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RESUMEN

En los ultimos aflos, el desarrollo de varias técnicas de simulacion posterior ha impulsado el campo de la econometria bayesiana, especialmente
en trabajos aplicados. La distribucion previa juega un papel dominante en el analisis bayesiano; los anteriores estan destinados a reflejar la
informacion que el investigador tiene antes de ver los datos. Esta investigacion examind la sensibilidad de los métodos de muestreo de Gibbs
(GS) e Integracion de Monte Carlo (MCI) a tres niveles diferentes de correlacion en covarianza previa para conocer los efectos de la correlacion
variable en los métodos de simulacion posterior al estimar los parametros en un modelo de regresion lineal. Los tres niveles diferentes de
correlacion son: Correlacion negativa (NC), correlacion positiva (PC) y correlacion cero (ZC). Los resultados mostraron que el MCI super6
al GS en la mayoria de los casos y la precision del MCI no depende del nivel de correlacion, ya sea positivo o negativo, mientras que el GS
se desempefié mejor cuando se usé el nivel de correlacion positivo como informacion en la covarianza previa que el uso de un nivel negativo
de correlacion. El uso de MCI en la inferencia bayesiana podria ser de importancia practica para los profesionales.
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A comparative analysis of posterior simulation techniques in the estimation of bayesian
regression model

ABSTRACT

In recent years, the development of several posterior simulation techniques has boosted the field of Bayesian econometrics especially in
applied works. Prior distribution plays a dominant role in Bayesian analysis; priors are meant to reflect information the researcher has before
seeing the data. This research examined the sensitivity of the Gibbs sampler (GS) and Monte Carlo Integration (MCI) methods to three different
levels of correlation in prior covariance to know the effects of varying correlation on posterior simulation methods in estimating the parameters
in a linear regression model. The three different levels of correlation are; Negative Correlation (NC), Positive Correlation (PC) and Zero
correlation (ZC). The results showed that MCI outperformed the GS in most cases and the accuracy of MCI does not depend on the level of
correlation either positive or negative while GS performed better when positive level of correlation was used as information in the prior
covariance than using negative level of correlation. The use of MCI in Bayesian inference might be of practical importance to practitioners.
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1. INTRODUCCION

In many areas of research and applications, regression model is a tool that has been applied to study
wide range of real phenomenon and is also the workhouse of econometrics.

Recently, there has been a long time arguments on the kind of posterior simulation techniques that
will yields more efficient posterior simulation algorithms for classes of models.

Posterior simulation techniques are techniques used in computation of range of integrals that are
necessary in Bayesian Posterior Analysis (Chib (2001), Geweke and Keane (2001)). There are various
posterior simulation techniques meant for evaluating such integrals they are; Monte Carlo Integration
(MCI), Laplace’s method for asymptotic normality of posterior (Gelman et al (2004), Carlin and Louis
(2008)); Gibbs sampler by Gelfand and Smith (1990), Metropolis —Hastings algorithms by Metropolis
et al (1953), Hastings (1970) that can handle non-linear regression appropriately, Slice sampler that
uses auxiliary variable to generate a random sample from a given distribution (Neal (2003) and also the
importance sampling method (Robert and Casella (2004) that involves taking draws from an important
function etc. The two common posterior simulation methods in linear regression analysis are Monte
Carlo Integration (MCI) and Gibbs sampler (GS).

MCI is a method that is known to straightforwardly evaluate a complex integrals and it involves
drawing from a joint posterior distribution while GS on the other hand draws sequentially from a full
conditional posterior distributions and that kind of draw is treated as if they came from a joint posterior
distribution. Dijk and Kloek (1980) employed a MCI for a nine dimensional parameter space of Klein’s
model while Geweke (1993) demonstrated how GS algorithms can provide an alternative to inference
subject to linear inequality constraints. Fosdisck and Raftery (2012) considered the problem of
estimating the correlation between bivariate normal regression model when the means and variances
were assumed to be known with emphasis on a small sample case. Koop et al (2007) estimated
regression model parameters with a known bivariate normal posterior, MCI performed well than the
GS.

This work is a follow-up on Koop et al (2007) where a bivariate normal model was used to study the
effect of degree of correlation between two parameters on GS and MCI; a high positive correlation
between the parameters was considered in their work.

This study investigates the sensitivity of prior covariance on GS and MCI methods given three
different levels of correlation coefficients in a linear regression model. The performance of the methods
was judged using the mean parameter estimates in terms of closeness of their estimated parameter to
the true values and Mean Squared Error (MSE).

The three different levels of correlation are; Negative Correlation (NC), Positive Correlation (PC)
and Zero correlation (ZC).

The remainder of this paper is structured as follows:- section 2 considers the specification of model
and description of methods of posterior simulation; GS and MCI. Simulation studies are conducted in
section 3; section 4 presents the analysis, results and discussion. Section 5 concludes.

2. MATERIALS AND METHODS

Given the following model:
y = x0+ ¢ D
Where y and x are the observed data on the n x 1 vector of dependent and n x m matrix of
explanatory variables of the regression respectively. 6 is the m x 1 vector of parameters to be estimated

and ¢ is an error term which is normally distributed with mean zero and constant o?and x values are
independent of the error term.

2.1 Bayesian Posterior Simulation techniques

The Bayesian estimation method in Regression model involves three steps:
a) Obtain the likelihood function of the model
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b) Specify the prior density function for the model
c¢) Obtain the Posterior density function.

The relationship between the three steps can be written as:
P (0ly) « P(6)P(y]6) )
P (8]y) isreferred to as Posterior density function, P (8) is the prior density function, P (y|6) is the
likelihood function and « means proportionality

The likelihood is written as follows;

N/2
Lo lexpl=2 (v - x6) (v - x0)]} G)

P(y|6,h) =

(2m)"/2

1
where h = —
g

Priors play a defining role in Bayesian inference which can take any form and are also meant to
reflect any information the researcher has before seeing the data. However, it is common to choose
particular classes of priors that are easy to interpret or which would make computation easier (Koop
(2003), an independent Normal-gamma and Natural conjugate priors typically belong to such class.

Using an independent Normal-gamma:
While the independent normal gamma prior will be:

1 _ 1 , -1
£(8) = —7~ IV°I7/% exp[—5 (6 - 6°)' VO (6 - 6] )
(2m) 72

g2 hv° ©)
f(h) = CG'hZ  exp (357

6°%denotes the prior mean for parameter 8, 2(S°)~2 is the prior mean of gamma distribution for
model precision h, V? is the un-scaled variance matrix for parameter 8 and v° is the prior sample size.

Note that the symbols 0 over the parameters denote parameters of a prior density and * over
parameters denote parameters of a posterior density.

Where C; is the integrating constant for the gamma distribution.
Then the joint posterior distribution when (3), (4) and (5) are combined will be:

P8, hly) « {exp[—3 {h (y—x0) (y—x6) + (8 -6 VO ' (8 - 6%)}3 ©)

0_
N+v- -2 th

h 2 exp [— W]

Formally, Equation (6) has posterior form as given by Joyce (2009)
Thus, the conditional posteriors are:

P 0]y, h) xexp[—= (8 —0°) V' (0 —6)] Q)
Where V= (VO_1 + hx'x)7t
while the conditional for h is of the form:
hly,0~G( §*7%,v%) (8)
Where
v*=N+1v°
And

g2 — (y—x6)' (y—x6) + (vS?)*
v*
The conditional Posterior obtained in (7) will be used for GS.
Using Natural Conjugate prior (Normal-Gamma):

We assume elicit a prior for 8 conditional on A which is of the form:
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8| h ~N(6° h~1V0)

And a prior for h of the form:

h~G((5°)7%v%) )
Then the prior is Normal-Gamma distribution which will be:
0,h ~NG (8°V°,(5°)72,v%) (10)

Hence, combining the likelihood in (3) by the prior in (10) and collecting the like terms will yields
a posterior of the form:

0,h|ly ~ NG (8%,V*,572* ,v*) (11)

Where V= ( yoTt 4 x'x)7t
0= V* (VO 0% + x'x 0)

And S72* defined implicitly through

(vS2)* =(vS?)°+vS2+(0-0%' [VO+ (xx)" 1] (8-6° (12)
Where 8 is an estimator for 6
Since our interest is on 6 , we integrate out h, and then we have:

Oy ~t (6,52 V*,v*) (13)
t - follows a t-distribution
The marginal Posterior obtained in (13) will be used for MCL

3. SIMULATION STUDY

The data experiment is set up using the Data Generating Process (DGP) below:
y= 04x+2x,+45 x5+ ¢ (14)

The error term, € ~ N (0, 1 ) and the explanatory variables, x;~ U (0, 1), i =1, 2, 3 generate the
dependent variable, y. The sample sizes are: 10, 30, 100, and 1000 with 10000 replication. The
Posteriors obtained in equations (7) and (13) for both GS and MCI respectively will be used to perform
Posterior analysis while the values for levels of correlation for prior covariance are specified as:

Negative Correlation (NC): -0.01, -0.7 and -0.9

Positive Correlation (PC): 0.01, 0.7 and 0.9

Zero Correlation (ZC): 0

Prior parameter values are given as: 0 =0 ,0Y=0.4,609=1.5 ,69=3.8 ,5°2 = land prior
degree of freedom, v° is 4.

4. ANALYSIS, RESULTS AND DISCUSSION

The results for three different levels of correlation PC NC and ZC for both the GS and MCI using
Mean of parameter estimates and MSE are presented in this section with the true parameter values in
parenthesis.

Tables 1, 2, 4 and 5 present the Mean estimates of the GS and MCI for PC, NC and ZC for samples
10, 30, 100 and 1000 while Tables 3 and 6 give the MSE estimates of the GS and MCI for PC, NC and
ZC for samples 10, 30, 100 and 1000.
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Table 1
Mean Criteria for sensitivity of GS and MCI when the level of correlation is Positive Correlation (PC) for
samples 10 and 30

Sample size =10 Sample size =30
Parameter Positive 0.01 0.7 0.9 0.01 0.7 0.9
Correlation (PC)
GIBBS 0.5256 0.3326 0.2621 0.3926 0.3027 0.2745
0, (0
o @ MCI 0.178 0.2619 0.2672 0.1871 0.0257 0.1859
GIBBS -0.3355 0.3314 0.529 -0.0667 0.2684 0.4886
0, (0.4
104 MCI 0.5349 0.5727 0.5815 0.4257 0.6849 0.4286
GIBBS 0.7972 1.4045 1.6167 1.7312 1.7735 1.7726
0, (2.0)
MCI 0.9337 1.3500 1.5887 1.716 1.947 1.7235
GIBBS 5.4893 4489 4.1751 4.5293 4.347 4.19
05(4.5
3(+3) MCI 5.2546 4.5845 4.2488 4.5344 44219 4.5301
Table 2

Mean Criteria for sensitivity of GS and MCI when the level of correlation is Positive Correlation (PC) for
samples 100 and 1000

Sample size =100 Sample size =1000
Parameter  Positive 0.01 0.7 0.9 0.01 0.7 0.9
Correlation (PC)
GIBBS 0.1078 0.1407 0.1869 0.1209 0.0865 0.1041
0, (0
o ©® MCI 0.1147 0.1469 0.1935 0.0798 0.086 0.1043
GIBBS 0.9297 0.8763 0.7896 0.1546 0.3195 0.3401
6,04
104 MCI 0.9243 0.8649 0.7759 0.311 0.3196 0.3402
GIBBS 1.4132 1.4668 1.5536 1.9266 1.9875 1.9661
0, (2.0)
MCI 1.4162 1.4789 1.5691 1.9963 1.9884 1.9659
GIBBS 4376 43126 42156 4.5344 4.4438 4.4107
0;(4.5
3(43) MCI 4.3642 4.2984 4.1992 4.4555 4.4434 4.41

In Table 1, the MCI performs better since its estimates are close to the true parameter values in most
cases for all the parameters considered for sample sizes 10 and 30. As the correlation increases the
estimates of the GS move closer to the true parameter values while the estimates of MCI move farther
away from the true parameter values. Also, in Table 2, MCI provides better estimates using Mean of
parameter as criterion to judge the performance of the posterior simulation methods.

Table 3
MSE Criteria for sensitivity of GS and MCI when the level of correlation is Positive Correlation (PC) for samples
10, 30, 100 and 1000

Sample size
Levels of 10 30 100 1000
correlation
GIBBS 0.8107  0.1113 0.163 0.0204
ool MCl 04391 00294  0.1618 0.0041
GIBBS 0.1415  0.0459  0.1415 0.0043
07 MCI 0.1375 00227  0.1375 0.0043
GIBBS 0.1167  0.1127  0.1167 0.0059
09 Ml 0.1137 00282  0.1137 0.0059
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Results obtained from Table 3 shows that MCI has the least MSE for all the sample sizes in most
cases for Positive Correlation (PC) which also supported the results obtained using the Mean of estimate
as criteria.

Table 4

Mean Criteria for sensitivity of GS and MCI when the level of correlation is Negative Correlation (NC) and
Zero Correlation (ZC) for samples 10 and 30

Sample size = 10 Sample size = 30
Parameter  Negative
(Cl\;’ge'ag"“ Jero | 001 0.7 0.9 0 -0.01 0.7 0.9 0
Correlation (ZC)
GIBBS 0.5314 05949  0.6015 0.6184 0.3945 0.3451 0.3695 0.3969
%0 © MCI 0.1753  -0.0106  -0.0289 0.1768 0.1787 02835  -02908  -0.1769
GIBBS 211293 -13385  -1.4115 -1.0738 -0.0733  -0.1014  -0.1412  -0.0755
6109 mct 0.533 05534  0.5367 0.53439 0.7181 0.7560 0.7545 0.7183
GIBBS 0.7835  0.3906 0.3941 0.3963 1.7318 1.7699 1.7534 1732
6220 MCI 0.927 09062  0.8823 0.9299 2.0765 2.1588 2.1626 2.0756
GIBBS 55102 69923  7.0415 6.6128 4.5282 4.6723 4.6696 45293
854 MCI 52637 59214 59604 5.2589 4.6086 4.7624 4.7589 4.6081
Table 5

Mean Criteria for sensitivity of GS and MCI when the level of correlation is Negative Correlation (NC) and
Zero Correlation (ZC) for samples 100 and 1000

Sample size = 100 Sample size = 1000
Parameter  Negative
Correlation
(NC) & Zero -0.01 -0.7 -0.9 0 -0.01 -0.7 -0.9 0
Correlation
(Zo)
GIBBS 0.1089  0.0568 0.0568 0.1082 0.0803 0.0747 0.0758 0.0805
6, (0)
MCI 0.1155  0.0561 0.0618 -0.0804 0.0798 0.0740 0.0745 0.0798
GIBBS 0.9314  0.975 0.975 0.9296 0.3101 0.3122 0.3105 0.3105
0, (0.4)
MCI 0.9241  0.9740 0.9711 0.9379 0.3109 0.3127 0.3119 0.3109
GIBBS 1.4115  1.4289 1.4289 1.4126 1.9958 2.0006 2.0007 1.9956
8, (2.0)
MCI 1.4148  1.4347 1.4278 1.7122 1.9963 2.0014 2.001 1.9963
GIBBS 43748  4.4256 4.4256 43759 4.4559 4.462 4.4617 4.4561
0;(4.5)
MCI 4364  4.4222 4.4188 4.4168 4.4555 4.4614 4.4612 4.4555

From tables 4 and 5 which present the Mean Criteria for performance of the posterior simulation
techniques revealed that MCI has the best performance for all the parameters considered for all sample
cases. As the sample size increases, the estimates of both the GS and MCI become better and tend
toward the true parameters for each values of NC across the parameters. Also for ZC, MCI also
performed better than MCI.
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Table 6
MSE Criteria for sensitivity of GS and MCI when the level of correlation is Negative Correlation (NC) and Zero
Correlation (ZC) for samples 10, 30, 100 and 1000

Sample sizes
Levels  of 10 30 100 1000
correlation

GIBBS 1.2804  0.1131  0.1641 0.0041
0o MCl 04457 00377  0.1622 0.0041
GIBBS 3.0445 01133 0.1664 0.0037
07 MCI 0.8101 00753  0.1646 0.0036
GIBBS 3.1704  0.1298  0.1664 0.0038
0 MCI 0.8504  0.0759  0.1660 0.0037
GIBBS 23976  0.1141 0.1632 0.0041
0 MCI 04426  0.0375  0.0964 0.0041

From Table 6, the MCI also has a better performance that GS for each values of Negative correlation
(NC) across the parameters for all the samples sizes with the least MSE.

5. CONCLUSION

This study investigated the sensitivity of prior covariance by using three different levels of
correlation; Negative Correlation (NC), Positive Correlation (PC) and Zero correlation (ZC) on two
Posterior simulation techniques namely; GS and MCI to examine the method more suitable for
estimation of parameters in a linear regression model. Two kinds of priors known as independent
Normal-Gamma and a natural conjugate (Normal Gamma) were used. The data for the experiment
were generated using a varying sample sizes while Mean of parameter estimates and MSE were used to
judge the performances of the methods; GS and MCI.

Going by the various results obtained, it can be concluded that MCI performed that GS in all cases
of the experiment which means that accuracy of MCI does not depend on the any level of correlation
either positive or negative, but however GS is much better using a Positive level of correlation as an
information in the prior covariance than using negative level of correlation.

The parameter estimates of the both GS and MCI are also consistent with the samples sizes, the
mean are not far from the true parameter values for all the levels of correlation considered.

The work therefore concluded that Monte Carlo Integration (MCI) is a good method of Bayesian
estimation of parameters for linear regression model especially when the researcher has a choice of
selecting a particular Posterior simulator.
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