivations vanish-

ing on C. If A is an R–algebra, then its R–module structure is given by the algebraic
morphism φ : R → A that fix the R–algebra structure in A. We denote by Derφ(R,A)
the space of derivations from R to A, where the R–algebra (and henceforth R–module)
structure of A is given by the morphism φ. We do it in order to distinguish different
R–algebra structures in A. For instance, we have TpZ = Derp(C[Z],C), where p is
seen as the valuation morphism p : C[Z] → C, f 7→ f(p).

7 [∂, ∂′] = ∂ ◦ ∂′ − ∂′ ◦ ∂.
8 The space Der(K,K) as a natural structure of Lie algebra.
9 Let (K′ = (K′,∆K′). By abuse of notation, we say that f belongs to K′ or f ∈ K′

for elements f of K′.
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Theorem 4.5. Let K ⊆ L ⊆ K′ be differential field extensions of char-

acteristic zero. Let us assume that K′ is ∆–finitely generated over K.

Then L is ∆–finitely generated over K.

4.3 Weil bundles

Let Z be an affine C–variety, and A a C–algebra. We denote by Z(A)

the set HomC−alg(C[Z], A). An element pA ∈ Z(A) is called an A–point

of Z. We will see than under certain assumptions on A the set Z(A)

admits a natural structure of variety.

Example 4.4. There is a canonical identification of Z(C) with Z. For

each point p ∈ Z there is a morphism ωp : C[Z] → Z which to each

regular function f assigns its value f(p).

Definition 4.5. Let f ∈ C[Z] be a regular map. We call the A–prolon-

gation of f to the map fA : Z(A) → A defined by fA(pA) = pA(f). Let

ω ∈ A∗ be any linear form ω : A → C. Then, ω ◦ fA : Z(A) → C is called

a C–component of f . The set of C–components of regular functions is a

vector space isomorphic to A∗⊗C C[Z], and therefore we write ω⊗ f for

ω ◦ fA.

Theorem 4.6. Let A be a finite dimensional C–algebra. Then, there

is a natural structure of affine C–variety in Z(A) such that all the C–

components of A–prolongations of functions f ∈ C[Z] are regular func-

tions in Z(A).

Proof. Let a1, · · · , as be a basis of A, and then let us consider

{ω1, · · · , ωs} its dual basis. We have then a coordinate map A ≃ Cs,

a 7→ (ω1(a), · · · , ωs(a)).

First, we can see that if Z = Cn. For any choice of elements

b1, · · · , bn ∈ A there is a homomorphism C[z1, · · · , zn] → A such that

zi mapsto bi. Then Z(A) = HomC−alg(C[z1, · · · , zn], A) = An. The C–

components of the coordinate functions correspond to the new coordinate

functions if we identify A with Cs. Thus, Z(A) ≃ Cns.

Let us now consider Z ⊂ Cn with equations

Z : P1(z1, · · · , zn) = 0, · · · , Pk(z1, · · · , zm) = 0 .

Let z̄i ∈ C[Z] denote the coordinate functions zi in Cn restricted to Z.

A n–tuple (b1, ldots, bn) of elements of A defines a homomorphism such

that zi 7→ bi if and only if
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P1(b1, · · · , bn) = 0, · · · , Pk(b1, · · · , bm) = 0 .

Taking the C–components of those equations we obtain the s × k poly-

nomial equations of Z(A) in Csn.

Remark 4.7. In general we have Z(A) = SpecC(C[C[Z]⊗C A∗]) where

C[C[Z]⊗C A∗] denotes the ring spanned by all the C–components of all

the A–prolongations of regular functions.

Example 4.5. Let us consider Z(C×C). Each regular function has two

components, so we are duplicating the number of coordinates. We have

Z(C× C) = Z × Z. In general Z(Ck) = Zk.

The assignation (Z,A) ; Z(A) is in fact a functor in both vari-

ables, the variety Z and the C–algebra A. Let ϕ : A → B be an algebra

morphism, then ϕA : Z(A) → Z(B) is defined by ϕA(pA) = ϕ ◦ pA. If

F : Z → Y is a regular map, then we have a morphism F ∗ : C[Y ] → C[Z]

defined by F ∗(f) = f ◦ F . Thus, we can define FA : Z(A) → Y (A) as

FA(pA) = pA ◦ F ∗.

Exercise 4.8. Prove the following sentences:

a. If Z is smooth, then so is Z(A) for any finite dimensional algebra

A.

b. Let A and B finite dimensional, then Z(A×B) = Z(A)× Z(B).

c. Assume that A is finite dimensional, and F : Z → Y a regular map,

then the prolongation FA : Z(A) → Y (A) is also a regular map.

d. Assume that ϕ : A → B is a morphism of finite dimensional al-

gebras, then for any variety Z the map ϕA : Z(A) → Z(B) is a

regular map.

Let A be a Weil algebra or order r, then the rational point ωA : A → C

produces a map πZ(A) → Z. This map is a bundle, the so–called Weil

bundle of A–points in Z, also called nearby points of type A. Given a

A–point pA and its projection p = πA(p
A), we say that pA is nearby the

point p.

Let us consider p ∈ Z, and mp ⊂ C[Z] the ideal of all regular

functions vanishing at p. Then, the fiber of the bundle is, π−1A (p) =
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HomC−alg(C[Z]/mr+1
p , A). If p is a smooth point and the dimension of Z

at p is n, then we also have C[Z]/mr+1
p ≃ C(m,r).

Notation. The Weil bundle of C(m,r)–points of Z will be denoted

π(m,r) : T
(r,m)Z → Z. Their elements will be called nearby points of type

(m, r) or (m, r)–points.

Example 4.6. Let us consider π(1,1) : T
(1,1)Z 7→ Z. The Weil algebra

C(1,1) is a C–vector space with basis {1, ε}, let {ω0, ω1} be its dual basis.

We consider p(1,1) ∈ Z(C(1,1)), a (1, 1)–point nearby to p ∈ Z. We have:

a. Let f be a regular function. Then, (f ⊗ ω0)(v) = f(p)). Therefore

we have f ⊗ ω0 = π∗(1,1)(f). Considering the algebraic embedding

π∗A : C[Z] ⊂ C[Z(A)] we have f0 = f .

b. The map Dp(1,1)C[Z] → C which sends f 7→ (f ⊗ ω1)(p
(1,1)) is a

derivation. We have a one–to–one map π−1(p) → TpZ which sends

the (1, 1)–point p(1,1) to the tangent vector at p, Dp(1,1) , seen as a

derivation Dp(1,1)f = (f ⊗ ω1)(p
(1,1)).

We denote f ⊗ ω1 as ḟ , and f ⊗ ω0 as f . Then, the decomposition in

C–components is written: f (1,1) = f + ḟε. Let z1, · · · , zn be a system of

coordinates in Z. The functions z1, · · · , zn, ż1, · · · , żn form a system of

coordinates in T (1,1)Z. The bundle T (1,1)Z is identified with the tangent

bundle TM . The (1, 1)–point with coordinates (z1, · · · , zn, ż1, · · · , żn)

corresponds to the vector
∑n

i=1 żi

(

∂
∂zi

)

p
where p = (z1, · · · , zn).

Example 4.7. Let us consider the Weil bundle π(m,r) : T
(m,r)Z 7→ Z. A

basis of C(m,r) as C–vector space is
{

ε
α1
1 ···ε

αm
m

α1!···αm!

}

0≤|α|≤r
. For a regular

function f ∈ C[Z] we denote by f:α the C–component given by the

coefficient of
ε
α1
1 ···ε

αm
m

α1!···αm! in the prolongation f (m,r) : T (m,r)Z → C(m,r). We

have the following decomposition in C–components:

f (m, r) =
∑

|α|≤l

f:α
εα1
1 · · · εαm

m

α1! · · ·αm!
,

f:α : T (m,r)Z → C .

In the complex analytic case, let U be a small neighbohood of 0 in

Cm and F : U → Z be a holomorphic map which sends 0 to p ∈ Z. Let
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us consider ε1, · · · , εm as Cartesian coordinates in U . We consider the

map C[Z] → C[[ε1, · · · , εm]] that assigns to each f ∈ Z the Taylor series

of f ◦ F at 0. By truncation we obtain maps t(r)F : C[Z] → C(m,r). The

map t(r)F is a (m, r)–point near to p called the r–th Taylor series of F .

Let us consider z1, · · · , zn affine coordinates in Z, and F : (ε1, · · · , εm) →

(z1(ε1, · · · , εm), · · · , zn(ε1, · · · , εm)). Then,

f:α(t
(r)F ) =

(

∂|α|

εα1
1 · · · εαm

m

)

ε=0

f(z1(ε1, · · · , εm), · · · , zn(ε1, · · · , εm)) .

Remark 4.9. Let Z be smooth of dimension n. As we have seen above,

the fiber π−1(m,r)(p) ⊂ T (m,r)Z corresponds to the Taylor series of degree r

of all the germs of holomorphic maps (Cm, 0) → (Z, p). A frame of order

r is the r–th order Taylor series of a germ of holomorphic locally invertible

map (Cn, 0) → (Z, p). The bundle of frames of order r, R(r)Z → Z is a

Zariski open dense subset of T (n,r)Z → Z. The non–degeneracy condition

is as follows, let z1, · · · , zn be a system of coordinates in Z, then:

R(r)Z = {p(n,r) ∈ T (n,r)(Z) | det(zi:ǫj (p
(n,r))) 6= 0} ,

where ǫi represents the multi–index (δ1i, · · · , δni) having all its compo-

nents zero except the i–th with values 1.

4.4 Total derivatives

By the definition of Weil algebras C(m,r) we have that C(m,r)/mk
(m,r) =

C(m,k−1) for k = 1, · · · , r. Therefore, we have that the Weil algebras

C(m,r) form a projective system,

· · · → C(m,r+1) → C(m,r) → · · · → C(m,1) → C(m,0) = C .

In the projective limit we have,

C(m,∞) = lim
←−
r

C(r,m) .

We consider an irreducible affine variety Z and take the nearby point

Weil bundles, getting a projective system the bundles of nearby points

form a projective system:
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· · · → T (m,r+1)Z → T (m,r)Z → · · · → T (m,1)M → M .

The projective limit

T (m,∞)Z = lim
←−
r

T (m,r)Z ,

is the set of (m,∞)–points in Z, T (m,∞)Z. The above projective limit

gives to T (m,∞)Z the structure of a pro–algebraic variety.10 Considering

this structure, the ring of regular functions in T (m,r)Z is,

C[T (m,∞)Z] =

∞
⋃

r=0

C[T (m,r)Z] .

In particular, let us consider Z = Cn and a system of coordinates

z1, · · · , zm. Then we have

C[T (m,∞)Z] = C[z1, · · · , zn, z1:ǫ1 , · · · , zn:ǫm , · · · ] = C[zi:α] .

On the other hand, we have that the ring C(m,∞) = C[[ε1, · · · , εm]]

is endowed with the derivations ∂
∂εi

for i = 1, · · · ,m. Let f be a regular

function in Z, let us write its prolongation to C(m,∞) decomposed in its

infinite C–components:

f (m,∞) =
∑

α∈Zn
+

f:α
εα1
1 · · · εαm

m

α1! · · ·αm!
.

We define the total derivative of f:α with respect to εi, denoted as
df:α
dεi

as the component in
ε
α1
1 ···ε

αm
m

α1!···αm! of ∂f(m,∞)

∂εi
. Therefore, we have:

∂f (m,∞)

∂εi
=
∑

α∈Zm
+

df:α
dεi

εα1
1 · · · εαm

m

α1! · · ·αm!
.

We obtain df:α
dεi

= f:α+ǫi. By extension to all regular functions in

C[T (m,∞)Z] we define total derivative operators.

10 A pro–algebraic variety is a projective limit of algebraic varieties.
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d

dεi
: C[T (m,∞Z] → C[T (m,∞)Z] .

Note that the total derivatives of functions in C[T (m,r)Z] are in

C[T (m,r+1)Z]. For a system z1, · · · , zn of affine coordinates in Z it is

possible to write these total derivative operators as formal sums,

d

dεi
=
∑

j,α

zj:α+ǫi

∂

∂zj:α
.

Let us consider Z irreducible. Then C[T (m,∞)Z] is a domain and

the total derivative operators extend to the quotient field C(T (m,∞)Z).

We obtain the structure of ∆–field
(

C(T (m,∞)Z),
(

d
dε1

, · · · , d
dεm

))

. Note

that if z1, · · · , zm is a system of affine coordinates, then C(T (m,∞)Z) is

∆–generated over C by z1, · · · , zn.

4.5 Prolongation of groups and group actions

Theorem 4.10. Let G be an affine C–algebraic group. For any C–

algebra A the set G(A) has a natural group structure. Let us assume that

A is a finite dimensional algebra A, then G(A) is an algebraic group.

Proof. We apply the fact that the tensor product is a direct sum in the

category of C–algebras. Then (G×G)(A) = HomC−alg(C[G]⊗C[G], A) =

HomC−alg(C[G], A)×HomC−alg(C[G], A) = G(A)×G(A). We have that

the composition law in G induces a composition law in G(A) which in

the finite dimensional case is given by regular functions.

Example 4.8. Let us consider the multiplicative group C∗. Then,

T (1,1)C∗ is a two dimensional group with composition law defined by

(x + ẋε)(y + ẏε) = xy + (ẋy + xẏ)ε. If we take as coordinates a = x

and b = xẋ then we obtain an isomorphism T (1,1)C∗ ≃ C∗ × C, since

(a+ ba−1ε)(a′ + b′a′−1ε) = (aa′, (b+ b′)a−1a′−1ε).

Remark 4.11. The natural embedding C ⊂ A induces a map G ⊂

G(A). When A is finite dimensional, G is an algebraic subgroup of G(A).

When A is a Weil algebra, the Weil bundle is a natural algebraic group

morphism πA : G(A) → G.

Remark 4.12. In the case G = GL(n,C) then the corresponding group

GL(n,A) is the group of invertible n × n matrices with coefficients in
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A. In this case the nondegeneracy condition is not det(uij) 6= 0 but

ωA(det(uij)) 6= 0. That is, the determinant is an invertible element of A.

The same reasoning applies to any algebraic linear group.

Theorem 4.13. Let α be a regular action of G in Z. For each C–algebra

A the action α induces an action αA of G(A) en Z(A). In particular

Z(A) is a G–variety.

Let Z be an irreducible G–variety. We have that G acts in Z(A) and

therefore it acts on C[Z(A)] by the right side: (f · σ)(p) = f(σ · p)).

Definition 4.6. Let Z be an irreducible G–variety. A regular differential

invariant of type A is an element f ∈ C[Z(A)]G.

C[Z(A)]G = {f ∈ C[Z(A)] | ∀σ ∈ G, f · σ = f} .

In particular, a regular differential invariant of type (m, r) —of rank m

and order r— is an element of C[T (m,r)Z]G.

The action of G in C[Z(A)] lifts to an action in the field C(Z(A)).

Thus, G is identified with a subgroup of automorphisms of C(Z(A)).

Definition 4.7. A rational differential invariant of type A is an element

of C(Z(A))G. The elements of the algebraic closure C(Z(A))G are re-

ferred as algebraic differential invariantes of type A. In particular, a

rational differential invariant of type (m, r) —of rank m and order r—

is an element of C(T (m,r)Z)G.

The field of differential invarians of any order is then defined,

C(T (m,∞)Z)G =
∞
⋃

r=1

C(T (m,r)Z)G .

Proposition 4.14. Let f be a rational differential invariant of type

(m, r). Then, for all i = 1, · · · ,m the total derivative df
dεi

is a differential

invariant of type (m, r + 1). Therefore
(

C(T (m,∞)Z)G,
(

d
dε1

, · · · , d
dεm

))

is a ∆–field.

Proof. Note that for all σ ∈ G, df
dεi

· σ = d(f ·σ)
dεi

. Thus, we have that

f · σ = f implies df
dεi

· σ = df
dεi

.

We can now state a first version of the Lie–Tresse theorem on the

finiteness of differential invariants.
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Theorem 4.15 (Algebraic Lie–Tresse, first version). Let Z be an irre-

ducible G–variety. For each m there exist r > 0 and diffential invariants

I1, · · · , Il ∈ C(T (m,r)Z)G, such that any rational differential invariant

J ∈ C(T (m,∞)Z)G of type (m,k) for any integer k, is a rational function

in the total derivatives, d|α|Ii
εα with 0 ≤ |α| < ∞. Therefore,

C(T (m,∞)Z)G = C

(

d|α|I1
εα

, · · · ,
d|α|Is
εα

)

0≤|α|<∞

.

Proof. By Theorem 4.5 the field of differential invariants of type (m,∞)

is ∆–finitely generated over C. Let I1, · · · , Is such that C〈I1, · · · , Is′〉 =

C(T (m,∞)Z)G.

Remark 4.16. The proof of the Theorem 4.15 does not make use of

the algebraic structure of G or the regularity of the action. We have

that, in a general setting, the field or rational invariants for a group or

pseudogroup action in Z is always ∆–finitely generated.

Remark 4.17. Theorem 4.15 is in some sense weaker that the classical

Lie–Tresse theorem. It needs to be improved in two ways.

a. Characterize the maximum order r of the generating system of

differential invariants.

b. Characterize the order of derivatives of the generating set we need

to apply to obtain all differential invariants of type (m, r + k).

We will do both things in the statement of Theorem 4.28

4.6 Prolongation of ideals and subvarieties

Tangent structures

Let pA be in Z(A). There is a canonical identification of the space

TpAZ(A) with the space of derivations DerpA(C[Z], A).

DerpA(C[Z], A)

= {D : C[Z] → A |D(f g) = pA(f)D(g) + pA(g)D(f)} .

Let r be the order of A. Let us denote by Ar the quotient algebra

A/mr
A. There is a projection, πr : Z(A) → Z(Ar). For pA 7→ pAr , we
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denote by p the projection of pA in Z. The tangent map induces an exact

sequence,

0 → DerpA(C[Z], mr
A) → DerpA(C[Z], A) → DerpA(C[Z], Ar) → 0 .

Then ml
A verifies that for all a ∈ A and b ∈ ml

A we have ab = ωA(a)b.

Therefore the A–algebra structure in mr
A reduces to a C–vector space

structure and we have, DerpA(C[Z],mr
A) = Derp(C[Z],mr

A) = TpZ⊗Cm
r
A.

The above sequence gives

0 → TpZ ⊗ mr
A → TpAZ → TpArZ → 0 .

Let pA and qA be in the same fiber of πr. Then, the map qA −

pA : C[Z] → A turns out to be a derivation with values in ml
A. Let π̄

be the projection Z(Ar) → Z and Q(A) → Z(Ar) the pullback vector

bundle Q(A) = π̄∗(TZ ⊗mr
A) where π̄ : Z(Ar) → Z is the canonical pro-

jection. The following theorem holds (the interested reader can consult

[1] for further results):

Theorem 4.18. The bundle Z(A) → Z(Ar) is an affine bundle modeled

over the vector bundle Q(A) → Z(Ar).

For the particular case Z(A) = T (m,r)Z we denote Q(m,r) and we

have

Q
(m,r)

p(m,r) = TpZ ⊗ Sr[ε1, · · · , εm] ,

where Sr[ε1, · · · , εm] denotes the space of homogeneous polynomials of

degree r.

Weil theorem and Taylor embedding

Theorem 4.19 ([22]). Let A and B be Weil algebras. Then, there are

canonical isomorphisms Z(A)(B) ≃ Z(B)(A) ≃ Z(A⊗C B).

Proof. Just note that C[Z(A⊗C B] = C[C[Z]⊗C A∗ ⊗C B∗].

For r = s+ t there is a canonical map,

C(m,r) = C[[ε]]/(ε)r+s+1

→ C(m,r) ⊗C C(m,r) = C[[λ, µ]]/((λ)r+1 + (µ)t+1) ,
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that sends f(ε) 7→ f(λ + µ). These morphism induce regular bundle

maps,

i(m,t,s) : T (m,r)Z → T (m,s) T (m,t)Z ,

called the Taylor embeddings.

Example 4.9. The classical embedding T (2)Z 7→ T (TZ). The second

tangent bundle is a subbundle of the tangent bundle to the tangent bun-

ndle.

Prolongation of ideals and subvarieties

Definition 4.8. Let a be an ideal of C[Z], we call a(A) the prolongation

of a to C[Z(A)] to the ideal spanned by all the C–components of the

prolongations of elements of a to Z(A).

Remark 4.20. In particular, if Y is a irreducible closed sub–variety of

Z then the prolongation to A of the ideal ot Z, is the ideal of Y (A) as a

sub–variety of Z(A).

Let us consider an ideal a ⊂ C[T (m,r)Z]. The Taylor embedding

tm,1,s : T
(m,r+1)Z ⊂ T (m,1)T (m,r)Z induces a restriction morphism

t∗m,1,s : C[T
(m,1)T (m,r)Z] → C[T (m,r+1)Z].

Definition 4.9. Let a be an ideal of C[T (m,r)Z]. The first prolongation

a(m, r+1) ⊂ C[T (m,r+1)Z] is the ideal t∗m,1,s(a) ·C[T
(m,r+1)Z]. For s ≥ 1

the ideal a(m, r+s) ⊂ C[T (m,r+s)Z] is defined by succesive prolongations.

Definition 4.10. Let a ⊂ C[T (m,r)Z] be an ideal. Let b be the in-

tersection a ∩ C[T (m,r−1)Z]. We define the first iteration of a(1) as the

ideal +b(m, r − 1 + 1). By repetition of this processs we define the k–

th iteration a(k) = (a(k−1))(1). We say that a is r–th order complete if

a(1) = a.

We have a natural ascending chain a ⊆ a(1) ⊂ · · · ⊆ a(k) ⊆ · · · . By

the Noetherian property of C[T (m,r)Z] we have that this sequence ends

—in fact, we need almost r iterations—. The ideal a(r) is the smallest

r–th order complete ideal containing a.

Definition 4.11. Let Y ⊂ T (m,r)Z be an irreducible subvariety. The

first prolongation Y (m, r + 1) is the intersection of T (m,1)Y ⊂

T (m,1)T (m,r)Z with T (m,r+1)Z ⊂ T (m,1)T (m,r)Z.
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Let a be the ideal I(Y ) of Y . Then, the radical
√

a(m, r + 1) co-

incides with the ideal of Y (m, r + 1). A direct computation shows the

following result:

Proposition 4.21. Let a ⊂ C[T (m,r)Z] be an ideal spanned by func-

tions f1, · · · , fs. The prolongation a(m, r + 1) is spanned by

f1, · · · , fn,
df1
dε1

, · · · , dfs
dεm

.

Remark 4.22. In the language of differential algebra, the prolonga-

tion a(m,∞) is the ∆–ideal of the ∆–ring
(

C[T (m,∞)Z],
(

d
dε1

, · · · , d
dεm

))

spanned by a.

Let a = (F1, · · · , Fn) be an ideal of C[T (m,r)Z]. We can decompose

Fi = Pi(zj;α) + Ri(zj;β) in such way that Pi(zj;α) depends only on the

derivatives of higher order. Let p(r,m) be in V (a) and p(r+1,m) in the fiber

of p(r,m). We have that p(r+1,m) is V (a(m, r+1)) if and only if it satisfy
dFi

dεk
(p(r+1,m)) = 0 for all i and k. Those equations turn out to be linear

in the derivatives of higher order:

m
∑

k=1

∂Pi

∂zj;α
(pm,r) zj;α+ǫk = −

dRi(p
(r,m))

dεk
.

The solution of the homogeneous equation gives us a subspace of

S(a, 1)p(m,r) ⊂ Q
(m,r)

p(m,r) called the first symbol of the ideal a at p(m,r).

Let Y ⊂ T (m,r)Z be an irreducible variety and p(m,r) ∈ Y . The first

symbol of Y at p(m,r) is the space S(Y, 1)p(m,r) defined by the symbol of

the ideal I(Y ). If Y is not irreducible, then the symbol is computed

separately for their irreducible components.

If Y is irreducible then there is a Zariski open subset U ⊂ Y such

that S(Y, 1) → U is a vector bundle. The rank d of this bundle is called

the dimension of the generic symbol. For any p(m,r) ∈ Y outside U we

have dimS(Y, 1)p(m,r) > d.

Lemma 4.23. Let Y ⊂ T (m,r)Z such that the ideal I(Y ) is r–th order

complete. Let us consider πr+1,r : T
(m,r+1)Z → T (m,r)Z the canonical

projection. There is a Zariski open subset U ⊂ Y such that

U(m, r + 1) = {p(m,r+1) ∈ Y (m, r + 1) |πr+1,r(p
(m,r+1)) ∈ Y } ,

and one of the following holds:
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a. U(m, r + 1) is empty.

b. The map πr+1,r : U(m, r + 1) → U is an affine bundle of rank d.

Proof. The equations of the prolongation are a system of linear equations

in the derivatives of order r+1. If the ideal I(Y ) is r–th order complete

then no new linear equations in derivatives of order ≤ r appear. In a

Zariski open subset, this linear system is either incompatible (case a) or

compatible with a r–dimensional affine space of solutions (case b).

We say that Y has vanishing first symbol if S(Y, 1) = 0, or equiva-

lently the dimension of the generic symbol of Y is 0.

4.7 Effective algebraic Lie–Tresse theorem

Let Z be an irreducible G–variety. Without loss of generality, we assume

that the actions of G in any of the spaces T (m,r)Z are separated, so that

the orbits are closed. In this section we will state a second version for

the Lie–Tresse theorem that includes a geometric characterization of the

maximum order of a generating system of differential invariants.

Lemma 4.24. Let Y ⊂ T (m,r)Z be an orbit for the action of G, then the

ideal I(Y ) is r–th order complete.

By Rosenlicht theorem, there is an open Zariski G–invariant subset

U ⊆ T (m,r)Z endowed with regular differential invariants I1, · · · , Il —

they are in fact rational invariants whose denominators vanish outside

U— that separate the orbits.

Lemma 4.25. Let Y ⊂ U ⊂ T (m,r)Z be a principal orbit with vanishing

symbol. Let I1, · · · , Is. Let us consider Y ′ = π−1r+1,rY be the preimage of

the Y by πr+1,r : T
(m,r+1)Z → T (m,r)Z. Let I1, · · · , Is be regular differen-

tial invariants of type (m, r) separating the orbits in U . The restriction of

the functions dIi
dεj

to the prolongation Y ′ separate the orbits of the action

of G in Y ′.

Proof. Let p(m,r) ∈ Y with symbol equal to (0). Taking into account that

Y is a G–invariant variety, we obtain that each σ ∈ G takes the symbol

S(Y, 1)p(m,r) to S(Y, 1)σ·p(m,r) and therefore the symbol S(Y, 1)q(m,r) is

(0) for any q(m,r) ∈ Y . Let a = (I1 − λ1, · · · , Is − λs) the equations of

the orbit given by differential invariants of type (m, r). The ideal a is

r–th order complete by lemma 4.24. Let us assume that I1, · · · , Is′ are of
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type (m, r) and not of type (m, r− 1), and that Is′+1, · · · , Is are of type

(m, r−1). Let us consider p(m,r) ∈ Y and µij s
′×m arbitrary constants.

Then, the system of linear equations in π−1r+1,r(p
(r,m)) defined by

dIi
dεj

= µij ,

with i = 1, · · · , s′, j = 1, · · · ,m, is either incompatible for any p(m,r) ∈

Y , or has a unique solution p(m,r+1) = φ(µij , p
(m,r)) for any p(m,r). In the

compatible case, Y (µij) = {φ(µij , p
(m,r)) | p(m,r) ∈ Y } is an orbit of G

in T (m,r+1)Z. Reciprocally, let X ⊂ T (m,r+1)Z be an orbit that projects

onto Y . Since dIi
dεj

are differential invariants of type (m, r + 1) they take

constant values µij along X. Finally X = Y (µij).

Lemma 4.26. Let Z be a G–variety. For any m ≥ 0 there exist r > 0

such that the following holds.

a. Generic orbit in T (m,r)Z are principal, i.e. there is a G–invariant

Zariski open subset U ⊂ T (m,r)Z such that for all p(m,r) in U the

stabilizer Gp(r,m)
is the identity.

b. For generic orbits G · p(m,r) the symbol S(G · p(m,r), 1) vanish, i.e.

there is a G–invariant Zariski open subset U ⊂ T (m,r) such that for

all p(m,r) in U the first symbol S(G · p(m,r), 1) vanishes.

Lemma 4.27. Let us fix m ≥ 0, and let r0 satisfy a and b in the Lemma

4.26. Then, for all r ≥ r0, conditions a and b are satisfied.

Theorem 4.28 (Lie–Tresse, second version). Let Z be a G–variety. Let

r ≥ 0 such that the generic orbit in T (m,r)Z is principal with vanishing

symbol. Then, there exist a complete set of rational differential invariants

I1, · · · , Is in C(T (m,r)Z)G such that:

a. For any k ≥ 0, any differential invariant of type (m, r + k) is a

rational function in the functions d|α|Ii
εα with 0 ≤ |α| ≤ k:

C(T (m,r+k)Z)G = C

(

d|α|I1
dεα

, · · · ,
d|α|Is
dεα

)

0≤|α|<k

.

b. The above differential invariants d|α|Ii
dεα separate generic orbits in

T (m,r+k)Z.
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Proof. Let r be such that the generic orbit in T (m,r)Z is principal and

has vanishing symbol. From Roselicht theorem we know that there is

a system of rational differential invariants I1, · · · , Is separating generic

orbits in Z. From Lemma 4.25 it follows than the rational functions Ii
and

dIj
dεj

separate generic orbits in T (m,r+1)Z, and therefore they generate

the field C(T (m,r+1)Z)G. By Lemma 4.27 we can apply the same argu-

ment iteratively obtaining that the succesive total derivatives or order

≤ k separate generic orbits in T (m,r+k)Z. By the Theorem 3.8 we have,

C(T (m,r+k)Z)G = C

(

d|α|I1
dεα

, · · · ,
d|α|Is
dεα

)

0≤|α|<k

.

Example 4.10. Let Z = C2 be the plane, and let us consider the group

SE(2,C) of orientation preserving Euclidean movements,

(

z1
z2

)

7→

(

c

d

)

+

(

a −b

b a

) (

z1
z2

)

,

with a2 + b2 = 1. Let us compute the differential invariants of type

(1, r). First, SE(2,C) acts transitively in C2 so that there is no differ-

ential invariants of type (1, 0). Let us compute the prolongation of the

action to T (1,1)C2 = TC2 —which is isomorphic to C4 with coordinates

z1, z2, ż1, ż2— to compute the differential invariants of type (1, 1). We

have,

(

ż1
ż2

)

7→

(

a −b

b a

) (

ż1
ż2

)

.

We obtain a differential invariant of type (1, 1), namely,

I1 = ż21 + ż22 .

The Zariski open subset U1 = {I1 6= 0} all orbits are principal, and

separated by te values of I1. Let us compute the symbol equations,

I2 =
dI1
dε

= 2 ż1 z̈1 + 2 ż2 z̈2

; 2 ż1 z̈1 + 2 ż2 z̈2 = 0 .

This homogenous equation in the variables z̈1, z̈2 has a one dimensional
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space of solutions —in (1, 1)-points in U1—, and therefore the symbol

does not vanish. We need to compute the following prolongation.

(

z̈1
z̈2

)

7→

(

a −b

b a

) (

z̈1
z̈2

)

.

We compute a new invariant,

I3 = ż1 z̈2 − ż2 z̈1 .

Again we have that I1, I2, I3 separate generic orbits in T (1,2)C2 ≃ C6.

The symbol equations give,

I4 =
d2I1
dε2

= 2 ż1 z
(3)
1 + 2 ż2 z

(3)
2 + 2 z̈21 + 2 z̈22

; 2 ż1 z
(3)
1 + 2 ż2 z

(3)
2 = 0 ,

I5 =
d2I1
dε2

= ż1 z
(3)
2 − ż2 z

(3)
1

; ż1 z
(3)
2 − ż2 z

(3)
1 = 0 .

These homogeneous equations in z
(3)
1 , z

(3)
2 have only trivial solution in

U1. Therefore, the symbol vanishes. We can conclude that I1, I2, I3 and

their derivatives up to order k allow us to express any rational differental

invariant of type (1, k+2). In particular the curvature κ of a planar curve

is an algebraic differential invariant given by,

κ =

√

I23
I31

.

Finally, taking into account that I2 is defined as the derivative of I1, we

have that as differential fields,

C(z1, z2, ż1, · · · )
SE(2,C) = C〈ż21 + ż22 , ż1 z̈2 − ż2 z̈1〉 .
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