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On generalized principally quasi–Baer modules
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Let R be an associative ring with identity. A right R–module M is called

generalized principally quasi–Baer if for any m ∈ M , rR(mR) is left s–

unital as an ideal of R and the ring R is said to be right (left) generalized

principally quasi–Baer if R is a generalized principally quasi–Baer right

(left) R–module. In this paper, we investigate properties of generalized

principally quasi–Baer modules and right (left) generalized principally

quasi–Baer rings.
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Sea R un anillo asociativo con identidad. Se dice que un módulo derecho

M de tipo R es de tipo generalizado principalmente de tipo cuasi–Baer si

para cualquier m ∈ M , rR(mR) es unitario de tipo s a la izquierda como

un ideal de R y el anillo R se dice de tipo generalizado principalmente

de tipo cuasi–Baer derecho (izquierdo) si R es un módulo generalizado

principalmente de tipo cuasi–Baer derecho (izquierdo) de tipo R. En

este art́ıculo se investigan las propiedades de los módulos generalizados

principalmente de tipo cuasi–Baer y los anillos derechos (izquierdos) ge-

neralizados principalmente de tipo cuasi–Baer.
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1 Introduction

Throughout this paper R denotes an associative ring with identity and
modules will be unitary right R–modules. An ideal I of R is said to
be right (respectively left) s–unital [18] if for each a ∈ I there exist an
element x ∈ I such that a x = a (respectively x a = a). It is well known
that I is right s–unital if and only if R/I is flat as a left R–module if
and only if I is pure as a left ideal of R. For a subset X of a module
M , let rR(X) = {r ∈ R | X r = 0}. In [8], Lee and Zhou introduced
Baer modules, quasi–Baer modules, principally projective modules and
reduced modules as follows: A module M is called Baer if for any subset
X of M , rR(X) = eR where e2 = e ∈ R, while M is called quasi–Baer
if for any submodule N of M , rR(N) = eR, where e2 = e ∈ R and M
is called principally projective if for any m ∈ M , rR(m) = eR, where
e2 = e ∈ R. The ring R is said to be right principally projective if R
is a principally projective right R–module. A module M is said to be
reduced if for any m ∈ M and a ∈ R, ma = 0 implies mR ∩ M a = 0,
equivalently ma2 = 0 implies mRa = 0. The ring R is called reduced
if R is a reduced right R–module. According to Baser and Harmanci
[5], a module M is called principally quasi–Baer if for any m ∈ M ,
rR(mR) = eR, where e2 = e ∈ R. Also in [12], principally quasi–
Baer modules over their endomorphism rings are studied. The ring R is
said to be right principally quasi–Baer if R is a principally quasi–Baer
right R–module. Moreover, every Baer module is quasi–Baer and every
quasi–Baer module is principally quasi–Baer. The concept of generalized
principally quasi–Baer modules is introduced in [14] to extend the notion
of principally quasi–Baer modules and principally projective modules. A
module M is called generalized principally quasi–Baer if for any m ∈ M ,
rR(mR) is left s–unital as an ideal of R, that is, for any a ∈ rR(mR),
there exist b ∈ rR(mR) such that b a = a. The left version of generalized
principally quasi–Baer module can be defined similarly. A ring R is called
right generalized principally quasi–Baer if R is a generalized principally
quasi–Baer right R–module. In [9], right generalized principally quasi–
Baer rings are named as right APP–rings. A right generalized principally
quasi–Baer ring is a generalization of a right principally quasi–Baer ring
and a left principally projective ring. The left version of a generalized
principally quasi–Baer ring can be defined similarly. Finally, a module
M is called abelian [2] if for any m ∈ M , a ∈ R and any idempotent
e ∈ R, mae = mea, while a ring R is called abelian if R is an abelian
right R–module.

In what follows, by Z and Z/nZ we denote, respectively, integers and
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the Z–module of integers modulo n. We write R[x], R[[x]] and R[x, x−1]
for the polynomial ring, the power series ring and the Laurent polynomial
ring over a ring R, respectively.

2 Generalized principally quasi–Baer modules

Let R be an associative ring with identity. An R–module M is called
generalized principally quasi–Baer if for any m ∈ M , a ∈ rR(mR), there
exist b ∈ rR(mR) such that b a = a. It is obvious that every principally
quasi–Baer module (ring) is a generalized principally quasi–Baer module
(right generalized principally quasi–Baer ring). If R is commutative orM
is abelian, then every principally projective module (ring) is a generalized
principally quasi–Baer module (right generalized principally quasi–Baer
ring). The converse is not true in general as the following example shows.

Example 2.1. Consider the ring R =

( ∞∏
i=1

Z/2Z
)
/

( ∞⊕
i=1

Z/2Z
)
. It is

clear that R is a Boolean ring. If S = R[[x]], then S is a right gener-
alized principally quasi–Baer ring by [8, Example 2.5], but it is neither
principally projective nor principally quasi–Baer.

Example 2.2. Let R be the upper triangular matrix ring over a field F .
We prove that R is a right generalized principally quasi–Baer ring. For

if A =

[
a b
0 c

]
∈ R and for any B ∈ rR(AR) we find C ∈ rR(AR)

such that C B = B. Consider the following cases for A:

(1) A1 =

[
a b
0 c

]
with a 6= 0 and c 6= 0. Then A1 is invertible. So

rR(A1R) = 0.

(2) A2 =

[
a b
0 0

]
with a 6= 0 and b 6= 0. Then rR(A2R) = 0. So, for

B ∈ rR(A1R) or B ∈ rR(A2R), it is enough to take C to be the
zero matrix.

(3) A3 =

[
0 b
0 c

]
with b 6= 0 and c 6= 0. Then rR(A3R) =

[
F F
0 0

]
.

For any B ∈ rR(A3R) it is enough to take C =

[
1 0
0 0

]
.

(4) A4 =

[
a 0
0 0

]
with a 6= 0. Then rR(A4R) = 0. Same as case (1).
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(5) A5 =

[
0 b
0 0

]
with b 6= 0. Then rR(A5R) =

[
F F
0 0

]
. Same as

case (3).

(6) A6 =

[
0 0
0 c

]
with c 6= 0. Then rR(A6R) =

[
F F
0 0

]
. Same as

case (3).

It is clear that generalized principally quasi–Baer modules are closed
under submodules. For the direct sum, we have the following.

Lemma 2.3. Any direct sums of generalized principally quasi–Baer mo-
dules are generalized principally quasi–Baer.

Proof. Let M =
⊕
i∈I

Mi where {Mi}i∈I is a collection of generalized prin-

cipally quasi–Baer modules and m = (mi) ∈ M and a ∈ rR(mR). Then
for all i ∈ I, a ∈ rR(miR). Assume that mi1 ,mi2 , · · · ,mit are nonzero
components of m. By hypothesis, there exist bi1 ∈ rR(mi1 R), bi2 ∈
rR(mi2 R) · · · , bit ∈ rR(mit R) such that bij a = a where 1 ≤ j ≤ t. Let
b = bi1 bi2 · · · bit . Since for any 1 ≤ l ≤ t, mil Rb = mil Rbi1 bi2 · · · bit ≤
mil Rbil bil+1

· · · bit = 0, we have b a = a and b ∈ rR(mij R), where
1 ≤ j ≤ t. The rest is clear.

One may suspect that every homomorphic images of generalized prin-
cipally quasi–Baer modules are generalized principally quasi–Baer, but
the following example erases the possibility.

Example 2.4. Let F be a field, R = F [x, y] and the right R–module
M = R. Consider the submodule N = (x2, x y, y2) of M and the factor
module M = M/N . It is easy to check that M is a generalized princi-
pally quasi–Baer module. If m = x + N ∈ M , then rR[x,y](mR[x, y]) =

(x, y2). Assume that M/N is generalized principally quasi–Baer. Then
for x+y2 ∈ rR[x,y](mR[x, y]), there should be a f(x, y) ∈ rR[x,y](mR[x, y])

such that f(x, y2)(x + y2) = x + y2. This is not possible since R is a
commutative domain.

Now we give some characterizations of generalized principally quasi–
Baer modules. In the following proposition, the equivalence of (1) and
(2) is proved in [14].

Proposition 2.5. The following conditions are equivalent for a module
M :
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(1) M is a generalized principally quasi–Baer module.

(2) If N is a finitely generated submodule of M , then for all a ∈ rR(N),
we have a ∈ rR(N) a.

(3) If N is a cyclic submodule of M , then for all a ∈ rR(N), we have
a ∈ rR(N) a.

Proof.

(1) ⇒ (3). Let N = mR be a cyclic submodule of M and x = mr ∈ N
and a ∈ rR(xR). By (1), there exist b ∈ rR(xR) such that
b a = a ∈ rR(xR). Since b ∈ rR(xR), we have b a = a.

(3) ⇒ (1). Let m ∈ M and a ∈ rR(mR). By (3), there exist b ∈ rR(mR)
such that b a = a. Since m ∈ mR and mR is a cyclic sub-
module of M , the proof is completed.

Let R be a commutative domain and M a module over R. For r ∈ R
and m ∈ M , we say that m is divisible by r if there is some m1 ∈ M
with m = m1r. It is said that M is a divisible module if each m ∈ M is
divisible by every nonzero r ∈ R.

Proposition 2.6. Let R be a commutative domain and M a divisible
generalized principally quasi–Baer module. Then M is torsion–free.

Proof. Let m ∈ M and a ∈ R with ma = 0 and assume a is nonzero.
Since R is commutative, mRa = 0. So a ∈ rR(mR). There exist
b ∈ rR(mR) such that b a = a. By divisibility of M , there exist m′ ∈ M
with m = m′ a. Multiplying the equation m = m′ a from the right by b
and using mb = 0 and b a = a, we have mb = m′ a b = m′ a = m. Hence
m = 0.

Lemma 2.7. Let R be a commutative ring and M a generalized princi-
pally quasi–Baer module. Then M is reduced.

Proof. Let m ∈ M and a ∈ R with ma = 0. We prove M a ∩mR = 0.
If m′ = m1 a = ma1 ∈ M a ∩ mR for some m1 ∈ M , a1 ∈ R, then
mRa = 0 and so by hypothesis there exist b ∈ rR(mR) such that
b a = a. Multiplying the equation m′ = m1 a = ma1 from the right
by b and use b a = a, we have m′ b = m1 a b = ma1 b = 0. Hence
0 = m′ b = m1 a b = m1 a = m′.
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The next example shows that the commutativity of the ring R in the
Lemma 2.7 is essential.

Example 2.8. Let F be a field. Consider the ring R =

[
F F
0 F

]
and

the right R–module M =

[
0 F
F F

]
. It is elementary to check that M

is a generalized principally quasi–Baer module. For m =

[
0 1
1 1

]
∈ M

and a =

[
0 1
0 0

]
∈ R, ma2 = 0 but ma 6= 0. Hence M is not reduced

and R is not commutative either.

A module M is called symmetric if whenever a, b ∈ R, m ∈ M satisfy
mab = 0, we have mba = 0. The ring R is called symmetric if R is a
symmetric right R–module. The module M is said to be semicommuta-
tive if for any m ∈ M and any a ∈ R, ma = 0 implies mRa = 0 (see [7]
and [1]). The ring R is called semicommutative if R is a semicommutative
right R–module.

In [4, Proposition 2.4], it is proven that if M is a principally quasi–
Baer module, then M is a reduced module if and only if M is a semi-
commutative module. For generalized principally quasi–Baer modules,
we have the following.

Theorem 2.9. If M is a reduced module, then M is symmetric. The
converse holds if M is a generalized principally quasi–Baer module.

Proof. The first statement is clear. For the converse, assume that m ∈
M and a ∈ R with ma = 0. In order to see M a ∩ mR = 0, let
m1 a = ma1 ∈ M a ∩mR for some m1 ∈ M , a1 ∈ R. Then mRa = 0
and so by hypothesis there exist b ∈ rR(mR) such that b a = a. Then
mRb = 0. Multiplying m1 a = ma1 by b from the right, we have
m1 a b = ma1 b = 0. By hypothesis, m1 a b = 0 implies m1 b a = 0.
Hence m1 a = 0. Thus M a ∩mR = 0.

Recall that a ring R is called reversible [10] if for any a, b ∈ R, a b = 0
implies b a = 0.

Theorem 2.10. Let R be a right generalized principally quasi–Baer
ring. Then the following are equivalent.

(1) R is a reduced ring.
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(2) R is a symmetric ring.

(3) R is a reversible ring.

Proof.

(1) ⇒ (2) ⇒ (3) is always true without any condition on R.

(3) ⇒ (1) Let a ∈ R with a2 = 0. By (3), a2 r = a a r = 0 implies a r a =
0 for all r ∈ R. Hence a ∈ rR(aR). From the hypothesis, there
exist b ∈ rR(aR) such that b a = a. Since R is reversible,
a b = 0 implies b a = 0 and so a = 0.

Recall that a ring R is said to be von Neumann regular if for every
a ∈ R there exist b ∈ R with a = a b a. The ring R is called strongly
regular if for each element a of R there exist an element b satisfying
a = a2 b.

Theorem 2.11. If R is a strongly regular ring, then every R–module is
generalized principally quasi–Baer and semicommutative.

Proof. Let M be an R–module, m ∈ M and a ∈ R with a ∈ rR(mR).
There exist x ∈ R such that a = a2 x. Since strongly regular rings are
reduced, e = a x is a central idempotent and a = a x a = e x = x e. So
e a = a and 0 = mRa = mRax = mRe. Hence M is a generalized
principally quasi–Baer module. As for the semicommutativity, let m ∈
M and a ∈ R with ma = 0. Since R is regular, there exist x ∈ R such
that a = a x a, and e = a x and f = x a are central idempotents. ma = 0
implies 0 = max = me and so 0 = mer = mr e = mr ax for all r ∈ R.
Multiplying mr ax = 0 from the right by a we have 0 = mr axa = mr a
for all r ∈ R. Hence M is semicommutative.

Corollary 2.12. If R is strongly regular, then R is a right generalized
principally quasi–Baer ring.

A module M is called regular (in the sense of Zelmanowitz [13]) if

for any m ∈ M , there exist a right R–homomorphism M
φ→ R such that

m = mφ(m).

Lemma 2.13. Let M be a regular module and m ∈ M with m = mφ(m).
Then rR(mR) = rR(φ(mR)).
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Proof. If t ∈ rR(mR), then mRt = 0 and so φ(m)R t = φ(mRt) =
0. Hence t ∈ rR(φ(mR)) and rR(mR) ≤ rR(φ(mR)). Conversely, let
t ∈ rR(φ(mR)). Then φ(m)R t = 0. Since mRt = mφ(m)R t = 0,
we have t ∈ rR(mR). Hence rR(φ(mR)) ≤ rR(mR). Thus rR(mR) =
rR(φ(mR)).

Theorem 2.14. Let M be a semicommutative regular module. Then M
is generalized principally quasi–Baer.

Proof. Let m ∈ M and a ∈ R with a ∈ rR(mR). By hypothesis, there
exist a right R–homomorphism φ : M → R such that m = mφ(m). Then
φ(m) is an idempotent, and by Lemma 2.13, rR(mR) = rR(φ(mR)).
The semicommutativity of M and m = mφ(m) imply mR (1− φ(m)) =
0. Hence 1 − φ(m) ∈ rR(mR) = rR(φ(mR)). Thus a ∈ rR(φ(mR)),
that is φ(m) a = 0. Therefore (1− φ(m)) a = a.

The following is a direct consequence of Theorem 2.14.

Corollary 2.15. Let R be a commutative ring and M a regular module.
Then M is generalized principally quasi–Baer.

LetM be an R–module. Then a submoduleN ofM is called relatively
divisible if M r∩N = N r for each element r of R. Next we recall a well–
known result.

Lemma 2.16. Let M be a flat right R–module. Then for every exact
sequence

0 → K → F → M → 0

where F is a free R–module, we have (F I) ∩K = K I for each left
ideal I of R. In particular, K is a relatively divisible submodule of F .

Next we prove

Theorem 2.17. Consider the following statements for a ring R.

(1) R is a right generalized principally quasi–Baer ring.

(2) Every free R–module is generalized principally quasi–Baer.

(3) Every projective R–module is generalized principally quasi–Baer.

(4) Every flat R–module is generalized principally quasi–Baer.
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Then (1) ⇔ (2) ⇔ (3) and (4) ⇒ (1). If R is a semicommutative ring,
then (3) ⇒ (4).

Proof.

(1) ⇒ (2) Let F =
⊕

Ri where Ri = R be a free module, m = (mi) ∈ F
and a ∈ rR(mR). Letm1,m2, · · · ,mn be nonzero components

of m. Then rR(mR) =
n⋂

i=1
rR(miR). Hence a ∈ rR(miR) for

each i with 1 ≤ i ≤ n. By (1), there exist xi ∈ rR(miR) such
that xi a = a. If x = xn xn−1 · · ·x2 x1, then x ∈ rR(mR) and
x a = a.

(2) ⇒ (3) Let M be a projective R–module. Then M is a direct sum-
mand of a free module F . By (2) and Lemma 2.3, M is
generalized principally quasi–Baer.

(3) ⇒ (1) and (4) ⇒ (1) are clear.

(3) ⇒ (4) Let M be a flat R–module over a semicommutative ring R.
Assume that m ∈ M and a ∈ rR(mR). Suppose that for the
epimorphism α : F → M the sequence 0 → K → F → M → 0
is exact, where F is a free R–module. Now there exist y ∈ F
such that α(y) = m. This implies that α(y R a) = mRa = 0.
So y R a ≤ K and therefore y R a ≤ (F Ra) ∩ K = K (Ra)
by Lemma 2.16. Let y a ∈ y R a. There exist k ∈ K such
that y a = k a. Then (y − k) a = 0. Note that, being R
semicommutative, any free module and every submodule of
a free module is semicommutative. Hence (y − k)Ra = 0
or a ∈ rR((y − k)R) = 0. By (3), the projective module F
is generalized principally quasi–Baer, there exist b ∈ rR((y −
k)R) such that b a = a. Now α((y − k)R) = mR. So 0 =
α(0) = α((y − k)Rb) = mRb. Thus b ∈ rR(mR). Therefore
M is generalized principally quasi–Baer.

In the sequel, we investigate relations between a generalized prin-
cipally quasi–Baer module and its endomorphism ring. We also study
properties of the endomorphism ring of a generalized principally quasi–
Baer module.

Let M be an R–module with S = EndR(M). It is easy to show
that if M is Baer, quasi–Baer, principally quasi–Baer module, then S
is a left generalized principally quasi–Baer ring. We now show that the
endomorphism ring of a finitely generated generalized principally quasi–
Baer module is always a left generalized principally quasi–Baer ring.
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Proposition 2.18. Let M be a finitely generated R–module with S =
EndR(M). If M is a generalized principally quasi–Baer module, then S
is a left generalized principally quasi–Baer ring.

Proof. LetM = m1R+m2R+· · ·+mnR for somem1,m2, · · · ,mn ∈ M ,
where n ∈ N and f ∈ S. We show that for each g ∈ lS(Sf) there exist
h ∈ lS(S f) such that g h = g. Since g ∈ lS(S f), we have g ∈ lS(S f mi)
for each i = 1, 2, · · · , n. By hypothesis, there exist hi ∈ lS(S f mi) such
that g hi = g for i = 1, 2, · · · , n. If h = h1 h2 · · · hn, then g h = g and
h ∈ lS(S f). This completes the proof.

A module M is called n–epiretractable [6] if every n–generated sub-
module of M is a homomorphic image of M .

Proposition 2.19. Let M be a 1–epiretractable R–module with S =
EndR(M). If S is a left generalized principally quasi–Baer ring, then
M is a generalized principally quasi–Baer module.

Proof. Let m ∈ M and f ∈ lS(S m). If m = 0, then the proof is clear.
Assume that m 6= 0. Since M is 1–epiretractable, there exist 0 6= g ∈ S
with g(M) = mR. Then f S g(M) = f S mR = 0, and so f ∈ lS(S g).
By hypothesis, there exist h ∈ lS(S g) such that f h = f . This implies
that hS g(M) = hS mR = 0. Hence hS m = 0, and so h ∈ lS(Sm).
This completes the proof.

Let M be an R–module with S = EndR(M). Then the module M is
called Rickart [11] if for any f ∈ S, rM (f) = eM for some e2 = e ∈ S.
Rickart modules are studied also by the present authors in [3]. We now
show that the endomorphism ring of a Rickart module is a left generalized
principally quasi–Baer ring.

Proposition 2.20. Let M be an R–module with S = EndR(M). If M
is a Rickart module, then S is a left generalized principally quasi–Baer
ring.

Proof. Let f ∈ S. We show that for each g ∈ lS(S f) there exist h ∈
lS(S f) such that g h = g. Then g ∈ lS(S f) implies S f(M) ≤ rM (g).
Being M Rickart, rM (g) = eM where e2 = e ∈ S. So g e = 0 and
e S f(M) = S f(M), therefore (1 − e)S f = 0 or 1 − e ∈ lS(S f). Since
g (1−e) = g, it follows that S is a left generalized principally quasi–Baer
ring.



Bol. Mat. 20(1), 51–62 (2013) 61

We end this paper with some observations for right generalized prin-
cipally quasi–Baer rings.

Proposition 2.21. Let R be a reduced and right generalized principally
quasi–Baer ring. Then R is a domain.

Proof. Let a, b ∈ R with a b = 0 and assume b 6= 0. Since R is reduced,
we have b ∈ rR(aR). By hypothesis, there exist r ∈ rR(aR) such that
r a = a. But r ∈ rR(aR) implies a r = 0. Hence a = r a = 0.

Let S denote a multiplicatively closed subset of a ring R consisting
of central regular elements. Let S−1R be the localization of R at S.

Proposition 2.22. If R is a right generalized principally quasi–Baer
ring, then so is S−1R.

Proof. Note that r/s ∈ S−1R is central in S−1R if and only if r is
central in R. Assume that R is a right generalized principally quasi–
Baer ring and let x/s ∈ rS−1R[(a/t)S

−1R]. Then [(a/t)S−1R] (x/s) = 0.
Since S consists of central regular elements, we have aRx = 0, that is,
x ∈ rR(aR). By hypothesis, there exist y ∈ rR(aR) such that y x = x.
Then (y/1) (x/s) = x/s and y/1 ∈ rS−1R[(a/t)S

−1R].

Then we have the following result.

Corollary 2.23. Let R be a ring. If the polynomial ring R[x] is right
generalized principally quasi–Baer, then the Laurent polynomial ring
R[x, x−1] is right generalized principally quasi–Baer.

Proof. Let S = {1, x, x2, x3, x4, · · · }. Then S is a multiplicatively closed
subset of R[x] consisting of central regular elements. Then the proof
follows from Proposition 2.22.
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