ANÁLISIS EMPÍRICO DEL COMPORTAMIENTO DE MANADA EN LA BOLSA DE PAKISTÁN

FARHAN AHMED

Department of Management Sciences, SZABIST KARACHI, PAKISTAN. e-mail: farhan.mba2013@gmail.com DEEPAK KARIRA Underwriter Individual Life, ADMJEE LIFE ASSURANCE CO. LTD, PAKISTAN. e-mail: deepakkarira@ymail.com

RESUMEN

Este estudio intenta analizar e identificar la presencia de comportamiento de rebaño entre los inversores, utilizando los rendimientos diarios de 387 acciones que cotizan en la Bolsa de Valores de Pakistán (PSX) desde el 1 de enero de 2009 hasta el 31 de diciembre de 2017. También investiga las diferencias en el comportamiento de los inversores en diferentes condiciones de mercado y en diferentes sectores listados en PSX. El estudio utiliza el modelo CSAD (dispersión seccional absoluta) propuesto por (Chang et al., 2000) para probar la presencia de comportamiento de pastoreo en PSX. Los resultados del estudio no respaldan la existencia generalizada de pastoreo en la Bolsa de Valores de Pakistán en general, mientras que el análisis sectorial (específico de la industria) revela evidencia de pastoreo en 4 sectores que figuran en la Bolsa de Valores de Pakistán.

Palabras Clave: Comportamiento de rebaño, Bolsa, Mercados Emergentes, Eficiencia del Mercado

Empirical Analysis of Herd Behavior in Pakistan Stock Exchange

ABSTRACT

This study attempts to analyze and identify presence of herd behavior amongst investors, using daily returns of 387 stocks listed on Pakistan Stock Exchange (PSX) from January 1, 2009 to December 31, 2017. It also investigates difference in investor behavior under different market conditions and across different sectors listed on PSX. The study uses CSAD (Cross Sectional Absolute Dispersion) model proposed by (Chang et al., 2000) to test presence of herding behavior in PSX. The results of the study do not support widespread existence of herding in Pakistan Stock Exchange overall whereas sectoral (industry specific) analysis reveal evidence of herding in 4 sectors listed in Pakistan Stock Exchange.

Keywords: Herd Behavior, Stock Exchange, Emerging Markets, Market Efficiency

Clasificación JEL: E29, G14, G15

Artículo recibido el 2 de octubbre de 2018 y aceptado el 7 de enero de 2019 Artículo disponible en versión electrónica en la página www.revista-eea.net

1. INTRODUCTION

Recently, researchers have become more interested in investors' behavior because changes in investor behavior can affect financial markets and asset prices. Herd behavior and investors' psychology are the main areas of focus for behavioral finance studies. Analysis of herd behavior focuses on the similarity of actions of different investors during trading of financial assets/securities. This paper examines the concept of herd behavior in Pakistan stock exchange. Herd behavior can be defined as the behavior of investors following other investors and taking bets in a similar direction. (Lakonishok et al., 1992) defined herd behavior as "buying (selling) simultaneously the same stocks as others buy (sell)". Herd behavior can be classified into two types; Intentional herding (Irrational herding) and Unintentional herding (Rational herding) (Bikchandani et al., 2001). Unintentional herding refers to "the phenomenon where groups facing similar decision problems and information sets, take similar decisions". This behavior arises due to change in fundamentals; e.g., a sudden surge in interest rates may trigger simultaneous sale of highly leveraged stocks by all investors. On the other hand, intentional herding refers to the behavior, when groups intentionally follow others due to informational cascades or reputation reasons, it is inefficient and generally marked by financial fragility (Bikhchandani and Sharma, 2001). Herd behavior has been observed in the financial markets since the seventeenth century. The first major asset bubble of tulip mania (in Holland) is believed to be caused by the imitating behavior of investors and irrational purchase of tulips, which drove the prices of tulips to unexpectedly high level before the market crash. The more recent observation is the market crash of 2008 in the United States. Many researchers believe that herding has a negative impact on the overall stability of the financial system. Herding in stock markets, drive the prices of equities away from their fundamental values besides increasing volatility in their returns (Tan et al., 2008). Additionally, it also has the tendency to debilitate the financial markets and make financial markets seem more fragile.

Pakistan Stock Exchange (PSX) is considered as one of the leading emerging stock markets in the world and is a target of many International fund managers and foreign investors. During the last decade the Pakistan Stock Market has gone through significant volatility and variations. Pakistan Stock Exchange (PSX) came into existence in January, 2016 as a result of demutualization and merging of three bourses of Pakistan namely; Karachi Stock Exchange, Lahore Stock Exchange and Islamabad Stock Exchange. PSX facilitates both local and foreign investors, institutional as well as retail. It was ranked amongst the top performers of stock market between 2019 and 2015. As of February, 2018, total of 559 companies are listed across 35 sectors, on PSX with the total market capitalization of \$84 billion.

The motivation for this research is to adequately study the presence of herd behavior in Pakistan. Authors have used Cross Sectional Absolute Dispersion (CSAD) model proposed by Chang et al (2000), and the rationale for using original model is that, Pakistani stock market is relatively young and the phenomenon of herd behavior is new to the market, Therefore, not enough studies have been conducted on the subject matter. The earlier studies conducted on Pakistani market have mostly used Cross Sectional Standard Deviation (CSSD) model proposed by Christie and Huang (1992), which only measures herd behavior in stress conditions only; where standard deviation is defined as 5% or 10% but Chang et al (2000), argues in their paper that herding may be present in all conditions. Therefore, CSAD is relatively sophisticated measure for examining market's tendency to exhibit herd behavior text line

2. LITERATURE REVIEW

This section presents a brief overview of the existing literature on herding behavior in financial markets. I have partitioned the literature review into two parts i.e. Theoretical Literature and Empirical Literature. The focus of theoretical literature is to ascertain reasons behind the existence of herd phenomenon and its classification and to identify motivations for various types of herd behavior. Whereas, the empirical literature presents the findings of earlier researches conducted on herd behavior in financial markets.

2.1. Theoretical Literature

There are two sets of opposing theories used to explain investor behavior in financial markets, the traditional finance theories and the behavioral finance theories. The traditional framework is mostly based on efficient market hypothesis (EMH) and its implications. As per EMH theory of Eugene Fama, in an efficient market, asset prices always "fully reflect" all the available information and investors always make informed decision and are rational with respect to their investment decisions. The empirical evidence researchers found in the 1960s and 1970s was consistent with the EMH. Thus, it became both a theoretical and empirical success (Shleifer, 2000). However, later in 1980s several empirical results that were not consistent with efficient market theory came to light (Shefrin, 2000). The notion of efficient security prices has long been challenged by several scholars, including: (Nicholson, 1968) and (Basu, 1977) who suggests that stocks with high price-to-earnings ratios (PE) are overvalued and stocks with low (PE) ratios are undervalued (De Bondt, 2008). Calendar Anomalies have also been recorded; (Keim, 1983) found the empirical evidence of January effect and reported that daily stock return distributions in January have higher means in comparison to the remaining months of the year. In response to the failure of traditional financial models based on the EMH to explain these anomalies, a new field of behavioral finance emerged. Behavioral finance looks at finance from a social science' point of view and incorporates elements of both sociology and psychology. These days, it has gotten much attention and become one of the most important research fields (Shiller, 2003). Further, (Barberis and Thaler, 2003) emphasized that the field of behavioral finance has two primary aspects: limits to arbitrage and psychology. They assumed that real world arbitrage is both risky and costly. Therefore, stock prices may remain away from their fair value. This notion violates the EMH which states that in an efficient market, stocks will always trade at their fair value. The second aspect, psychology, focuses on how and why people make investment decision. After several stock market crashes especially 2008 Global financial crises, investors' psychology has come to light as an important factor in the financial market (De Bondt et al., 2008). Additionally, the failure of traditional models to describe the past market behavior and market phenomenon such as panic selling and market euphoria, imply that rational decision making by participants does not always exist in the financial markets. Behavioral finance advocates that human psychology may provide a viable explanation for such market phenomenon and past behavior. In fact, nowadays the tendency of individuals to mimic the actions of other's, is of particular interest (De Bondt et al. 2008).

2.1.1 Rational vs Irrational Herding

Characterizing herd behavior in financial market is a very difficult undertaking because of the several complexities involved. Scholars try to differentiate herd behavior from normal behavior in the market. Herd behavior can be of different type i.e. Spurious and Intentional (Devenow & Welch, 1996). Spurious herding is also known as unintentional or rational herding and Intentional herding is also known as irrational herding. The Rational herd behavior occurs due to external factors such as incentives and misleading information (Scharfstein and Stein, 1990); (Banerjee, 1992); (Bikhchandani et al, 1998); (Avery and Zemsky, 1998). (Bikhchandani and Sharma, 2001), concluded that three main reasons for rational herd behavior are information gap, reputation concern and compensation plan for asset managers. Herd behavior caused by information gap also known as informational cascades might help in explaining market behavior. For example, when firms decide to invest in R& D in a specific area or when analysts decide to recommend a particular stock, informational cascades are weak (Devenow and Welch, 1996). Variety of shocks could cause an informational cascade; e.g. entry of informed investors, arrival of new public information etc. (Bikhchandani et al, 1998). (Scharfstein and Stein, 1990) studied herding based on reputation concerns. Their model categorizes managers as either smart or dumb. They assumed that smart managers have informative signals whereas dumb investors have uninformative signals related to investment decision and smart managers' decisions are highly correlated whereas dumb investors' are not. According to them, manager's poor quality is only revealed if other managers did not make the same bet. If the managers made similar bad investments, then they could blame it on poor investment climate. Due to this phenomenon, it might be rational for the managers to follow others and avoid being the only manager investing in a risky asset. Whereas, herding due to compensation structures occurs when manager's compensation is based on their performance relative to other asset managers. This creates an incentive for the manager to herd (Bikhchandani and Sharma, 2001). Finally, non-rational herding occurs when investors ignore all rational analysis and began to imitate others and follow them blindly (Devenow and Welch, 1996).

2.1.2 Herd Behavior and Efficient Market Hypothesis

Herd behavior may be a key factor to the uneven rise and fall in asset prices. The herding effect on stock price movement, violates the efficient market hypothesis especially it's assumption about the rationality of investors' decisions and can result in mispricing of stocks. The valuation models based on EMH such as CAPM work under the assumption of rationality of investors decisions. When investors move away from rational choices and began to exhibit herd behavior, these valuation models based on linear relationships may no longer hold true.

2.2 Empirical Literature

Empirical Studies on herd behavior indicate that results vary across financial markets and time. One gathering of researchers opines that markets indicate herding behavior with varying degree in different market conditions (Chang et al., 2000); (Chiang & Zeng, 2010); (Lindhe, 2012); (Prosad et al., 2012). On the other hand, the second gathering observes no significant evidence of herding in the financial markets (Demirer and Kutan, 2010); (Garg and Jindal, 2014); (Ashish Kumar et al, 2016).

Several studies have found evidence, supporting herd behavior in financial markets. The study of (Chang et al., 2000) examined the stock markets in US, Japan, Hong Kong, South Korea and Taiwan by using Christie and Huang's methodology from 1963 to 1997. But their results showed evidence of significant herding only for South Korea and Taiwan markets and partly herding behavior in the Japan market. This may be because of more government intervention, less reliable company information and the existence of more speculators. Furthermore, herding behavior in 18 global stock markets was examined by (Chiang and Zheng, 2010) from 1988 to 2009. According to their results, herding existed in advanced stock markets (except the US market) and in Asian markets. There was no evidence of herding in Latin American markets. In addition, stock return dispersions in the US played a significant role in explaining the non-US market's herding activity. Even though herding was stronger in Asian markets during rising markets, it existed in both up and down markets (except the US and Latin American markets). (Lao and Singh, 2010) also found evidence of herding in Indian and Chinese markets by using CSAD approach of (Chang et al., 2000). Their study says that the intensity of herding increases during extreme market conditions in both the markets. Herding is reported to be greater for Chinese market during bear phase and high trading volume while it is more prevalent during bull phase in India. (Tan et al., 2007) also studied herd behavior of Shenzhen and Shanghai stock markets. They find evidence of herding in both the Shanghai and Shenzhen A-share markets. They found that the evidence of herding was stronger in the Shanghai market at the time of rising stock markets, high trading volume, and high volatility. However, they claimed that there is no herd behavior in the B-share market. (Kabir et al, 2018) studied the herd phenomenon in Asian and Latin American stock markets using smoot transition regression model (SLR). They found significant evidence of herding in India, China, Malaysia and Singapore during high volatility regime. The study of (Lindhe, 2012) found evidence of herding in some European markets. Their study examines herding in Nordic countries; Finland, Sweden, Norway and Denmark by using the model of (Chiang and Zheng, 2010). The study concludes that that Finland exhibits significant local market wide herding while all countries herd around European market in addition to each other. Another research on European markets conducted by (Khan et al., 2011) supported the presence of herding in the stock markets of Great Britain, France, Germany and Italy with the help of model proposed by (Hwang and Salmon, 2001, 2004, and 2008). (Blake et al., 2017) studied the herd phenomenon among pension funds in UK. They analyzed asset allocation of defined benefit plan funds for 25 years and found evidence of significant evidence of herd behavior among pension funds. (Flip et al., 2015) study Central and South Eastern European markets from 2008 to 2010 and observe that investors herd during decline periods and it exists across all markets except Poland. (Balcılar et al., 2017) studied the cross market herd behavior of emerging stock markets towards oil market. They found no evidence of relationship between oil prices and herding, but strong relationship between volatility in oil market and herding in emerging country stocks. They concluded that low volatility in oil markets in consistent with anti-herding in emerging stocks whereas, high volatility in oil market leads to significant herding in emerging stock markets. Similar study was undertaken by (BenMabrouk et al., 2018), they used a modified version of CSAD model to study cross market herd behavior in American Industries. They analyzed US stocks at sector level from 2000 to 2017. They concluded that sector herding is evident during extreme market movement in Crude oil and that herding is more significant in extreme market downturns in Crude oil. In contradiction to these studies, several researchers observe no significant evidence of herding in financial markets. (Demirer and Kutan, 2006) used the (Christie and Huang, 1995) measure to analyze herd behavior in the Chinese stock market: Shenzhen and Shanghai stock markets. They used daily stock return data to analyze single firm returns and sector returns from 1999 to 2002, and did not find evidence of herding. Similar study was conducted on Indian stock market by (Ashish Kumar et al. 2016), they examined Indian stock market using Cross sectional absolute dispersion approach during 2008-2015 and found no empirical evidence of herding activity. (Kabir et al., 2018) studied the herd phenomenon in Asian and Latin American stock markets using smoot transition regression model (SLR). They found no evidence of herding in Argentina and Brazil. (BenMabrouk et al., 2018), examined the herd behavior in American stocks at sector level during 2000 to 2017 and found no evidence of herding towards sector returns. (Chaffai et al., 2018) analyzed the stock market of GCC countries from 2010 to 2016 using GARCH and Quantile regression technique proposed by (Chiang and Zheng, 2010). They divided the data into upward market and downward market. Their results revealed presence of herding in up market only.

Although several empirical studies are available on financial markets across the world, very few researches have been conducted on Pakistan stock markets and the result have not been conclusive. (Javaira et al., 2015) examined the firms listed on Pakistan Stock Exchange from 2002 to 2007 using methodologies suggested by (Christie and Huang, 1995) and (Chang et al., 2000) and found no evidence of herd behavior. Another research on Pakistan market conducted by (Mohay Ud Shah and Attaullah Shah, 2017) found evidence of herding under stress market. (Nousheen Zafar and Arshad Hassan, 2016), also studied constituent companies of KSE-100 index from 2000 to 2014, to find evidence of herd behavior using CSSD (Cross Sectional Standard Deviation) approach. Their study concluded that market exhibits herd behavior in down market only, when extreme market condition is defined at 5% and in both up and down market, when extreme market situation is defined at 10%.

3. DATA AND METHODLOGY

Identifying empirical evidence of herding in stocks is a troublesome assignment because of inaccessibility of applicable information. Mostly, historical market information only indicates choices taken by the participants and does reveal the motivation behind those choices. Amirat and Bouri (2009) partitioned the investigations led so far on herd activity into two gatherings. The primary gathering depends on the individual market participant's trade activities. Subsequently, for this gathering point by point and clear data on the participant's trades is required. Lakonishok, Shleifer, and Vishny (1992) measure is a case of this gathering. Then again in the second gathering, the data about the collective trade activities of the participants is utilized as a sign of group behavior. The cases of such measures are Christie and Huang (1995), Chang, Cheng, and Khorana (2000) and Christie and Chiang (2013).

This examination takes after the second gathering and uses cross-sectional stock prices as a measure of herd activity. The study follows the CSAD model proposed by Chang et al (2000), which is a modified version of the Cross sectional standard deviation (CSSD) model proposed by Christie and Huang (1992). The model is based on the rationale that when investors began to herd they have a tendency to take after the market and, accordingly, stock returns are closer to the average market return.

Although there have been several modifications made to the original CSAD model to increase its sophistication such as Christie and Huang (2013), which incorporates time varying volatility using GARCH models to capture time varying nature of Herd Behavior. We are still using the original CSAD model and the rationale for using original model is that, Pakistani stock market is relatively young and the phenomenon of herd behavior is new to the market, Therefore, not enough studies have been conducted on the subject matter. The earlier studies conducted on Pakistani market have mostly used CSSD model proposed by Christie and Huang (1992), which only measures herd behavior in stress conditions only; where standard deviation is defined as 5% or 10% but Chang et al, argues in their paper that herding may be present in all conditions. Therefore, CSAD is relatively sophisticated measure for examining market's tendency to exhibit herd behavior.

This research is of purely quantitative nature and it is based on daily return of 387 stocks, listed on Pakistan Stock Exchange from 2009 to 2017. In this paper Cross Sectional Absolute Dispersion (CSAD) model has been used to find evidence of herd behavior in Pakistan stock market using Ordinary Least Square (OLS) regression. The study follows the method proposed by Chang et al. (2000). According to their model, the absolute distance between the average individual stock return and the market return decreases as equities' traders began to herd and take on similar positions.

Cross Sectional Absolute Dispersion (CSAD) is a measure of absolute average dispersion of individual stocks' return from the market return. CSAD has been calculated using the following formula.

For overall market:

$$CSAD_{M,T} = \frac{1}{N} \sum_{i=1}^{N} |R_{i,T} - R_{M,T}|$$
(1)

For sectors:

$$CSAD_{S,T} = \frac{1}{N} \sum_{i=1}^{N} |R_{i,T} - R_{S,T}|$$
(2)

Where, N= number of stocks, $R_{i,T}$ = return on individual stock, $R_{M,T}$ = return on market portfolio, $R_{S,T}$ = return on sector portfolio

After the calculation of CSAD of individual returns and sector portfolios' returns for the entire period, following regression equations are used to detect herding activity in the Pakistan Stock Market.

$$CSAD_{M,T} = \beta_0 + \beta_1 |R_{M,T}| + \beta_2 (R_{M,T}^2) + \epsilon_T$$
(3)

Equation (3) is used to detect presence of herding in all market conditions.

$$CSAD_{S,T} = \beta_0^{\ S} + \beta_1^{\ S} |R_{S,T}| + \beta_2^{\ S} (R_{S,T}^2) + \epsilon_T$$
(4)

Equation (4) is used to detect presence of herding in different sectors listed on PSX.

$$CSAD_{M,T}{}^{UP} = \beta_0{}^{U} + \beta_1{}^{U} |R_{M,T}{}^{U}| + \beta_2{}^{D} (R_{M,T}^{2}{}^{U}) + \epsilon_T$$
(5)

Equation (5) is used to detect herding in Bull market.

$$CSAD_{M,T}^{DOWN} = \beta_0^{D} + \beta_1^{D} |R_{M,T}^{D}| + \beta_2^{D} (R_{M,T}^{2D}) + \epsilon_T$$
(6)

Equation (6) is used to detect herding in Bear market.

In addition to normal, bull and bear market conditions, these above mentioned equations are used to detect herd behavior in extreme market conditions; which are defined as when market return lies in the upper or lower 5% of the tail of return distribution. However, this analysis will be limited to market level returns only.

3.1. Hypothesis

Hypothesis of the study is that: when market moves strongly in either direction (Up or down), investors began to follow the market and dispersion of returns of individual stocks from the market return / portfolio return decreases. In order to test the hypothesis, we have tested the

relationship between the market/portfolio returns and CSAD of individual stocks' return at the market level, the sector level and in extreme market conditions.

If the herding is present amongst the investors, $\beta 2$ in the above mentioned equations should be negative and statistically significant. Whereas, positive or statistically not significant $\beta 2$ indicate that market does not exhibit herd behavior.

Mathematically,

H₀:
$$\beta_2 = 0$$
 & H₁: $\beta_2 < 0$

CSAD (Cross Sectional Absolute Dispersion) has been calculated for market and different sectors using daily log returns of the stocks under study. Log returns are calculated using daily closing price of stocks.

Log Return = ln(cdcp) - ln(ldcp)

(7)

Where, cdcp= Current day closing Price and ldcp= Last day closing price

Afterwards, daily return of PSX-100 index has been calculated using daily closing value of the index. Then, returns on sector portfolios have been undertaken to detect herding behavior within different sectors listed on Pakistan stock Exchange and are calculated as average return on individual stocks within the sector.

In accordance with the models proposed by Christie & Huang (1995) and Change et al, (2000), square of daily returns of PSX-100 index and returns on sector portfolios are also used as explanatory variables in the regression model to account for the nonlinear relationship between the dependent and the independent variable.

Historical quotes of stocks listed on Pakistan Stock Exchange are collected and daily, log returns of each stock and PSX-100 index are calculated. For sectoral analysis, top ten sectors are selected based on total market capitalization of the sectors as on April 1, 2018[•]. For the selected sectors, equally weighted sector portfolios are created and daily log returns of these portfolios calculated. After calculation of returns, daily CSAD of stock returns is calculated; PSX-100 index is used as a proxy for Market return. Finally, OLS regression is applied to find evidence of herd behavior.

4. EMPERICAL ANALYSIS

Table 1. shows descriptive statistics of daily CSAD and Market return. The observed mean of the daily CSAD for the entire period is 2.46% and std. deviation is 0.796%. Whereas, mean value of the daily market return is .087% and std. deviation is 1.04%. The value of kurtosis is greater than 3, indicating that both the series are non-normal. The significant values of Jarque-Bera test also points to non-normality of the data. Regardless, OLS - Regression is used in accordance with the central limit theorem because the sample size is of sufficiently large size. There is no presence of unit root in either series (CSAD or RMT) as ADF test statistics are significant for both the series, hence both series are stationary. The table also shows mean values of CSAD and market return in bull and bear phase of the market as well.

[•] List of sectors listed on Pakistan Stock Exchange and their Market Capitalization given in Appendix.

	Do	orintivo ototi	Table 1	on Stock Evo	hanga	
Description	CSAD _{M,T} (entire	R _{M,T} (entire	CSAD _{M,T} (Bull	R _{M,T} (Bull	CSAD _{M,T} (Bear	R _{M,T} (Bear
	period)	period)	Market)	Market)	Market)	Market)
Mean	0.0246264	0.00087	0.02517	0.00757	0.02396	-0.0073
Std Deviation	0.0079602	0.01048	0.00811	0.00718	0.00773	0.00774
Kurtosis	5.586604	6.090853	6.085089	7.532917	4.7500	6.66289
Skewness	1.3956832	-0.2399	1.47778	1.83452	1.28015	-2.293
Jarque-Bera	1344.668	909.0325	931.6741	1734.207	404.442	2711.505
Statistic						
Augmented	-4.084322					
Dickey	Prob. 0.0011*	τ.				
Fuller test						
(CSAD _{M,T})						
Augmented	-41.83638					
Dickey	Prob. 0.0000*					
Fuller test						
(R _{M,T})						

Table 2 Regression Results for Pakistan Stock Exchange

Table 2 (a): Entire period					
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
β	0.02067	0.00026	80.08907	0.0000^*	
β_1	0.49780	0.04662	10.67882	0.0000^*	
β2	2.31047	1.40575	1.64359	0.10040	
R Square	0.281953				
Adj. R square	0.281308				
F Statistic	437.233761				
Significance F	0.0000^{*}				
significant at 95% cor	nfidence level				

*statistically sign icant at 95%

Table 2 (b): Bull period**						
Coefficient	Standard Error	t Stat	P-value			
0.02162	0.00036	60.83241	0.0000^*			
0.31939	0.06497	4.91567	0.0000^*			
10.47645	2.09390	5.00332	0.0000^*			
0.311467446						
0.310341473						
276.6206795						
0.0000^{*}						
	Tab Coefficient 0.02162 0.31939 10.47645 0.311467446 0.310341473 276.6206795 0.0000*	Table 2 (b): Bull period** Coefficient Standard Error 0.02162 0.00036 0.31939 0.06497 10.47645 2.09390 0.311467446 0.310341473 276.6206795	Table 2 (b): Bull period** Coefficient Standard Error t Stat 0.02162 0.00036 60.83241 0.31939 0.06497 4.91567 10.47645 2.09390 5.00332 0.311467446 276.6206795			

*statistically significant at 95% confidence level ** defined as when market return is positive

Table 2(c): Bear Period**					
Variable	Coefficient	Standard Error	t Stat	P-value	
β_0^d	0.01993	0.00036	54.93723	0.0000^*	
β_1^{d}	0.59633	0.06629	8.99589	0.0000^*	
β_2^d	-2.63600	1.88722	-1.39676	0.16279	
R Square	0.264536771				
Adj. R square	0.263084721				
F Statistic	182.1816089				
Significance F	0.0000^*				
ly aignificant at 05% of	onfidance laval				

*statistically significant at 95% confidence level ** defined as when market return is negative

Table 2(d): Extreme Market Conditions** (Bull)

Coefficient	Standard Error	t Stat	P-value
0.01701	0.01082	1.57201	0.11885
0.65003	0.75236	0.86398	0.38949
5.15987	12.30934	0.41918	0.67591
0.346518			
0.334528			
28.899397			
0.0000^{*}			
	Coefficient 0.01701 0.65003 5.15987 0.346518 0.334528 28.899397 0.0000*	CoefficientStandard Error0.017010.010820.650030.752365.1598712.309340.3465180.33452828.8993970.0000*	CoefficientStandard Errort Stat0.017010.010821.572010.650030.752360.863985.1598712.309340.419180.3465180.33452828.8993970.0000*

*statistically significant at 95% confidence level, ** defined as when market return lies in the upper 5% tail of distribution

Table 2(e): Extreme Market Conditions** (Bear)						
Variable	Coefficient	Standard Error	t Stat	P-value		
β_0^{down}	0.01701	0.01082	1.57201	0.11885		
β_1^{down}	0.65003	0.75236	0.86398	0.38949		
β_2^{down}	5.15987	12.30934	0.41918	0.67591		
R Square	0.138453					
Adj. R square	0.122645					
F Statistic	8.758332					
Significance F	0.0002^{*}					

*statistically significant at 95% confidence level, **defined as when market return lies in the lower 5% tail of distribution

The above results shown in table 2 (a to e) show that, β 2 coefficient is either positive or statistically not significant under all conditions. These results indicate absence of herd behavior in PSX.

Table 3
Regression Results for Commercial Banks Sector

	Table 3(a): Entire Period						
Variable	Coefficient	Standard	t Stat	P-value			
		Error					
β_0	0.01199	0.00020	59.02115	0.0000^{*}			
β_1	0.33431	0.02456	13.61268	0.0000^{*}			
β_2	-0.35297	0.46212	-0.76380	0.44507			
R Square	0.259032						
Adj. R square	0.258367						
F Statistic	389.263886						
Significance F	0.0000^{*}						

Table 3(b): Bull Period**					
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
βo ^u	0.01291	0.00030	42.89124	0.0000^{*}	
βı ^u	0.29873	0.03452	8.65460	0.0000^{*}	
β_2^{u}	0.84620	0.63198	1.33896	0.18086	
R Square	0.286591				
Adj. R	0.285267				
square					
F Statistic	216.527059				
Significance	0.0000^{*}				
F					

Table 3(c): Bear Period**						
t Standard Error	r t Stat	P-value				
0.00027	41.52560	0.0000^{*}				
0.03438	10.74654	0.0000^{*}				
0.66572	-2.67950	0.00748^{*}				
0						
_	Nol					

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

The above tables 3(a), 3(b) and 3(c) show the regression results for Commercial Bank sector. The results show that $\beta 2$ is negative and significant in bear conditions only, therefore, we can conclude that there is evidence of herding in banking sector during bear conditions only.

Regression Results for Oil and Gas Exploration Sector								
	Table 4(a): Entire Period							
Variable	Coefficient	Standard	t Stat	P-value				
		Error						
β_0	0.00827	0.00023	35.91615	0.0000*				
β1	-0.10964	0.02124	-5.16113	0.0000*				
β2	8.19375	0.30199	27.13220	0.0000*				
R Square	0.361914							
Adj. R square	0.361341							
F Statistic	631.562551							
Significance	0.0000*							
F								

 Table 4

 agreession Results for Oil and Cas Exploration Sector
 п.

Table 4(b): Bull Period**							
Variable	Coefficient	Standard	t Stat	P-value			
		Error					
βo ^u	0.00603	0.00032	18.64361	0.0000*			
β_1^{u}	0.53346	0.04617	11.55372	0.0000*			
β_2^{u}	-11.82058	1.19352	-9.90400	0.0000*			
R Square	0.108872						
Adj. R square	0.107310						
F Statistic	69.699625						
Significance F	0.0000*						

**defined as when sector portfolio return is positive

7	Table 4(c): Bear Pei	'iod**	
Coefficient	Standard	t Stat	P-value
	Error		
0.00734	0.00035	21.15564	0.0000^{*}
-0.07366	0.03172	-2.32208	0.0204*
8.62389	0.35568	24.24606	0.0000^{*}
0.522189			
0.521307			
591.793469			
0.0000^{*}			
	Coefficient 0.00734 -0.07366 8.62389 0.522189 0.521307 591.793469 0.0000*	Table 4(c): Bear Per Coefficient Standard Error 0.00035 -0.07366 0.03172 8.62389 0.35568 0.522189 0.521307 591.793469 0.0000*	Table 4(c): Bear Period** Coefficient Standard t Stat Error Error 0.00734 0.00035 21.15564 -0.07366 0.03172 -2.32208 24.24606 0.522189 0.35568 24.24606 0.521307 591.793469 Uteration of the second

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

The tables 4(a), 4(b) and 4(c) above show the regression results for Oil and Gas Exploration Sector. The results show that $\beta 2$ is negative and significant in bull conditions only, therefore, we can conclude that there is evidence of herding in banking sector during bull conditions only.

	Table			
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β	0.01286	0.00023	55.53129	0.0000^{*}
β_1	0.64578	0.02714	23.79587	0.0000^{*}
β_2	6.69266	0.21358	31.33553	0.0000^{*}
R Square	0.765176			
Adj. R square	0.764965			
F Statistic	3628.356722			
Significance F	0.0000^{*}			

Table 5
Regression Results Food and Personal Care Products Sector

Table 5(b): Bull Period**					
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
β_0^{u}	0.01286	0.00023	55.53129	0.0000^*	
β_1^{u}	0.64578	0.02714	23.79587	0.0000^{*}	
β_2^{u}	6.69266	0.21358	31.33553	0.0000^{*}	
R Square	0.765176				
Adj. R square	0.764965				
F Statistic	3628.356722				
Significance F	0.0000^{*}				
	<u> </u>				

Table 5(c): Bear Period**				
Variable	Coefficient	Standard Error	t Stat	P-value
β_0^d	0.01193	0.00034	34.93231	0.0000^{*}
β_1^d	0.77636	0.03954	19.63611	0.0000^{*}
β_2^d	7.09668	0.32910	21.56358	0.0000^*
R Square	0.816357			
Adj. R square	0.816006			
F Statistic	2329.355268			
Significance F	0.0000^{*}			

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

In Tables 5(a), 5(b) and 5(c) above, regression results for the Food and Personal Care Products Sector show that $\beta 2$ is positive and significant under all conditions, therefore, it is concluded that there is no evidence of herding in Food and Personal Care Products sector.

Table 6 Regression Results for Tobacco Sector

	Table 6(a): Entire Period				
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
β ₀	0.00849	0.00031	27.58304	0.0000^{*}	
β_1	0.44504	0.02421	18.38116	0.0000^{*}	
β_2	3.44909	0.19451	17.73250	0.0000^*	
R Square	0.51436				
Adj. R square	0.5139257				
F Statistic	1179.359345				
Significance	0.0000^{*}				
F					

Table 6(b): Bull Period**					
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
βo ^u	0.01237	0.00048	25.96851	0.0000^{*}	
β_1^{u}	0.18612	0.03306	5.62999	0.0000^{*}	
β_2^{u}	4.43699	0.22317	19.88151	0.0000^{*}	
R Square	0.560537				
Adj. R square	0.559698				
F Statistic	668.363004				
Significance F	0.0000^{*}				

**defined as when sector portfolio return is positive

	٦	Table 6(c): Bear Pe	riod**	
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0^d	0.01090	0.00055	19.78607	0.0000^{*}
β_1^d	0.33352	0.04577	7.28704	0.0000^{*}
β_2^d	4.77133	0.44705	10.67280	0.0000^{*}
R Square	0.445643			
Adj. R square	0.444439			
F Statistic	370.191708			
Significance F	0.0000^{*}			

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

In Tables 6(a), 6(b) and 6(c) above regression results for the tobacco sector show that $\beta 2$ is positive and statistically significant under all conditions, Hence there is no evidence of herding in the tobacco sector.

	0				
	т	able 7(a): Entire P	eriod		
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
β_0	0.00957	0.00024	40.14378	0.0000^{*}	
β_1	-0.00867	0.01831	-0.47359	0.63584	
β_2	6.15465	0.13709	44.89514	0.0000^{*}	
R Square	0.62045				
Adj. R square	0.620104422				
F Statistic	1820.200903				
Significance F	0.0000^{*}				

Table 7 Regression Results for Fertilizer Sector

*statistically significant at 95% confidence level

_

Table 7(b): Bull Period**					
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
βo ^u	0.00755	0.00035	21.57928	0.0000^{*}	
β_1^{u}	0.58854	0.04891	12.03325	0.0000^{*}	
β2 ^u	-13.28976	1.28969	-10.30461	0.0000^{*}	
R Square	0.119096				
Adj. R square	0.117519				
F Statistic	75.507632				
Significance	0.0000^{*}				
F					

Table 7(c): Bear Period**				
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0^d	0.00837	0.00036	23.09503	0.0000^*
β_1^d	0.06508	0.02770	2.34950	0.01897
β_2^d	5.97988	0.16704	35.79949	0.0000^*
R Square	0.736449			
Adj. R square	0.735973			
F Statistic	1546.666528			
Significance F	0.0000^{*}			
	o/ <u>c</u> .,			

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

Table 7(a), 7(b) and 7(c) show regression results for the fertilizer sector. From the results, it is observed that the $\beta 2$ is negative and statistically significant during bull period only. Therefore, there is evidence of herding in fertilizer sector during bull phase only.

Regression Results result for Automobile Sector				
		Table 8(a): Entire	Period	
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0	0.01435	0.00032	45.54600	0.0000^{*}
β1	0.43492	0.04002	10.86872	0.0000^{*}
β2	-1.16731	0.94074	-1.24084	0.21480
R Square	0.20694			
Adj. R	0.206228795			
square				
F Statistic	290.5569796			
Significance	0.0000^{*}			
F				

Table 8

	Table 8(b): Bull Period**				
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
β_0^{u}	0.01484	0.00044	33.89955	0.0000^{*}	
β_1^{u}	0.41032	0.05587	7.34422	0.0000^{*}	
β_2^{u}	-0.06000	1.35352	-0.04433	0.96465	
R Square	0.218885				
Adj. R	0.217557				
square					
F Statistic	164.770086				
Significance	0.0000^{*}				
F					

Table 8(c): Bear Period**				
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0^d	0.01391	0.00045	30.68412	0.0000^*
β_1^{d}	0.44215	0.05753	7.68557	0.0000^*
β_2^d	-1.82176	1.31364	-1.38680	0.16580
R Square	0.195324			
Adj. R square	0.193788			
F Statistic	127.193751			
Significance	0.0000^{*}			
F				

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

The Tables 8(a), 8(b) and 8(c) above results for Automobile sector show that, $\beta 2$ is not significant under any condition. Hence there is no evidence of herding in automobile sector during the time under study.

	Table 9(a): Entire Period			
Variable	Coefficient	Standard	t Stat	P-value
		Error		
βo	0.01469	0.00032	45.33034	0.0000^*
β_1	0.70221	0.02494	28.15494	0.0000^*
β2	0.70245	0.27873	2.52020	0.0118^{*}
R Square	0.54751			
Adj. R square	0.547106839			
F Statistic	1347.345285			
Significance	0.0000^{*}			
F				

Table 9 Regression Results Power Generation & Distribution Sector

	1	able 9(b): Bull Peri	od**	
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0^{u}	0.01474	0.00046	32.23753	0.0000^{*}
β_1^{u}	0.78480	0.03269	24.00871	0.0000^{*}
β_2^{u}	0.23830	0.31620	0.75364	0.45123
R Square	0.632013			
Adj. R square	0.631331			
F Statistic	927.442274			
Significance F	0.0000^{*}			

**defined as when sector portfolio return is positive

Table 9(c): Bear Period**				
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0^d	0.01446	0.00049	29.78846	0.0000^{*}
β_1^d	0.64595	0.04866	13.27383	0.0000^{*}
β_2^d	0.33202	0.83092	0.39959	0.68953
R Square	0.421681			
Adj. R square	0.420696			
F Statistic	428.011068			
Significance	0.0000*			
F				

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

The Tables 9(a), 9(b) and 9(c) above regression results show that $\beta 2$ is positive under all conditions, therefore, it is concluded that there is no evidence of herding in the sector.

Table 10(a): Entire Period				
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0	0.00973	0.00027	35.50793	0.0000^*
β_1	0.30577	0.03975	7.69168	0.0000^*
β_2	-2.42049	1.05319	-2.29824	0.02164^{*}
R Square	0.08867			
Adj. R square	0.087847278			
F Statistic	108.3348676			
Significance F	0.0000^{*}			

Table 10 Regression Results Oil & Gas Marketing Sector

	Table 10(b): Bull Period**					
Variable	Coefficient	Standard	t Stat	P-value		
		Error				
β_0^{u}	0.00967	0.00037	25.99394	0.0000^{*}		
β_1^{u}	0.53541	0.05601	9.55973	0.0000^{*}		
β_2^{u}	-11.18163	1.65239	-6.76696	0.0000^{*}		
R Square	0.096800					
Adj. R	0.095204					
square						
F Statistic	60.660551					
Significance	0.0000^{*}					
F						

Table 10(c): Bear Period**				
Coefficient	Standard	t Stat	P-value	
	Error			
0.00956	0.00040	24.16446	0.0000^{*}	
0.14739	0.05746	2.56516	0.01045	
2.68510	1.41840	1.89305	0.05862	
0.114827				
0.113206				
70.828912				
0.0000^{*}				
	Coefficient 0.00956 0.14739 2.68510 0.114827 0.113206 70.828912 0.0000*	Coefficient Standard Error 0.00956 0.00040 0.14739 0.05746 2.68510 2.68510 1.41840 0.114827 0.113206 70.828912 0.0000*	Coefficient Standard t Stat Error 0.00956 0.00040 24.16446 0.14739 0.05746 2.56516 2.68510 1.41840 1.89305 0.114827 0.113206 70.828912 0.0000* 0.0000* 0.0000*	

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

The Tables 10(a), 10(b) and 10(c) above tables show that $\beta 2$ is negative and statistically significant during entire period and only bull period as well, therefore it is concluded that Oil & Gas marketing sector exhibit herd behavior under normal and bull condition during time under study.

	Table 11(a): Entire Period			
Variable	Coefficient	Standard	t Stat	P-value
		Error		
βo	0.01598	0.00033	48.14575	0.0000^{*}
β_1	0.49333	0.04682	10.53585	0.0000^{*}
β2	7.53415	1.21299	6.21122	0.0000^*
R Square	0.38833			
Adj. R square	0.387781476			
F Statistic	706.92842			
Significance	0.0000^{*}			
F				

Table 11 Regression Results for Chemical Sector

	Table 11(b): Bull Period**				
Variable	Coefficient	Standard	t Stat	P-value	
		Error			
β_0^{u}	0.01628	0.00047	35.00978	0.0000^{*}	
β_1^{u}	0.44179	0.07548	5.85341	0.0000^{*}	
β_2^{u}	12.87609	2.30290	5.59126	0.0000^{*}	
R Square	0.436466				
Adj. R	0.435506				
square					
F Statistic	454.640280				
Significance	0.0000^{*}				
F					

Variable β_0^d	Coefficient	Standard	t Stat	D
β_0^d			i stat	P-value
β_0^d		Error		
o d	0.01632	0.00049	33.33992	0.0000^{*}
β_1^{u}	0.37549	0.06523	5.75622	0.0000^{*}
β_2^d	8.08864	1.51354	5.34419	0.0000^{*}
R Square	0.360015			
Adj. R square	0.358796			
F Statistic	295.331670			
Significance	0.0000^{*}			
F				

*statistically significant at 95% confidence level **defined as when sector portfolio return is negative

The Tables 11(a), 11(b) and 11(c) above regression results show that $\beta 2$, coefficient is positive and significant under all conditions, hence there is no evidence of herding in Chemical sector during the time under study.

Table 12(a): Entire Period				
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β ₀	0.01443	0.00031	46.99164	0.0000^{*}
β_1	0.34305	0.03211	10.68313	0.0000^{*}
β_2	2.30586	0.58388	3.94923	0.0008^{*}
R Square	0.28689			
Adj. R	0.286250814			
square				
F Statistic	447.9728835			
Significance	0.0000^{*}			
F				

Table 12			
Regression Results Cement Sector			

	Table 12(b): Bull Period**			
Variable	Coefficient	Standard	t Stat	P-value
		Error		
βo ^u	0.01487	0.00044	33.85794	0.0000^{*}
β_1^{u}	0.33985	0.04232	8.03032	0.0000^{*}
β_2^{u}	2.50018	0.68636	3.64264	0.0028^{*}
R Square	0.333511			
Adj. R	0.332297			
square				
F Statistic	274.719558			
Significance	0.0000^{*}			
F				

**defined as when sector portfolio return is positive

	Table 12(c): Bear Period**			
Variable	Coefficient	Standard	t Stat	P-value
		Error		
β_0^d	0.01387	0.00045	30.56903	0.00000^{*}
β_1^d	0.38084	0.05731	6.64534	0.00000^{*}
β_2^d	1.00669	1.28325	0.78448	0.43292
R Square	0.228141			
Adj. R square	0.226770			
F Statistic	166.407651			
Significance	0.0000^{*}			
F				

*statistically significant at 95% confidence level

**defined as when sector portfolio return is negative

In Tables 12(a), 12(b) and 12(c) above, regression results show that $\beta 2$ is positive and significant under all conditions except bear period, where it is not significant. Therefore, it is concluded that there is no evidence of herding in cement sector during the time under study.

5. CONCLUSION

The aim of the study is to analyze stock returns and identify evidence of herding behavior in Pakistan Stock Exchange. Focus of the study is companies and sectors listed on Pakistan Stock Exchange. The study examines herding behavior at market level and at sector level under normal conditions and stress conditions using market returns for the sample period and relies on the assumption that observed returns reflect the collective behavior of investors during the sample period. Statistical results based on Chang et al (2000) model of CSAD, lead to no evidence of herding in PSX at market under both normal conditions and stress conditions. According to the model, for herding to be present, coefficient of the square variable needs to be negative and significant, whereas, positive or not significant coefficient indicates to no evidence of herding. Further, sector level analysis reveal evidence of herding in 4 sectors listed on PSX, namely: Commercial Banks, Oil & Gas Marketing and Oil & Gas Exploration and Fertilizer sectors only, which implies that companies listed under these sectors may be more sensitive to common Macro factors or developments; research needs to carried out to identify these factors. Apart from these, there is no wide spread evidence of investors herding in Pakistan Stock Exchange. Thus, the results of this study are consistent with earlier studies conducted on PSX and Chinese and Indian markets, and it is safe to say that stock market in Pakistan is efficient and investors mostly make informed decisions and do not engage in herd behavior. The reason for lake of herding behavior could be that; majority of the participants in Pakistan stock market are institutional investors and

there is very little participation from retail investors and because institutional investors have more knowledge, high research budgets and access to information, therefore they tend to make more informed decisions than retail investors. Further research is required to understand the factors that affect herding behavior at sector level to analyze and determine why some sectors are more efficient than others. Finally, the lack of evidence of herding at the market level and most of the sectors suggest that investors need not to worry about the herding effect and not incorporate herding factors in their valuation of stocks listed on Pakistan stock exchange. One way to incorporate herding factor in valuation of stocks in sectors; where herding is observed, could be to regress Square of Cross Sectional Absolute Dispersion measure against return of stock and calculate beta coefficient then incorporate that coefficient/factor loading in CAPM or other valuation model to calculate discount rate for the security.

Finally, this study aims to fill the gap in available research on Pakistani Stock Market, the result of this study may not be conclusive due to the simplicity of the model. Further research using more sophisticated models with ability to incorporate time varying volatility and cross market volatility needs to be carried out to reach a conclusive end.

BIBLIOGRAPHY REFERENCES

- AVERY, C., & ZEMSKY, P. (1998). Multidimensional uncertainty and herd behavior in financial markets. *American economic review*, 724-748.
- ASHISH KUMAR, MS BHARTI, DR. SANCHITA BANSAL, D. (2016). An Examination of Herding Behavior in an Emerging Economy – A Study of Indian Stock Market. *Global Journal Of Management And Business Research*.
- BALCILAR, M., DEMIRER, R., & ULUSSEVER, T. (2017). Does speculation in the oil market drive investor herding in emerging stock markets?. *Energy Economics*, 65, 50-63.
- BARBERIS, N., & THALER, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128.
- BASU, S. (1977). Investment performance of common stocks in relation to their price-earnings ratios: A test of the efficient market hypothesis. *The journal of Finance*, 32(3), 663-682. https://doi.org/10.1111/j.1540-6261.1977.tb01979.x
- BENMABROUK, H., & LITIMI, H. (2018). Cross herding between American industries and the oil market. *The North American Journal of Economics and Finance.*
- BIKHCHANDANI, S., & SHARMA, S. (2000). Herd behavior in financial markets. *IMF Staff papers*, 47(3), 279-310. https://doi.org/10.2307/3867650
- BLAKE, D., SARNO, L., & ZINNA, G. (2017). The market for lemmings: The herding behavior of pension funds. *Journal of Financial Markets*, 36, 17-39.
- CHARI, V. V., & KEHOE, P. J. (2004). Financial crises as herds: overturning the critiques. *Journal of Economic Theory*, 119(1), 128-150.
- CHAFFAI, M., & MEDHIOUB, I. (2018). Herding behavior in Islamic GCC stock market: a daily analysis. International Journal of Islamic and Middle Eastern Finance and Management.
- CHANG, E. C., CHENG, J. W., & KHORANA, A. (2000). An examination of herd behavior in equity markets: An international perspective. *Journal of Banking & Finance*, 24(10), 1651-1679. https://doi.org/10.1016/S0378-4266(99)00096-5
- DE BONDT, W., MURADOGLU, G., SHEFRIN, H., & STAIKOURAS, S. K. (2008). Behavioral finance: Quo vadis?. *Journal of Applied Finance*, 18(2), 7.
- DEVENOW, A., & WELCH, I. (1996). Rational herding in financial economics. *European Economic Review*, 40(3-5), 603-615. https://doi.org/10.1016/0014-2921(95)00073-9
- DEMIRER, R., KUTAN, A. M., & CHEN, C. D. (2010). Do investors herd in emerging stock markets?: Evidence from the Taiwanese market. *Journal of Economic Behavior & Organization*, 76(2), 283-295. https://doi.org/10.1016/j.jebo.2010.06.013
- FILIP, A., POCHEA, M., & PECE, A. (2015). The herding behavior of investors in the CEE stocks markets. *Procedia Economics and Finance*, 32, 307-315.
- JAVAIRA, Z., & HASSAN, A. (2015). An examination of herding behavior in Pakistani stock market. International journal of emerging markets, 10(3), 474-490. https://doi.org/10.1108/IJoEM-07-2011-0064 KABIR, M. H., & SHAKUR, S. (2018). Regime-dependent herding behavior in Asian and Latin American
- stock markets. Pacific-Basin Finance Journal, 47, 60-78. https://doi.org/10.1016/j.pacfin.2017.12.002
- KHAN, H., HASSAIRI, S. A., & VIVIANI, J. L. (2011). Herd behavior and market stress: The case of four European countries. *International Business Research*, 4(3), 53. https://doi.org/10.5539/ibr.v4n3p53
- LAKONISHOK, J., SHLEIFER, A., &VISHNY, R. W. (1992). The impact of institutional trading on stock prices. *Journal of Financial Economics*, 31, 13-43.
- https://doi.org/10.1016/0304-405X(92)90023-Q
- LINDHE, E. (2012). Herd Behavior in Stock Markets: A Nordic Study.

NICHOLSON, S. F. (1968). Price ratios in relation to investment results. *Financial Analysts Journal*, 24(1), 105-109. https://doi.org/10.2469/faj.v24.n1.105

POSHAKWALE, S., & MANDAL, A. (2014). Investor Behavior and Herding: Evidence from the National Stock Exchange in India. *Journal of Emerging Market Finance*, 13(2), 197-216. https://lup.lub.lu.se/student-papers/search/publication/3046944

SHAH, M. U. D., SHAH, A., & KHAN, S. U. (2017). Herding behavior in the Pakistan stock exchange: Some new insights. *Research in International Business and Finance*, 42, 865-873. https://doi.org/10.1016/j.ribaf.2017.07.022

SHLEIFER, A. (2000), Inefficient markets: an introduction to behavioral finance, Oxford University Press, Oxford.

SHILLER, R. J. (2003). From efficient markets theory to behavioral finance. *Journal of economic perspectives*, 17(1), 83-104.

TAN, L., CHIANG, T. C., MASON, J. R., & NELLING, E. (2008). Herding behavior in Chinese stock markets: An examination of A and B shares. *Pacific-Basin Finance Journal*, 16(1-2), 61-77.

WELCH, I. (1992). Sequential sales, learning, and cascades. *The Journal of finance*, 47(2), 695-732. https://doi.org/10.1111/j.1540-6261.1992.tb04406.

APPENDIX

Sectors Listed on Pakistan Stock Exchange and their Market Capitalization as of April 1, 2018

S.	Sector		Sector Name	Market Capitalization
No.	Code			(Rs.)
1		801	AUTOMOBILE ASSEMBLER	467,791,124,885
2		802	AUTOMOBILE PARTS & ACCESSORIES	82,269,664,282
3		803	CABLE & ELECTRICAL GOODS	44,200,120,909
4		804	CEMENT	633,298,727,729
5		805	CHEMICAL	355,573,026,938
6		806	CLOSE - END MUTUAL FUND	14,564,783,036
7		807	COMMERCIAL BANKS	1,640,960,258,052
8		808	ENGINEERING	181,410,129,888
9		809	FERTILIZER	570,486,616,931
10		810	FOOD & PERSONAL CARE PRODUCTS	926,963,647,264
11		811	GLASS & CERAMICS	47,342,525,469
12		812	INSURANCE	235,352,852,115
13		813	INV. BANKS / INV. COS. / SECURITIES COS.	54,944,552,778
14		814	JUTE	124,612,291
15		815	LEASING COMPANIES	6,814,634,102
16		816	LEATHER & TANNERIES	33,779,038,800
17		818	MISCELLANEOUS	79,600,226,148
18		819	MODARABAS	20,209,804,041
19		820	OIL & GAS EXPLORATION COMPANIES	1,506,141,944,166
20		821	OIL & GAS MARKETING COMPANIES	358,594,285,041
21		822	PAPER & BOARD	82,690,299,994
22		823	PHARMACEUTICALS	328,579,033,921
23		824	POWER GENERATION & DISTRIBUTION	451,856,717,373

24	836	REAL ESTATE INVESTMENT TRUST	28,885,863,000
25	825	REFINERY	149,988,971,532
26	826	SUGAR & ALLIED INDUSTRIES	85,951,839,291
27	827	SYNTHETIC & RAYON	31,312,125,569
28	828	TECHNOLOGY & COMMUNICATION	104,559,046,306
29	829	TEXTILE COMPOSITE	221,173,017,234
30	830	TEXTILE SPINNING	49,113,787,442
31	831	TEXTILE WEAVING	25,861,108,675
32	832	TOBACCO	664,176,790,192
33	833	<u>TRANSPORT</u>	94,447,973,308
34	834	VANASPATI & ALLIED INDUSTRIES	6,232,717,512
35	835	WOOLLEN	571,685,825

Source: ksestock.net