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The lattice of ordinable topologies
El reticulo de las topologias ordinables

Nestor Raiil Pachén Rubiano!:?:2:*

To Professor Carlos Javier Ruiz Salguero, in memoriam

Abstract. We demonstrate that the ordinable topologies for a set X are
precisely those that occupy the upper part of the lattice of topologies for X,
and that they determine a lattice, not always complete or distributive. We
also found the amount of complements, and principal complements, for certain
ordinable topologies, generalizing a known result of P. S. Schnare.
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Resumen. En este articulo demostramos que las topologias ordinables para
un conjunto X son justamente aquellas que ocupan la parte mds alta del
reticulo de topologias para X, y que estas topologias determinan un reticulo,
que no siempre es completo o distributivo. Adicionalmente encontramos la can-
tidad de complementos y de complementos principales para ciertas topologias
ordinables, generalizando un resultado conocido de P. S. Schnare.
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1. Introduction

The lattice of topologies has been studied from different points of view, and all
these studies show the great complexity and richness of the structure of this
ordered set.

However, there are many interesting relationships between the elements of
this lattice that these studies did not reveal, but which are observable through
the concept of ordinable element of an ordered set. This work is an example of
this.

In 2010 the author [4] does a first study about the properties of ordinable
elements in this important lattice, but several questions of considerable interest
were not resolved there. For example, the structure of the set of ordinable
topologies is not studied.

In this article we provide information in this direction, but we also present
partial results with respect to the number of complements of an ordinable
topology in the case where the base set is infinite. The main purposes of this
paper are:
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1. To show that the ordinable topologies for a set X are precisely those that
occupy the upper part of the lattice of topologies for X.

2. To show that the set of ordinable topologies for a set is a lattice, not
always complete or distributive.

3. To determine the number of complements, and principal complements, of
certain ordinable topologies, obtaining a generalization of a known result
of Schnare, [5].

These results constitute a small contribution to the knowledge of the structure
of the lattice of topologies.

2. Preliminaries

This section will briefly mention some of the important results that the author
presented in [4], which will be very useful in developing this article. We assume
that the reader is familiar with the basic concepts of ordered sets. For further
references the reader may consult [1] and [3].

Let (A, <) be a partial ordered set. We associate to each ordinal number «
a subset (A4, <), of A, as follows:

For a = 0, (A, <)p is the set of maximal elements of (A4, <). And for a > 0,

(A, <)q is the set of maximal elements of A\ (J (4,<); , with the induced
B<a
order of <.

Definition 2.1. An element a € A is ordinable if there is an ordinal «
(necessarily unique) such that a € (4, <),. In this case we write O (a) = a.

The least ordinal number « such that (A,<), = @ will be denoted by
0 (A, <).

It is easy to verify that if a is ordinable in (A4,<) and ¢ < b, then b is
ordinable in (A4, <). Furthermore, if a € (4, <), and b € (4, <) then § < a.
In addition, if @ € (A,<), and § < « is an ordinal number, then there is
¢ € (A, <)s such that a < c.

We also have that O (A4, <) < card (P(A)), where P(A) is the set of all the
subsets of A.

Another result that is easily proved is: if (A, <) is an ordered set, and
a € A is such that the set of succesors of a, {b € A :a < b}, is a finite set, then
a is ordinable in (A, <), and O(a) < w, where w is the least infinite ordinal
number.

The particular and important case that interests us is the lattice (T'op(X), C)
of topologies for a set X, with the inclusion order.

In this case (T'op(X), <), = {P(X)}, where P(X) is the discrete topology
for X, and (Top(X), C), is the set of ultratopologies for X, which has the form
P(X \ {a}) UlU, where U is an ultrafilter on X, a € X and {a} ¢ U, see [2].

With respect to other ordinable elements in this ordered set, the author has
demonstrated the three following results.
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Remark 2.2. If (X, 1) is a topological space,

Ar={re X :{z} ¢},
and if A C X,

NA(A):=([{Ver:ACV}.

If A= {a} we write N;(a) instead of N;({a}). The set N;(A) is often called
the nucleus of A in the space (X, 7). Note that if 7 and S are topologies for
X then A.,-mﬂ =AU Aﬁ.

Proposition 2.3 (N.R.Pachén, [4]). If ® is ordinable in (Top(X), C) then the
set Ag 1is finite and for each x € Ag, the set Ny (x) is finite.

Recall some definitions of lattice theory that we need throughout the article.
A lattice (4, <) is distributive if aA(bV ¢) = (a Ab)V (a Ac), for all a,b,c €
A. If (A,<) is a lattice with a minimum element 0 and maximum element 1,
and if for a € A there exists an element b € A such that aAb=0and aVb =1,
it is said that b is a complement of a. A lattice is called Boolean if it is
distributive with 0 and 1, and every element has a complement (necessarily
unique).

If @ and b are elements in a lattice (A4, <), with a < b, and if ¢ and d are
elements in the closed interval [a, b], it is said that d is a relative complement
of cin [a,b] if cAd = a and ¢Vd = b. A lattice is relatively complemented if
each of its elements has a relative complement in any closed interval containing
it.

Making two changes in the structure of ultratopologies, the author obtained
the ordinable elements mentioned in the two following theorems, which will be
significantly generalized in this work.

Theorem 2.4 (N.R.Pachén [4]). Let Uy, Ua, ... U, be ultrafilters on X, and

let a € X such that {a} ¢ \J U;. If D is the topology P(X \ {a})U (N U; then:
i=1 =1

3 1=

(i) ® is ordinable in (Top(X),C) and ® € (Top(X),<),,-
(i1) The closed interval [2,P(X)] has cardinal 2".

(iii) The closed interval [P, P(X)] is a Boolean lattice.

Remark 2.5. Let X be a set and F' be a nonempty subset of X. If U/ is an
ultrafilter on X such that F' ¢ U, we denote by Ur the topology P (X \ F)UU.

Theorem 2.6 (N.R.Pachén [4]). Let X be a set and F be a finite nonempty
subset of X. IfU is an ultrafilter on X such that F ¢ U, then:

(i) Up 1s ordinable in (Top(X),C) and Up € (Top(X), ) .qracr) -
(i) The closed interval [Up, P(X)] has cardinal 2°¢74F),

(iii) The closed interval [Up, P(X)] is a Boolean lattice.

As a consequence, if X is an infinite set then (T'op(X), C),, # @, for all ordinal
number o < w where w is the least infinite ordinal number. The question is,
what happens if & > w? The answer is found in the next section.
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3. Characterization of the ordinable elements in
the lattice of topologies.

In this section we present necessary and sufficient conditions for an element to
be ordinable in the lattice of topologies, which will lead us to determine the
ordinal number O (Top(X),C) when X is infinite. Specifically, we will show
that the following propositions are equivalent:

(i) A topology @ (for a set X) is ordinable.

(ii) The interval [®,P(X)] is finite.

(iii) @ is of finite depth in the lattice Top (X).
)

(iv) The collection of ultratopologies (for X) containing ® is finite.

We also show that the converse of Proposition 2.3 is not true. In order to
achieve this goal we need the following three lemmas.

Lemma 3.1. Let {U;};; be a nonempty collection of ultrafilters on X, and
let a € X such that {a} ¢ \J U;. Let @ be the topology P(X \ {a}) U N U;.
icl 13
IfV C X with V ¢ ®, and if X is the topology for X generated by ® U {V'},
then either \ = P(X) or there exists J C I, with @ # J # I, such that
A=PX\{a}h)U N U;.
jeJ

Proof. We have that a € Vand V ¢ (U;. TV ¢ | U; then (X \V)U{a} €

N Ui, therefore {a} =V N[(X \ V) UZEZL}] € A and Z§I= P(X).
lEIIfVG U Ui, let J={iel:V elU}. Itisclearthat J # @ and I'\J # @.
Consider tlheel topology ¥ = P(X \ {a}) U ﬂ U;, note that A C . We will see
now that ¥ C \. e

Suppose that W € jQJZ/{j and a € W. Since we can write

W=WA\V)U[WuU(X\V))nV],
with W\V € P(X\{a}) and WU (X \V) € (ﬂ L{j) ﬂ( N L{Z—> = NU,
JjeJ i€l\J i€l
then W € A\. Thus ¥ C A. '

Lemma 3.2. Let {U;};; be a nonempty collection of ultrafilters on X, and
a € X such that {a} ¢ |J U;. Let @ =P(X \{a}) U(U). If ® is ordinable

i€l iel
in (Top(X),C) then

(@, P(X)] = {P(X)} UL P(X \{a)U Uy : @ £ T C T

jeJ
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Proof. 1t is clear that

{PX)}USPX\{ahU (U :@# T STy C[P,PX)].

jeJ

We prove the other inclusion by induction on O(®). If O(®) = 1, is obvious
since ® is an ultratopology.

Assume the result for O(®) < « and suppose O(®) = a. Let 8 € Top(X)
with 8 € [®,P(X)]\{®}. Let V € 5\ ®. Note that if (® U {V'}) is the topology
for X generated by the set ®U{V'}, then (& U {V}) C 8. According to Lemma
3.1 either (U {V}) = P(X) or there exists J C I, with & # J # I, such that
(@U{V}) =PX\{a})U (Q]Uj)

J

In the first case we conclude that 8 = P(X). In the second case, since
O ((DU{V})) < O(®), the induction hypothesis implies that either § = P(X)
or there exists L C J C I, with L # &, such that § =P(X \ {a})U N Y. O

leL

The following lemma shows an interesting property of ultrafilters, which we
will use in the proof of Proposition 3.4.

Lemma 3.3. Let {U;},.; be an infinite collection of different ultrafilters on X,

and let a € X such that {a} ¢ |J U;. Then there exists K C I, with K infinite
i€l
and K # 1, and there exists A C X with a € A, such that A€ () U\ [ U;.
keK i€l

Proof. Let | € I, arbitrary. Since U; ¢ (| U; there exists B € U; \ (| U;. Let
il il
J={iel:Bel;}. Ttisclear that J # Fand I\ J # @.
If J is infinite and A = BU{a}, then A € (| U; \ (\ U;. If I\ J is infinite

JjeJ el
and A= (X\B)U{al,then Ac () U\ () U. O
rel\J el

Proposition 3.4. Let {U;},.; be an infinite collection of different ultrafilters
on X, and let a € X such that {a} ¢ J U;. If © = P(X \ {a}) U (N U; then
i€l

il
®¢ U (Top(X),9),-

a<w

Proof. 1t is clear that ® ¢ (Top(X),C),. According to Lemma 3.3 there
exists K C I, with K infinite and K # I, and A C X with a € A, such that

Ae N U\ NU.
keK iel
Let n be any positive integer. Let iy, ...,4, be distinct elements in K. We

have that A € { P(X \ {a})U N L{i1> \ ® and therefore ® is a proper subset
j=1
of P(X \{a})U N U;;.
j=1

Now, P(X \ {a}) U N Ui, € (Top(X),C), by Theorem 2.4. Thus & ¢
j=1
(Top(X),C),,. Since n is arbitrary we have that ® ¢ |J (Top(X),<),. But

a<w
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also @ is a proper subset of P(X \ {a})U [\ Uy and
keK

PX\{ahU () Un ¢ |J (Top(X),C),,-

keK a<w

Then we can conclude that ® ¢ (Top(X),C), . O

w

The following proposition will allow us to find varied information of great
interest in relation to the ordinable elements in the lattice of topologies. First,
it implies that the converse of Proposition 2.3 is not true. Second, it explains
why in the Theorem 2.4 the collection of ultrafilters must be taken as finite.
On the other hand it allows us to characterize the ordinable elements in this
lattice, and lastly it allows us to determine the ordinal number O(Top(X), C),
in the event that the set X is infinite.

Proposition 3.5. Let {U;},.; be an infinite collection of different ultrafilters

on X, and let a € X such that {a} ¢ U U;. If & =P (X \{a})U N U; then @
i€l iel
is not ordinable in (Top(X), C).

Proof. Suppose that ® is ordinable. According to Proposition 3.4, O(®) > w.
There exists ¥ € (Top(X), <), such that ® C ¥. According to Lemma 3.2,
there exists J C I such that ¥ = P(X \ {a}) U N U;.

jeJ

According to Theorem 2.2 J must be infinite, which contradicts Proposition
3.4. O

If 5 is ordinable in (Top(X), C), we know that the set Ag is finite and that
for each x € Ag, the set N () is finite. The converse of this proposition is not
true because if {U;};.; is an infinite collection of non-principal ultrafilters on
X,and if ® =P(X \{a})UN U, , with a € X, then Ap = {a} y N3 (a) = {a}.

iel
However, according to Proposition 3.5, ® is not ordinable in (T'op(X), Q).

We continue now exploring the characteristics of the ordinable elements in
the lattice (T'op(X), C), and for this purpose the Proposition 3.5 will be very
helpful.

If & € Top(X)\ {P(X)}, in [2] it is proved that if {®;},.; is the collection
of all ultratopologies for X containing ®, then ® = ) ®,.

il
For each ¢ € I there is an ultrafilter U; on X ,e and a; € X, such that
iel
a € X\ {a;:i€I} then {a} € P(X \{a;}), for each i € I, so {a} € P.

On the other hand, if j € I then {a;} ¢ P(X \ {a;}) UlU;, hence {a;} ¢ P.
Thus Ag = {a; : i € I}.

In addition, if ® is ordinable we can conclude that {a; : ¢ € I} is finite,
according to Proposition 2.3. Let us prove that in reality I is a finite set.

There are iy,...,i, in I, such that Ag = {a;,,...,a;,}. Then there are
non-empty sets I1,...,I,, such that I =I; U---U [, and

¢=| () PX\{au DUl N0 | ) PN\ {ai, ) U]

Jjel J€ln
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that is,

o= |P(X\{a, HU (U | N0 |[P(X\{ai, DU () Y,

Jj€h JEIn

Since ® C P(X \{a;,}) U N U;, for all k € {1,...,n}, every topology P(X \
S
{ai, }) U ) U;j is ordinable in (T'op(X), ). According to Proposition 3.5, for
Jj€li
all k € {1,...,n}, I} is finite, and consequently I is finite.
We have proved the following theorem, which provides another interesting

property of ordinable elements in the lattice (Top(X), Q).

Theorem 3.6. If & € Top(X) \ {P(X)} and @ is ordinable in (Top(X), <),
then the collection of ultratopologies for X containing ® is finite, and ® is the
intersection of them.

This theorem immediately leads us to a necessary and sufficient condition
for a topology to be ordinable in the lattice of topologies.

Theorem 3.7. If ® € Top(X) then ® is ordinable if and only if the interval
[, P(X)] is finite.

Proof. 1f [®,P(X)] is finite it is easy to see that ® is ordinable.

Suppose that ® is ordinable. If & = P(X) there is nothing to prove. As-
sume ® # P(X). Let {®;},.; be the collection of all ultratopologies for X
containing ®. According to Theorem 3.6, I is finite and & = [ ;.

iel

Let Q € [@,P(X)]\ {P(X)}. Any ultratopology for X containing 2 is an
element of the collection {®;}, ;. If Tq is the collection of all ultratopologies
for X containig €2, there is Ko C I, nonempty, such that Yo = {®p};cp,,-
Furthermore Q = (] ®y.

keKq

Since the function A : [®, P(X)|\{P(X)} — P(I)\ {2} defined by A (Q) =
Kq, for all Q € [, P(X)]\ {P(X)}, is inyective, we conclude that [®,P(X)] is
finite. O

Definition 3.8. Let (A, <) be an ordered set with maximum element 1. We
say that b € A is of finite depth if every chain in the interval [b, 1] is finite.

Corollary 3.9. If ® € Top(X) then ® is ordinable if and only if ® has finite
depth in the lattice (Top(X), Q).

Proof. If ® is ordinable then the interval [®, P(X)] is finite, and therefore ®
has finite depth in (T'op(X), Q).

Now, if ® has finite depth in (T'op(X),C) and ® is not ordinable, then
there exists a sequence {®,} ~, of non-ordinable topologies such that ® C
®; C Oy C &3 C - -+, which contradicts that ¢ has finite depth. O

Remember that when X is infinite, (Top(X), C), # @ for all ordinal num-
ber a < w, hence we have the following important corollary, which gives us
precise information about the ordinal number O (Top(X), Q).
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Corollary 3.10. If X is an infinite set and « is an ordinal number with o > w,
then (Top(X), <), = @, and therefore O (T'op(X),C) = w.

The converse of Theorem 3.6 is true, as we will see in the following corollary.

Corollary 3.11. If & € Top(X)\ {P(X)} and the collection of ultratopologies
for X containing ® is finite, then ® is ordinable in (Top(X), C).

Proof. It is sufficient to note that any topology for X, other than the discrete,
is the intersection of all ultratopologies for X that contain it, and that implies
the interval [®,P(X)] is finite. O

The following theorem gives information about the number of successors of
an ordinable topology. If 7 and 8 are topologies for X, we denote by 7V 3 the
topology generated by 7 U .

Theorem 3.12. If ® is ordinable in (Top(X),C) and if the number of ul-
tratopologies for X containing ® is n > 1, then card ([®,P(X)]) < 2"™. The
equality occurs if and only if the lattice [P, P(X)] is Boolean. Moreover, O(®) <
n.

Proof. Let {P(X \ {a;})Ul; : 1 <i<n} be the set of ultratopologies for X
containing ®. Let ®; = P(X \ {a;}) Ul;, for all 1 < i < mn.

If 8 € [®,P(X)] then there exists Jz C {1,...,n} such that the set of
ultratopologies for X containing 3 is {®;:j € Jg}. Since B = (] @, the

j€Js
function A : [®,P(X)] — P({1,...,n}), defined by A (8) = Jg, is inyective.
Thus card ([, P(X)]) < 2™

Furthermore, if 8, u € [®,P(X)] then 8 C p if and only if A (u) C A (5).
Therefore, card ([®,P(X)]) = 2™ if and only if X is an anti-isomorphism of
ordered sets.

Suppose that [®,P(X)] is a Boolean lattice, and let @ # J C {1,...,n}
and & # K C {1,...,n}, with J # K. Without loss of generality suppose that
there exists jo € J \ K.

If m (I)j = ﬂ (pk then m @k g (I)jg and < ﬂ (Dk) \/‘I)jo = (I)jov but

jeJ keK keK keK
N (P, Vv Pj,) = P(X). This is impossible since [®,P(X)] is distributive.
keK
Thus (| ®x # () ®k. In conclusion card ([, P(X)]) = 2".

j€J kEK

Now, we will prove the last assertion of this theorem by induction on n.
If n = 1 then ® is an ultratopology for X and O(®) = 1. Suppose that the
conclusion is true for all n < k, and that the number of ultratopologies for X
containing ® is k + 1. Let O(®) = [. There exists Q € (Top(X),<),_; such
that ® C Q. If m is the number of ultratopologies for X containing 2 then
m < k + 1. The inductive hypothesis implies that [ — 1 = O0(Q) < m < k+ 1,
and so O(®) < k+ 1. O

Another pending issue in [4] was to determine whether the topologies of
n

the form P(X \ F) U (N U;, where {U;};_, is a finite collection of ultrafilters
i=1
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on X and F is a non-empty finite subset of X, with F ¢ U U;, are ordinable.
i=1
With the help of Corollary 3.11 we proceed to give a positive response, but

we will also obtain information with respect to the sets of successors of these
topologies. For this purpose we use the following lemma, whose proof can be
found in [4].

Lemma 3.13. Let {U;};.; and {Vj}jGJ be finite, disjoint and mon-empty
collections of ultrafilters on X. Let F C X with F ¢ U; UV;, for alli € I and
j € J. Then there are A€ U; \ (| V; and B € () V; \ (U such that

icl jeJ = iel
ANB=F.
Proposition 3.14. Let {U;}"_, be a finite collectzon of ultrafilters on X and F
be a finite nonempty subset of X, with F ¢ U U. If & =P(X\F)U ﬂ U; then

i=1
the number of ultratopologies for X containing ® is n-car(F), and therefore P

is ordinable in (Top(X), C).

Proof. 1t is sufficient to verify that if C is the collection of ultratopologies for
X containing ®, then

C={P(X\{f}) Ul :ie{l,....,n} and f € F}.

It is clear that {P(X \ {f}HUl;:ie{l,...,n} and f € F} CC. Let
B =P(X \ {a}) UU an ultratopology for X containing ®. Since {a} = Ag C
Ap = F, we have a € F.

Suppose U # Z/l,-, for each i € {1 ...,n}. According to Lemma 3.13 there

exist A € U\ ﬂu and B € ﬂZ/{ \ U such that AN B = {a}. Since

BedCp and B ¢ P(X\ {a}) we have that B € U, which is a contra-
diction. Therefore there exists j € {1,...,n} such that & =U;, and then
Be{PX\{fHul,;:ie{l,....,n} and f € F}.

Hence C has n - card(F) elements and according to Corollary 3.11 & is
ordinable. O

We can really say more about the topologies considered in Proposition 3.14,
as will be seen in the final theorem of this section, which is a generalization
of Theorems 2.4 and 2.6. In Section 5 we also provide information about the
number of complements of these topologies, in the lattice of topologies.

But first, we will show an important property about the collection of ul-
tratopologies containing one of these topologies.

Lemma 3.15. Let {U;}! , be a finite collection of ultrafilters on X, and F
be a nonempty finite subset of X, with F ¢ U U. If > =PX\F)U ﬂ U;,

and if A and B are two different nonempty collectwns of ultratopologies for X

containing ®, then (| B# () p.
peA HEB

Proof. Without loss of generality suppose that there exists Q € A\ B. Ac-
cording to the proof of Proposition 3.14, there exist f € F and k € {1,...,n}
such that

Q=PXN\{f}) UlUs,
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and {fla"'7f7“}' g F and {ulla"'72/[10417"'7“7‘17“'7“7‘5!1} g {Z/{]_,...,un},
such that

If f&{fi,....fr} then {f} € ﬂl’P(X\{fj}) C ﬂB,u7 and as {f} ¢ Q, then
j= ne
{rr¢ N B
BeA
On the other hand, if f = f; for some [ € {1,...,r}, then Uy, # Uy for all
de{l,...,aq}. According to Lemma 3.13, there exist A € Uy \ d Upq and
d=1

Be () Ui\ Uy such that AN B = {f}.
d=1

Let W = B\ ({f1,..., i} \ {fi}). We will see that W € () u\ N 5.
pneEB BEA

Since B ¢ Uy, and f € W we have W ¢ U, and W ¢ P(X \ {f}). Thus W ¢ Q

and so W ¢ () .
BeA

If m e {1,...,r} \ {{} it is clear that W € P(X \ {fm}). Moreover,
BO(X\{fi,.. fr}) edrjluld and so W = [BN(X\ {fi,..., LU {fi} €

oy
N Ug. Thus W e N p. O
d=1 pneB

Theorem 3.16. Let {U;}, be a finite collection of ultrafilters on X, and F
be a nonempty finite subset of X with F ¢ |J U;.
i=1

1=

I = P(X\F)U U then O(®) = n - card(F), card (&, P(X)]) =
i=1
or-card(F) gnd (&, P(X)] is a Boolean lattice.

Proof. First, note that Lemma 3.15 implies that if B; and By are two different
collections of ultratopologies for X containing ®, and B; and Bs have the same

cardinal, then (| 8¢ () dand N 6Z N B

BEB: 6€B2 0EB2 BEB1
This impies that, for all k € {1,...,n}, any intersection of & ultratopologies
for X containing ® is in (Top(X), C),..
On the other hand, and considering that any topology for X, different
from P(X), is the intersection of all ultratopologies for X containing it, it is
concluded that

[@,P<X>]:{P<X>}u{ﬂ U:@#Bgc}

veB

where C is the collection of ultratopologies for X containing ®.

If for each 8 € [®,P(X)] we define Bg = {p €C: 8 C u,}, and if we con-
sider the function A : [®,P(X)] — P(C) defined by A (5) = Bgs, for each
B € [®,P(X)], it is immediate that A is an anti-isomorphism of ordered sets.
The rest is a consequence of Proposition 3.14 and Lemma 3.15. O
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Remark 3.17. If {V; }?zl is a non-empty finite collection of ultrafilters on X,

and if G C X with G ¢ |J V;, then

Jj=1

My Wnte = PXNG)U ﬁ Vj.

If F C X, the set of all topologies for X with the form {U,... U}, will be
denoted by 7F x.

Corollary 3.18. Let F be a non-empty finite subset of X, and {Vj}?zl be a

non-empty finite collection of non-principal ultrafilters on X. Then the sets
U [®,P(X)] and U [{V1,....Vn}e, P(X)] are distributive lattices,

deTp x GEPsin(X)

relatively complemented and with mazimum element. Here Py;n(X) is the col-

lection of finite subsets of X.

4. The lattice of ordinable topologies

In this section we will show other important consequences of Theorem 3.6,
concerning the structure of the collection of ordinable topologies for a set.
Specifically, we will show that the collection of ordinable topologies for a set
is a lattice, not always complete. We also show that if the base set has more
than two elements, this lattice is not distributive.

Remark 4.1. The set of ordinable topologies for X will be denoted by Topyrq (X).

If 8 and ® are elements of Top,rq (X), it is clear that the topology generated
by SU® is an element of Topyq (X). We will see now that NP € Topyrq (X).

Let {P(X\{a;})Ully: 1 <i<n}and {P(X\{b;j})UV;:1<j<m} be
the collections of ultratopologies for X containing 8 and ®, respectively. Ac-
cording to Theorem 3.6, these collections are finite.

All these ultratopologies contain SN ®, but there may be other ultratopolo-
gies that contain S N ®. In any case there are not many options, as we will
show immediately.

Let = P(X \ {c}) UW be an ultratopology for X containing SN ®. It is
clear that ¢ € {a1,...,an,b1,...,b;m}.

W ¢{U,...,Un,V1,...,Vn} then there exists A € (ﬂ Z/{i) N (ﬂ Vj>
i=1 j=1

with A ¢ W. Since A € fN® C pand A ¢ W then ¢ ¢ A. Furthermore
AU{c} € 8NP C pu, hence AU {c} € W, but this is impossible since A ¢ W,
{c} ¢ W and W is an ultrafilter. Hence W €{U,...,Un, V1,...,Vn}.
Therefore the set of ultratopologies containing 8N ® is finite. According to
Corollary 3.11 BN® € Topyrq (X).
We have proved the following theorem.

Theorem 4.2. If X is a set, then (Toporq (X), C) is a sublattice of (Top (X),C).
When X is infinite, this lattice is not complete. In fact, if a € X and {U;},;

is an infinite collection of ultrafilters on X, with {a} ¢ |J U;, then each topo-
i€l
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logy P(X \ {a}) U U, is ordinable, but the topology () (P(X \ {a})Ul;) =
i€l
P(X \{a})U N U, is not, according to Proposition 3.5.
i€l

Corollary 4.3. If X is infinite then the lattice (T'oporq (X), C) has no minimal
elements.

Proof. If 8 € Topyrq (X) then, according Theorem 3.6, the collection of ul-
tratopologies for X containing f is finite. If p is an ultratopology for X such
that 8 € p, then 8 contains strictly SN p and SN € Toporq (X). This implies
that 8 cannot be minimal in (Toperq (X), Q). O

Now we will show that the lattice of ordinable topologies is not distributive
if the base set has more than two elements.

Theorem 4.4. If X is a set with more than two elements then the lattice
(Topora (X), C) is not distributive.

Proof. Let a,b and ¢ be three elements in X. Consider the topology ¢ =
P(X \{a,b}) U{V C X : {a,c} CV}. If ®; is the topology
P(X\{b})U{V C X :{a,b,c} CV}, then <I> is a proper subset of ®1, and ¥,

€ (Top(X), <)y, as shown in [4]. Thus @ ¢ U (Top(X), ©);-

Suppose that p € Top(X) and that p contalns strictly ®@. Let A € u\ ®.
Then AN{a,b} # @ and {a,c} € A. If AN{a,b,c} = {a,b}, orif AN{a,b,c} =
{a}, then An{a,c} = {a} € p, thus &;C p.

On the other hand, if AN {a,b,c} = {b,c} then {b,c} € p, and there-
fore P(X \ {a,b}) U{VCX:ceV} C u. Furthermore, P(X \ {a,b}) U
{VCX:ceV}e (Top(X),<),, according to Theorem 2.6.

If An{a,b,c} = {b} then {b} € u, hence P(X\{a})U{VC X :ceV} Cp.
Since P(X \ {a}) U{V C X : ¢ € V} is an ultratopology for X, P(X \ {a}) U
{VCX:ceV}e (Top(X),<),.

Consequently ® € (Top(X),C), and the interval [®,P(X)] consists of the
seven topologies: @, P(X), ¥4,

(X\{a,bh)U{VC X :ceV},
(X\{ahU{VC X:ceV},
(
(

X\{PHU{VCX:ceV},

P
P
P
PX\{pHU{VC X:aeV}.

Note that CI)l - (1)4, (I)l - @5, (I)Q - ‘133 and (I)Q - ‘1)4. Since (I)Q and q)g
are two relative complements of @5 in the interval [®, P(X)], we conclude that
(Topora (X), C) is not distributive. O

The topology ® of Theorem 4.4 also makes clear that the lattice of successors
of an ordinable topology may not be complemented. In fact, observe that the
topology ®4 has no complement in the lattice [®, P(X)].

Moreover, we note that ® also shows that the conclusion in Lemma 3.15 is
not true for arbitrary ordinable topologies. In fact 3N P,NP5; = & = P3N P5.
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If (A, <) is a partially ordered set, the Dedekind-MacNeille completion of
(A, <) is a complete lattice (A*, <) containing an isomorphic copy of (A, <),
and is such that if (B, <) is any complete lattice containing an isomorphic copy
of (A4, <), then (B, <) contains an isomorphic copy of (4*, ).

What is the Dedekind-MacNeille completion of the lattice (T'oporq(X), C)?
If X is infinite then the lattice (T'op,rqa(X), C) is not complete, but if T is any
non-empty subset of T'op,q(X), then there exists the least upper bound of T
in (Topord(X), g)

Consequently, if Top?.,(X) = {{@, X}} UToporqa(X) then the Dedekind-
MacNeille completion of (T'opera(X), C) is (Topk,,(X), C).

Observe that all elements in the lattice (T'op}.,(X), <) are ordinable, and
O (Top},.;(X),C) = w+ 1. Furthermore, the lattice (T'op},,(X), <) is not
complemented since if 7, 8 € Topyrqa(X) then 7N 3 # {2, X }.

5. About the number of complements of an
ordinable topology

Of all the questions related to the lattice of topologies, the complementation
has been among the most outstanding. Schnare [5] showed that any proper
topology for an infinite set X has at least card(X) complements (resp., princi-
pal complements) and at most 226&M(X)complements (resp., 2¢card(X) principal
complements), and that these bounds are the best possible. One result of this
article called our attention: Any ultratopology for an infinite set X has exactly
g2em complements, and 2¢#"X) principal complements. The interesting
part of this result is that the ultratopologies are ordinable topologies.

Naturally we asked for the cardinality of the set of complements of an
ordinable topology for an infinite set, and the purpose of this section is to
present partial answers for it. We obtain valuable information concerning the
number of complements of some particular ordinable topologies, among which
are those mentioned in Proposition 3.14. The following lemma is important for
this purpose.

Lemma 5.1. Let X be an infinite set and I a finite subset of X. IfUy,Us, . .. U,

are ultrafilters on X then there exists Y C X such that F CY, card(Y) =

card(X \Y) = card(X) and Y € (| U;. Equivalently, there exists V C X \ F
i=1

2

such that card(V) = card(X \'V) = card(X) and V ¢ |J U;.
i=1
Proof. By induction on n. For n = 1. Let V C X such that FF C V and
card(V) = card(X\V) =card(X). UV €Uy then Y =V. If X\ V € U then
Y = (X\V)UF.
Assume that the result is true for n = k. If Uy, Us, . .. ,Uy4+1 are ultrafilters
for X, then there exists Y C X such that F C Y, card(Y) = card(X \Y) =

k
card(X) and Y € (| U;.
i=1
Let {X7, X5} be a partition of X \ Y such that card(X;) = card(Xs) =
card(X \'Y). Ouly one of the sets X7 and X \ X is in Ugxy1. We call X* to
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it. Let Y* =Y U X*. Since X \Y* = X; or X \ Y* = Xy, then card (Y*) =
k41
card (X) =card (X \Y*). Moreover F CY* and Y* € (| U;. O

=1

A topology is principal if and only if it is closed under arbitrary intersec-
tions. If 7 and 8 are topologies for a set X, we denoted by 7V § the topology
generated by the set 7US. A base for 7V istheset {UNV : U € 7 and V € §}.

It is well known that on an infinite set X, there are g2een o) topologies and
2¢ard(X) principal topologies for X. In the following theorem we obtain the
number of complements, and principal complements, for a great collection of
ordinable topologies.

Theorem 5.2. Let X be an infinite set and {x1,za,...,2,} C X. Let U1,
Uiz, ..., Uiny, U1, Usa, ..o, Usny, - ., Upt, Upa, .o Upy, ultrafilters on X, not

T ng
necessarily distinct, such that {z1,x2,...,z.} ¢ U U Usj. If © is the topo-
1

i=1j=
logy N |P(X\{z;})U ﬁ U;; | then ® has ezactly 22" complements and
i=1 j=1

2¢ard(X) principal complements in the lattice (Top (X),C).
Proof. If F = {x1,x9,...,2,} then Lemma 5.1 guarantees that there is V' C
X\ F such that card(V) = card(X \ V) = card(X) and V ¢ (J U Us;.

i=1j=1
Let 8 € Top(V'), arbitrary. Consider the following topology for X:

B*={UUF:Uce€plui{o, X}.

Ifie{l,2,...,r} then (X \ F)U{z;} € N ﬂ U;; C ®, and since F' € B* we
i=1j=1
have that {z;} = [(X \ F)U{z;}J]NF € &V g*. And since P(X \ F) C @, we
have that ® v * = P (X).
Now, it is clear that, for all U € g and i € {1,2,...,r}, we have that

UUF ¢ P(X\{x;})U () Uy, and then U U F ¢ ®. Thus ® N §* = {@, X},
j=1

and £* is a complement of ®.

On the other hand, if 81, 82 € Top(V') then 57 = 55 if and only if 81 = s,

and consequently ® has exactly 22cmd(v> _ 22ca,rd(X)

(T'op(X), S).

Now, if g is a principal topology then §* is a principal topology, and since
there are 2¢ard(V) — 9card(X) principal topologies for V, then ® has exactly
2¢ard(X) principal complements in the lattice (Top(X), C). O

complements in the lattice

The topology @ of this theorem is an ordinable topology in the lattice
(Top(X), C), because it is the intersection of a finite number of elements of the
lattice Topora (X).

Corollary 5.3. If ® is an ordinable topology for the infinite set X, with ® #
P (X), and none of the ultratopologies for X that contain ® is principal, then

D has ezactly gacer o complements and 2°°"“X) principal complements in the
lattice (Top (X), Q).
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The next corollary provides additional information about the ordinable
topologies presented in Proposition 3.14. This corollary generalizes the re-
sult of Schnare, concerning the number of complements of an ultratopology,
mentioned previously.

Corollary 5.4. Let X be an infinite set, F' be a non-empty finite subset of X
and Uy, Us, ... U, be ultrafilters on X such that F ¢ \J U;. If @ is the topo-
i=1

logy P (X \ F)U (| U; then ® has exactly 2" complements and 26974(X)
i=1
principal complements in the lattice (Top (X),C).

The natural question is: the result of Theorem 5.2 is applicable to any or-
dinable topology? The answer is no, as we will see in the following proposition.

If X is a set and a € X, then we denote by (a) the principal ultrafilter on
X generated by {a}.

Proposition 5.5. If X is an infinite set and a,b € X, with a # b, and if & =
[P(X\ {a}) U BN[P(X \ {b}) U (a)] then ® has exactly 2°4X) complements
in the lattice (Top (X), Q).

Proof. Let 8 be a complement of . If W € g and @ # W # X then
card (W N{a,b}) = 1. There exist A,B € ® and U,V € f such that {a} =
ANVU and {b} = BNV. We have that U NV = &, since otherwise UNV €
(2N B)\{@, X}, which is absurd. Moreover, as UUV € &N then UUV = X.
Thus V = X \ U. Hence we conclude easily that 8 = {@,U, X \ U, X }.

On the other hand, if Z C X and card (Z N {a,b}) = 1, then the topology
Bz ={9,Z,X\ Z, X} is a complement of ®.

All this allows us to conclude that ® has exactly 2¢974(X) complements in
the lattice (T'op (X), Q). O
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