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The lattice of ordinable topologies

El ret́ıculo de las topoloǵıas ordinables

Nestor Raúl Pachón Rubiano
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Abstract. We demonstrate that the ordinable topologies for a set X are
precisely those that occupy the upper part of the lattice of topologies for X,
and that they determine a lattice, not always complete or distributive. We
also found the amount of complements, and principal complements, for certain
ordinable topologies, generalizing a known result of P. S. Schnare.
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Resumen. En este art́ıculo demostramos que las topoloǵıas ordinables para
un conjunto X son justamente aquellas que ocupan la parte más alta del
ret́ıculo de topoloǵıas para X, y que estas topoloǵıas determinan un ret́ıculo,
que no siempre es completo o distributivo. Adicionalmente encontramos la can-
tidad de complementos y de complementos principales para ciertas topoloǵıas
ordinables, generalizando un resultado conocido de P. S. Schnare.
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1. Introduction

The lattice of topologies has been studied from di↵erent points of view, and all
these studies show the great complexity and richness of the structure of this
ordered set.

However, there are many interesting relationships between the elements of
this lattice that these studies did not reveal, but which are observable through
the concept of ordinable element of an ordered set. This work is an example of
this.

In 2010 the author [4] does a first study about the properties of ordinable
elements in this important lattice, but several questions of considerable interest
were not resolved there. For example, the structure of the set of ordinable
topologies is not studied.

In this article we provide information in this direction, but we also present
partial results with respect to the number of complements of an ordinable
topology in the case where the base set is infinite. The main purposes of this
paper are:
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1. To show that the ordinable topologies for a set X are precisely those that
occupy the upper part of the lattice of topologies for X.

2. To show that the set of ordinable topologies for a set is a lattice, not
always complete or distributive.

3. To determine the number of complements, and principal complements, of
certain ordinable topologies, obtaining a generalization of a known result
of Schnare, [5].

These results constitute a small contribution to the knowledge of the structure
of the lattice of topologies.

2. Preliminaries

This section will briefly mention some of the important results that the author
presented in [4], which will be very useful in developing this article. We assume
that the reader is familiar with the basic concepts of ordered sets. For further
references the reader may consult [1] and [3].

Let (A,) be a partial ordered set. We associate to each ordinal number ↵
a subset (A,)

↵

of A, as follows:
For ↵ = 0, (A,)0 is the set of maximal elements of (A,). And for ↵ > 0,

(A,)
↵

is the set of maximal elements of A \
S

�<↵

(A,)
�

, with the induced

order of .

Definition 2.1. An element a 2 A is ordinable if there is an ordinal ↵
(necessarily unique) such that a 2 (A,)

↵

. In this case we write O (a) = ↵.

The least ordinal number ↵ such that (A,)
↵

= ? will be denoted by
O (A,).

It is easy to verify that if a is ordinable in (A,) and a  b, then b is
ordinable in (A,). Furthermore, if a 2 (A,)

↵

and b 2 (A,)
�

then �  ↵.
In addition, if a 2 (A,)

↵

and �  ↵ is an ordinal number, then there is
c 2 (A,)

�

such that a  c.
We also have that O (A,) < card (P(A)), where P(A) is the set of all the

subsets of A.
Another result that is easily proved is: if (A,) is an ordered set, and

a 2 A is such that the set of succesors of a, {b 2 A : a  b}, is a finite set, then
a is ordinable in (A,), and O(a) < !, where ! is the least infinite ordinal
number.

The particular and important case that interests us is the lattice (Top(X),✓)
of topologies for a set X, with the inclusion order.

In this case (Top(X),✓)0 = {P(X)}, where P(X) is the discrete topology
for X, and (Top(X),✓)1 is the set of ultratopologies for X, which has the form
P(X \ {a}) [ U , where U is an ultrafilter on X, a 2 X and {a} /2 U , see [2].

With respect to other ordinable elements in this ordered set, the author has
demonstrated the three following results.
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Remark 2.2. If (X, ⌧) is a topological space,

A
⌧

:= {x 2 X : {x} /2 ⌧} ,
and if A ✓ X,

N
⌧

(A) :=
\

{V 2 ⌧ : A ✓ V } .

If A = {a} we write N
⌧

(a) instead of N
⌧

({a}). The set N
⌧

(A) is often called
the nucleus of A in the space (X, ⌧). Note that if ⌧ and � are topologies for
X then A

⌧\�

= A
⌧

[A
�

.

Proposition 2.3 (N.R.Pachón, [4]). If � is ordinable in (Top(X),✓) then the
set A� is finite and for each x 2 A�, the set N� (x) is finite.

Recall some definitions of lattice theory that we need throughout the article.
A lattice (A,) is distributive if a^ (b _ c) = (a ^ b)_ (a ^ c) , for all a, b, c 2
A. If (A,) is a lattice with a minimum element 0 and maximum element 1,
and if for a 2 A there exists an element b 2 A such that a^b = 0 and a_b = 1,
it is said that b is a complement of a. A lattice is called Boolean if it is
distributive with 0 and 1, and every element has a complement (necessarily
unique).

If a and b are elements in a lattice (A,), with a  b, and if c and d are
elements in the closed interval [a, b], it is said that d is a relative complement

of c in [a, b] if c^d = a and c_d = b. A lattice is relatively complemented if
each of its elements has a relative complement in any closed interval containing
it.

Making two changes in the structure of ultratopologies, the author obtained
the ordinable elements mentioned in the two following theorems, which will be
significantly generalized in this work.

Theorem 2.4 (N.R.Pachón [4]). Let U1,U2, . . . ,Un

be ultrafilters on X, and

let a 2 X such that {a} /2
nS

i=1
U
i

. If � is the topology P(X \ {a})[
nT

i=1
U
i

then:

(i) � is ordinable in (Top(X),✓) and � 2 (Top(X),✓)
n

.

(ii) The closed interval [�,P(X)] has cardinal 2n.

(iii) The closed interval [�,P(X)] is a Boolean lattice.

Remark 2.5. Let X be a set and F be a nonempty subset of X. If U is an
ultrafilter on X such that F /2 U , we denote by U

F

the topology P (X \ F )[U .

Theorem 2.6 (N.R.Pachón [4]). Let X be a set and F be a finite nonempty
subset of X. If U is an ultrafilter on X such that F /2 U , then:

(i) U
F

is ordinable in (Top(X),✓) and U
F

2 (Top(X),✓)
card(F ).

(ii) The closed interval [U
F

,P(X)] has cardinal 2card(F ).

(iii) The closed interval [U
F

,P(X)] is a Boolean lattice.

As a consequence, if X is an infinite set then (Top(X),✓)
↵

6= ?, for all ordinal
number ↵ < ! where ! is the least infinite ordinal number. The question is,
what happens if ↵ � !? The answer is found in the next section.
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3. Characterization of the ordinable elements in

the lattice of topologies.

In this section we present necessary and su�cient conditions for an element to
be ordinable in the lattice of topologies, which will lead us to determine the
ordinal number O (Top(X),✓) when X is infinite. Specifically, we will show
that the following propositions are equivalent:

(i) A topology � (for a set X) is ordinable.

(ii) The interval [�,P(X)] is finite.

(iii) � is of finite depth in the lattice Top (X).

(iv) The collection of ultratopologies (for X) containing � is finite.

We also show that the converse of Proposition 2.3 is not true. In order to
achieve this goal we need the following three lemmas.

Lemma 3.1. Let {U
i

}
i2I

be a nonempty collection of ultrafilters on X, and
let a 2 X such that {a} /2

S
i2I

U
i

. Let � be the topology P(X \ {a}) [
T
i2I

U
i

.

If V ✓ X with V /2 �, and if � is the topology for X generated by � [ {V },
then either � = P(X) or there exists J ✓ I, with ? 6= J 6= I, such that
� = P(X \ {a}) [

T
j2J

U
j

.

Proof. We have that a 2 V and V /2
T
i2I

U
i

. If V /2
S
i2I

U
i

then (X \V )[ {a} 2
T
i2I

U
i

, therefore {a} = V \ [(X \ V ) [ {a}] 2 � and � = P(X).

If V 2
S
i2I

U
i

, let J = {i 2 I : V 2 U
i

}. It is clear that J 6= ? and I \J 6= ?.

Consider the topology  = P(X \ {a}) [
T
j2J

U
j

, note that � ✓  . We will see

now that  ✓ �.
Suppose that W 2

T
j2J

U
j

and a 2 W . Since we can write

W = (W \ V ) [ [(W [ (X \ V )) \ V ] ,

with W \ V 2 P(X \ {a}) and W [ (X \ V ) 2
 
T
j2J

U
j

!
\
 
T

i2I\J
U
i

!
=
T
i2I

U
i

,

then W 2 �. Thus  ✓ �.

Lemma 3.2. Let {U
i

}
i2I

be a nonempty collection of ultrafilters on X, and
a 2 X such that {a} /2

S
i2I

U
i

. Let � = P(X \ {a}) [ (
T
i2I

U
i

). If � is ordinable

in (Top(X),✓) then

[�,P(X)] = {P(X)} [

8
<

:P(X \ {a}) [
\

j2J

U
j

: ? 6= J ✓ I

9
=

; .
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Proof. It is clear that

{P(X)} [

8
<

:P(X \ {a}) [
\

j2J

U
j

: ? 6= J ✓ I

9
=

; ✓ [�,P(X)] .

We prove the other inclusion by induction on O(�). If O(�) = 1, is obvious
since � is an ultratopology.

Assume the result for O(�) < ↵ and suppose O(�) = ↵. Let � 2 Top(X)
with � 2 [�,P(X)]\{�}. Let V 2 �\�. Note that if h� [ {V }i is the topology
for X generated by the set �[{V }, then h� [ {V }i ✓ �. According to Lemma
3.1 either h� [ {V }i = P(X) or there exists J ✓ I, with ? 6= J 6= I, such that
h� [ {V }i = P(X \ {a}) [ (

T
j2J

U
j

).

In the first case we conclude that � = P(X). In the second case, since
O (h� [ {V }i) < O(�), the induction hypothesis implies that either � = P(X)
or there exists L ✓ J ✓ I, with L 6= ?, such that � = P(X \ {a}) [

T
l2L

U
l

.

The following lemma shows an interesting property of ultrafilters, which we
will use in the proof of Proposition 3.4.

Lemma 3.3. Let {U
i

}
i2I

be an infinite collection of di↵erent ultrafilters on X,
and let a 2 X such that {a} /2

S
i2I

U
i

. Then there exists K ✓ I, with K infinite

and K 6= I, and there exists A ✓ X with a 2 A, such that A 2
T

k2K

U
k

\
T
i2I

U
i

.

Proof. Let l 2 I, arbitrary. Since U
l

*
T
i 6=l

U
i

there exists B 2 U
l

\
T
i 6=l

U
i

. Let

J = {i 2 I : B 2 U
i

}. It is clear that J 6= ? and I \ J 6= ?.
If J is infinite and A = B [ {a}, then A 2

T
j2J

U
j

\
T
i2I

U
i

. If I \ J is infinite

and A = (X \B) [ {a}, then A 2
T

r2I\J
U
r

\
T
i2I

U
i

.

Proposition 3.4. Let {U
i

}
i2I

be an infinite collection of di↵erent ultrafilters
on X, and let a 2 X such that {a} /2

S
i2I

U
i

. If � = P(X \ {a}) [
T
i2I

U
i

then

� /2
S

↵!

(Top(X),✓)
↵

.

Proof. It is clear that � /2 (Top(X),✓)0. According to Lemma 3.3 there
exists K ✓ I, with K infinite and K 6= I, and A ✓ X with a 2 A, such that
A 2

T
k2K

U
k

\
T
i2I

U
i

.

Let n be any positive integer. Let i1, . . . , in be distinct elements in K. We

have that A 2
 
P(X \ {a}) [

nT
j=1

U
ij

!
\ � and therefore � is a proper subset

of P(X \ {a}) [
nT

j=1
U
ij .

Now, P(X \ {a}) [
nT

j=1
U
ij 2 (Top(X),✓)

n

by Theorem 2.4. Thus � /2

(Top(X),✓)
n

. Since n is arbitrary we have that � /2
S

↵<!

(Top(X),✓)
↵

. But
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also � is a proper subset of P(X \ {a}) [
T

k2K

U
k

and

P(X \ {a}) [
\

k2K

U
k

/2
[

↵<!

(Top(X),✓)
↵

.

Then we can conclude that � /2 (Top(X),✓)
!

.

The following proposition will allow us to find varied information of great
interest in relation to the ordinable elements in the lattice of topologies. First,
it implies that the converse of Proposition 2.3 is not true. Second, it explains
why in the Theorem 2.4 the collection of ultrafilters must be taken as finite.
On the other hand it allows us to characterize the ordinable elements in this
lattice, and lastly it allows us to determine the ordinal number O(Top(X),✓),
in the event that the set X is infinite.

Proposition 3.5. Let {U
i

}
i2I

be an infinite collection of di↵erent ultrafilters
on X, and let a 2 X such that {a} /2

S
i2I

U
i

. If � = P(X \ {a})[
T
i2I

U
i

then �

is not ordinable in (Top(X),✓).

Proof. Suppose that � is ordinable. According to Proposition 3.4, O(�) > !.
There exists  2 (Top(X),✓)

!

such that � ✓  . According to Lemma 3.2,
there exists J ✓ I such that  = P(X \ {a}) [

T
j2J

U
j

.

According to Theorem 2.2 J must be infinite, which contradicts Proposition
3.4.

If � is ordinable in (Top(X),✓), we know that the set A
�

is finite and that
for each x 2 A

�

, the set N
�

(x) is finite. The converse of this proposition is not
true because if {U

i

}
i2I

is an infinite collection of non-principal ultrafilters on
X, and if � = P(X \{a})[

T
i2I

U
i

, with a 2 X, then A� = {a} y N� (a) = {a}.

However, according to Proposition 3.5, � is not ordinable in (Top(X),✓).
We continue now exploring the characteristics of the ordinable elements in

the lattice (Top(X),✓), and for this purpose the Proposition 3.5 will be very
helpful.

If � 2 Top(X) \ {P(X)}, in [2] it is proved that if {�
i

}
i2I

is the collection
of all ultratopologies for X containing �, then � =

T
i2I

�
i

.

For each i 2 I there is an ultrafilter U
i

on X, and a
i

2 X, such that
{a

i

} /2 U
i

and �
i

= P(X \ {a
i

}) [ U
i

. Thus � =
T
i2I

[P(X \ {a
i

}) [ U
i

]. If

a 2 X \ {a
i

: i 2 I} then {a} 2 P(X \ {a
i

}), for each i 2 I, so {a} 2 �.
On the other hand, if j 2 I then {a

j

} /2 P(X \ {a
j

}) [ U
j

, hence {a
j

} /2 �.
Thus A� = {a

i

: i 2 I}.
In addition, if � is ordinable we can conclude that {a

i

: i 2 I} is finite,
according to Proposition 2.3. Let us prove that in reality I is a finite set.

There are i1, . . . , in in I, such that A� = {a
i1 , . . . , ain}. Then there are

non-empty sets I1, . . . , In, such that I = I1 [ · · · [ I
n

and

� =

2

4
\

j2I1

[P(X \ {a
i1}) [ U

j

]

3

5 \ · · · \

2

4
\

j2In

[P(X \ {a
in}) [ U

j

]

3

5 ,
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that is,

� =

2

4P(X \ {a
i1}) [

\

j2I1

U
j

3

5 \ · · · \

2

4P(X \ {a
in}) [

\

j2In

U
j

3

5 .

Since � ✓ P(X \ {a
ik}) [

T
j2Ik

U
j

, for all k 2 {1, . . . , n}, every topology P(X \

{a
ik}) [

T
j2Ik

U
j

is ordinable in (Top(X),✓). According to Proposition 3.5, for

all k 2 {1, . . . , n}, I
k

is finite, and consequently I is finite.
We have proved the following theorem, which provides another interesting

property of ordinable elements in the lattice (Top(X),✓).

Theorem 3.6. If � 2 Top(X) \ {P(X)} and � is ordinable in (Top(X),✓),
then the collection of ultratopologies for X containing � is finite, and � is the
intersection of them.

This theorem immediately leads us to a necessary and su�cient condition
for a topology to be ordinable in the lattice of topologies.

Theorem 3.7. If � 2 Top(X) then � is ordinable if and only if the interval
[�,P(X)] is finite.

Proof. If [�,P(X)] is finite it is easy to see that � is ordinable.
Suppose that � is ordinable. If � = P(X) there is nothing to prove. As-

sume � 6= P(X). Let {�
i

}
i2I

be the collection of all ultratopologies for X
containing �. According to Theorem 3.6, I is finite and � =

T
i2I

�
i

.

Let ⌦ 2 [�,P(X)] \ {P(X)}. Any ultratopology for X containing ⌦ is an
element of the collection {�

i

}
i2I

. If ⌥⌦ is the collection of all ultratopologies
for X containig ⌦, there is K⌦ ✓ I, nonempty, such that ⌥⌦ = {�

k

}
k2K⌦

.
Furthermore ⌦ =

T
k2K⌦

�
k

.

Since the function � : [�,P(X)] \ {P(X)} ! P(I) \ {?} defined by � (⌦) =
K⌦, for all ⌦ 2 [�,P(X)] \ {P(X)}, is inyective, we conclude that [�,P(X)] is
finite.

Definition 3.8. Let (A,) be an ordered set with maximum element 1. We
say that b 2 A is of finite depth if every chain in the interval [b, 1] is finite.

Corollary 3.9. If � 2 Top(X) then � is ordinable if and only if � has finite
depth in the lattice (Top(X),✓).

Proof. If � is ordinable then the interval [�, P (X)] is finite, and therefore �
has finite depth in (Top(X),✓).

Now, if � has finite depth in (Top(X),✓) and � is not ordinable, then
there exists a sequence {�

n

}1
n=1 of non-ordinable topologies such that � (

�1 ( �2 ( �3 ( · · ·, which contradicts that � has finite depth.

Remember that when X is infinite, (Top(X),✓)
↵

6= ? for all ordinal num-
ber ↵ < !, hence we have the following important corollary, which gives us
precise information about the ordinal number O (Top(X),✓).
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Corollary 3.10. If X is an infinite set and ↵ is an ordinal number with ↵ � !,
then (Top(X),✓)

↵

= ?, and therefore O (Top(X),✓) = !.

The converse of Theorem 3.6 is true, as we will see in the following corollary.

Corollary 3.11. If � 2 Top(X) \ {P(X)} and the collection of ultratopologies
for X containing � is finite, then � is ordinable in (Top(X),✓).

Proof. It is su�cient to note that any topology for X, other than the discrete,
is the intersection of all ultratopologies for X that contain it, and that implies
the interval [�,P(X)] is finite.

The following theorem gives information about the number of successors of
an ordinable topology. If ⌧ and � are topologies for X, we denote by ⌧ _ � the
topology generated by ⌧ [ �.

Theorem 3.12. If � is ordinable in (Top(X),✓) and if the number of ul-
tratopologies for X containing � is n � 1, then card ([�,P(X)])  2n. The
equality occurs if and only if the lattice [�,P(X)] is Boolean. Moreover, O(�) 
n.

Proof. Let {P(X \ {a
i

}) [ U
i

: 1  i  n} be the set of ultratopologies for X
containing �. Let �

i

= P(X \ {a
i

}) [ U
i

, for all 1  i  n.
If � 2 [�,P(X)] then there exists J

�

✓ {1, . . . , n} such that the set of
ultratopologies for X containing � is {�

j

: j 2 J
�

}. Since � =
T

j2J�

�
j

, the

function � : [�,P(X)] ! P({1, . . . , n}), defined by � (�) = J
�

, is inyective.
Thus card ([�,P(X)])  2n.

Furthermore, if �, µ 2 [�,P(X)] then � ✓ µ if and only if � (µ) ✓ � (�).
Therefore, card ([�,P(X)]) = 2n if and only if � is an anti-isomorphism of
ordered sets.

Suppose that [�,P(X)] is a Boolean lattice, and let ? 6= J ✓ {1, . . . , n}
and ? 6= K ✓ {1, . . . , n}, with J 6= K. Without loss of generality suppose that
there exists j0 2 J \K.

If
T
j2J

�
j

=
T

k2K

�
k

then
T

k2K

�
k

✓ �
j0 and

✓ T
k2K

�
k

◆
_ �

j0 = �
j0 , but

T
k2K

(�
k

_ �
j0) = P(X). This is impossible since [�,P(X)] is distributive.

Thus
T
j2J

�
k

6=
T

k2K

�
k

. In conclusion card ([�,P(X)]) = 2n.

Now, we will prove the last assertion of this theorem by induction on n.
If n = 1 then � is an ultratopology for X and O(�) = 1. Suppose that the
conclusion is true for all n  k, and that the number of ultratopologies for X
containing � is k + 1. Let O(�) = l. There exists ⌦ 2 (Top(X),✓)

l�1 such
that � ✓ ⌦. If m is the number of ultratopologies for X containing ⌦ then
m < k + 1. The inductive hypothesis implies that l � 1 = O(⌦)  m < k + 1,
and so O(�)  k + 1.

Another pending issue in [4] was to determine whether the topologies of

the form P(X \ F ) [
nT

i=1
U
i

, where {U
i

}n
i=1 is a finite collection of ultrafilters
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on X and F is a non-empty finite subset of X, with F /2
nS

i=1
U
i

, are ordinable.

With the help of Corollary 3.11 we proceed to give a positive response, but
we will also obtain information with respect to the sets of successors of these
topologies. For this purpose we use the following lemma, whose proof can be
found in [4].

Lemma 3.13. Let {U
i

}
i2I

and {V
j

}
j2J

be finite, disjoint and non-empty
collections of ultrafilters on X. Let F ✓ X with F /2 U

i

[ V
j

, for all i 2 I and
j 2 J . Then there are A 2

T
i2I

U
i

\
T
j2J

V
j

and B 2
T
j2J

V
j

\
T
i2I

U
i

such that

A \B = F .

Proposition 3.14. Let {U
i

}n
i=1 be a finite collection of ultrafilters on X, and F

be a finite nonempty subset of X, with F /2
nS

i=1
U
i

. If � = P(X \F )[
nT

i=1
U
i

then

the number of ultratopologies for X containing � is n · car(F ), and therefore �
is ordinable in (Top(X),✓).

Proof. It is su�cient to verify that if C is the collection of ultratopologies for
X containing �, then

C = {P(X \ {f}) [ U
i

: i 2 {1, . . . , n} and f 2 F} .

It is clear that {P(X \ {f}) [ U
i

: i 2 {1, . . . , n} and f 2 F} ✓ C. Let
� = P(X \ {a}) [ U an ultratopology for X containing �. Since {a} = A

�

✓
A� = F , we have a 2 F .

Suppose U 6= U
i

, for each i 2 {1, . . . , n}. According to Lemma 3.13 there

exist A 2 U \
nT

i=1
U
i

and B 2
nT

i=1
U
i

\ U such that A \ B = {a}. Since

B 2 � ✓ � and B /2 P(X \ {a}), we have that B 2 U , which is a contra-
diction. Therefore there exists j 2 {1, . . . , n} such that U = U

j

, and then
� 2 {P(X \ {f}) [ U

i

: i 2 {1, . . . , n} and f 2 F}.
Hence C has n · card(F ) elements and according to Corollary 3.11 � is

ordinable.

We can really say more about the topologies considered in Proposition 3.14,
as will be seen in the final theorem of this section, which is a generalization
of Theorems 2.4 and 2.6. In Section 5 we also provide information about the
number of complements of these topologies, in the lattice of topologies.

But first, we will show an important property about the collection of ul-
tratopologies containing one of these topologies.

Lemma 3.15. Let {U
i

}n
i=1 be a finite collection of ultrafilters on X, and F

be a nonempty finite subset of X, with F /2
nS

i=1
U
i

. If � = P(X \ F ) [
nT

i=1
U
i

,

and if A and B are two di↵erent nonempty collections of ultratopologies for X
containing �, then

T
�2A

� 6=
T

µ2B
µ.

Proof. Without loss of generality suppose that there exists ⌦ 2 A \ B. Ac-
cording to the proof of Proposition 3.14, there exist f 2 F and k 2 {1, . . . , n}
such that

⌦ = P(X \ {f}) [ U
k

,

Bolet́ın de Matemáticas 20(2) 109–123 (2013)
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and {f1, . . . , fr} ✓ F and {U11, . . . ,U1↵1 , . . . ,Ur1, . . . ,Ur↵r} ✓ {U1, . . . ,Un

},
such that

B = {P(X \ {f
m

}) [ U
ms

: 1  m  r, 1  s  ↵
m

} .

If f /2 {f1, . . . , fr} then {f} 2
rT

j=1
P(X \ {f

j

}) ✓
T

µ2B
µ, and as {f} /2 ⌦, then

{f} /2
T

�2A
�.

On the other hand, if f = f
l

for some l 2 {1, . . . , r}, then U
k

6= U
ld

for all

d 2 {1, . . . ,↵
l

}. According to Lemma 3.13, there exist A 2 U
k

\
↵lT
d=1

U
ld

and

B 2
↵lT
d=1

U
ld

\ U
k

such that A \B = {f}.

Let W = B \ ({f1, . . . , fr} \ {fl}). We will see that W 2
T

µ2B
µ \

T
�2A

�.

Since B /2 U
k

and f 2 W we have W /2 U
k

and W /2 P(X \ {f}). Thus W /2 ⌦
and so W /2

T
�2A

�.

If m 2 {1, . . . , r} \ {l} it is clear that W 2 P(X \ {f
m

}). Moreover,

B \ (X \ {f1, . . . , fr}) 2
↵lT
d=1

U
ld

and so W = [B \ (X \ {f1, . . . , fr})] [ {f
l

} 2
↵lT
d=1

U
ld

. Thus W 2
T

µ2B
µ.

Theorem 3.16. Let {U
i

}n
i=1 be a finite collection of ultrafilters on X, and F

be a nonempty finite subset of X with F /2
nS

i=1
U
i

.

If � = P(X \ F ) [
nT

i=1
U
i

then O(�) = n · card(F ), card ([�,P(X)]) =

2n·card(F ) and [�,P(X)] is a Boolean lattice.

Proof. First, note that Lemma 3.15 implies that if B1 and B2 are two di↵erent
collections of ultratopologies for X containing �, and B1 and B2 have the same
cardinal, then

T
�2B1

� *
T

�2B2

� and
T

�2B2

� *
T

�2B1

�.

This impies that, for all k 2 {1, . . . , n}, any intersection of k ultratopologies
for X containing � is in (Top(X),✓)

k

.
On the other hand, and considering that any topology for X, di↵erent

from P(X), is the intersection of all ultratopologies for X containing it, it is
concluded that

[�,P(X)] = {P(X)} [
(
\

U2B
U : ? 6= B ✓ C

)
,

where C is the collection of ultratopologies for X containing �.
If for each � 2 [�,P(X)] we define B

�

= {µ 2 C : � ✓ µ, }, and if we con-
sider the function � : [�,P(X)] ! P(C) defined by � (�) = B

�

, for each
� 2 [�,P(X)], it is immediate that � is an anti-isomorphism of ordered sets.
The rest is a consequence of Proposition 3.14 and Lemma 3.15.
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Remark 3.17. If {V
j

}n
j=1 is a non-empty finite collection of ultrafilters on X,

and if G ✓ X with G /2
nS

j=1
V
j

, then

{V1, . . . ,Vn

}
G

:= P(X \G) [
n\

j=1

V
j

.

If F ✓ X, the set of all topologies for X with the form {U1, . . . ,Um

}
F

, will be
denoted by ⌧

F,X

.

Corollary 3.18. Let F be a non-empty finite subset of X, and {V
j

}n
j=1 be a

non-empty finite collection of non-principal ultrafilters on X. Then the setsS
�2⌧F,X

[�,P(X)] and
S

G2Pfin(X)

[{V1, . . . ,Vn

}
G

,P(X)] are distributive lattices,

relatively complemented and with maximum element. Here P
fin

(X) is the col-
lection of finite subsets of X.

4. The lattice of ordinable topologies

In this section we will show other important consequences of Theorem 3.6,
concerning the structure of the collection of ordinable topologies for a set.
Specifically, we will show that the collection of ordinable topologies for a set
is a lattice, not always complete. We also show that if the base set has more
than two elements, this lattice is not distributive.

Remark 4.1. The set of ordinable topologies forX will be denoted by Top
ord

(X).

If � and � are elements of Top
ord

(X), it is clear that the topology generated
by �[� is an element of Top

ord

(X). We will see now that �\� 2 Top
ord

(X).
Let {P(X \ {a

i

}) [ U
i

: 1  i  n} and {P(X \ {b
j

}) [ V
j

: 1  j  m} be
the collections of ultratopologies for X containing � and �, respectively. Ac-
cording to Theorem 3.6, these collections are finite.

All these ultratopologies contain �\�, but there may be other ultratopolo-
gies that contain � \ �. In any case there are not many options, as we will
show immediately.

Let µ = P(X \ {c}) [W be an ultratopology for X containing � \ �. It is
clear that c 2 {a1, . . . , an, b1, . . . , bm}.

IfW /2 {U1, . . . ,Un

,V1, . . . ,Vm

} then there existsA 2
"✓

nT
i=1

U
i

◆
\
 

mT
j=1

V
j

!#

with A /2 W . Since A 2 � \ � ✓ µ and A /2 W then c /2 A. Furthermore
A [ {c} 2 � \ � ✓ µ, hence A [ {c} 2 W, but this is impossible since A /2 W,
{c} /2 W and W is an ultrafilter. Hence W 2 {U1, . . . ,Un

,V1, . . . ,Vm

}.
Therefore the set of ultratopologies containing � \� is finite. According to

Corollary 3.11 � \ � 2 Top
ord

(X).
We have proved the following theorem.

Theorem 4.2. If X is a set, then (Top
ord

(X) ,✓) is a sublattice of (Top (X) ,✓).

WhenX is infinite, this lattice is not complete. In fact, if a 2 X and {U
i

}
i2I

is an infinite collection of ultrafilters on X, with {a} /2
S
i2I

U
i

, then each topo-
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logy P(X \ {a}) [ U
i

is ordinable, but the topology
T
i2I

(P(X \ {a}) [ U
i

) =

P(X \ {a}) [
T
i2I

U
i

is not, according to Proposition 3.5.

Corollary 4.3. If X is infinite then the lattice (Top
ord

(X) ,✓) has no minimal
elements.

Proof. If � 2 Top
ord

(X) then, according Theorem 3.6, the collection of ul-
tratopologies for X containing � is finite. If µ is an ultratopology for X such
that � * µ, then � contains strictly �\µ and �\µ 2 Top

ord

(X). This implies
that � cannot be minimal in (Top

ord

(X) ,✓).

Now we will show that the lattice of ordinable topologies is not distributive
if the base set has more than two elements.

Theorem 4.4. If X is a set with more than two elements then the lattice
(Top

ord

(X) ,✓) is not distributive.

Proof. Let a, b and c be three elements in X. Consider the topology � =
P(X \ {a, b}) [ {V ✓ X : {a, c} ✓ V }. If �1 is the topology
P(X \ {b}) [ {V ✓ X : {a, b, c} ✓ V }, then � is a proper subset of �1, and �1

2 (Top(X),✓)2, as shown in [4]. Thus � /2
2S

j=0
(Top(X),✓)

j

.

Suppose that µ 2 Top(X) and that µ contains strictly �. Let A 2 µ \ �.
Then A\{a, b} 6= ? and {a, c} * A. If A\{a, b, c} = {a, b}, or if A\{a, b, c} =
{a}, then A \ {a, c} = {a} 2 µ, thus �1✓ µ.

On the other hand, if A \ {a, b, c} = {b, c} then {b, c} 2 µ, and there-
fore P(X \ {a, b}) [ {V ✓ X : c 2 V } ✓ µ. Furthermore, P(X \ {a, b}) [
{V ✓ X : c 2 V } 2 (Top(X),✓)2, according to Theorem 2.6.

If A\{a, b, c} = {b} then {b} 2 µ, hence P(X \{a})[{V ✓ X : c 2 V } ✓ µ.
Since P(X \ {a}) [ {V ✓ X : c 2 V } is an ultratopology for X, P(X \ {a}) [
{V ✓ X : c 2 V } 2 (Top(X),✓)1.

Consequently � 2 (Top(X),✓)3 and the interval [�,P(X)] consists of the
seven topologies: �, P(X), �1,

�2 = P(X \ {a, b}) [ {V ✓ X : c 2 V } ,
�3 = P(X \ {a}) [ {V ✓ X : c 2 V } ,
�4 = P(X \ {b}) [ {V ✓ X : c 2 V } ,
�5 = P(X \ {b}) [ {V ✓ X : a 2 V } .

Note that �1 ✓ �4, �1 ✓ �5, �2 ✓ �3 and �2 ✓ �4. Since �2 and �3

are two relative complements of �5 in the interval [�,P(X)], we conclude that
(Top

ord

(X) ,✓) is not distributive.

The topology � of Theorem 4.4 also makes clear that the lattice of successors
of an ordinable topology may not be complemented. In fact, observe that the
topology �4 has no complement in the lattice [�,P(X)].

Moreover, we note that � also shows that the conclusion in Lemma 3.15 is
not true for arbitrary ordinable topologies. In fact �3\�4\�5 = � = �3\�5.
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If (A,) is a partially ordered set, the Dedekind-MacNeille completion of
(A,) is a complete lattice (A⇤,6) containing an isomorphic copy of (A,),
and is such that if (B,�) is any complete lattice containing an isomorphic copy
of (A,), then (B,�) contains an isomorphic copy of (A⇤,6).

What is the Dedekind-MacNeille completion of the lattice (Top
ord

(X),✓)?
If X is infinite then the lattice (Top

ord

(X),✓) is not complete, but if ⌥ is any
non-empty subset of Top

ord

(X), then there exists the least upper bound of ⌥
in (Top

ord

(X),✓).
Consequently, if Top⇤

ord

(X) = {{?, X}} [ Top
ord

(X) then the Dedekind-
MacNeille completion of (Top

ord

(X),✓) is (Top⇤
ord

(X),✓).
Observe that all elements in the lattice (Top⇤

ord

(X),✓) are ordinable, and
O (Top⇤

ord

(X),✓) = ! + 1. Furthermore, the lattice (Top⇤
ord

(X),✓) is not
complemented since if ⌧,� 2 Top

ord

(X) then ⌧ \ � 6= {?, X}.

5. About the number of complements of an

ordinable topology

Of all the questions related to the lattice of topologies, the complementation
has been among the most outstanding. Schnare [5] showed that any proper
topology for an infinite set X has at least card(X) complements (resp., princi-

pal complements) and at most 22
card(X)

complements (resp., 2card(X) principal
complements), and that these bounds are the best possible. One result of this
article called our attention: Any ultratopology for an infinite set X has exactly

22
card(X)

complements, and 2card(X) principal complements. The interesting
part of this result is that the ultratopologies are ordinable topologies.

Naturally we asked for the cardinality of the set of complements of an
ordinable topology for an infinite set, and the purpose of this section is to
present partial answers for it. We obtain valuable information concerning the
number of complements of some particular ordinable topologies, among which
are those mentioned in Proposition 3.14. The following lemma is important for
this purpose.

Lemma 5.1. Let X be an infinite set and F a finite subset of X. If U1,U2, . . . ,Un

are ultrafilters on X then there exists Y ✓ X such that F ✓ Y , card(Y ) =

card(X \ Y ) = card(X) and Y 2
nT

i=1
U
i

. Equivalently, there exists V ✓ X \ F

such that card(V ) = card(X \ V ) = card(X) and V /2
nS

i=1
U
i

.

Proof. By induction on n. For n = 1. Let V ✓ X such that F ✓ V and
card(V ) = card(X \V ) = card(X). If V 2 U1 then Y = V . If X \V 2 U1 then
Y = (X \ V ) [ F .

Assume that the result is true for n = k. If U1,U2, . . . ,Uk+1 are ultrafilters
for X, then there exists Y ✓ X such that F ✓ Y , card(Y ) = card(X \ Y ) =

card(X) and Y 2
kT

i=1
U
i

.

Let {X1, X2} be a partition of X \ Y such that card(X1) = card(X2) =
card(X \ Y ). Only one of the sets X1 and X \X1 is in U

k+1. We call X⇤ to
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it. Let Y ⇤ = Y [X⇤. Since X \ Y ⇤ = X1 or X \ Y ⇤ = X2, then card (Y ⇤) =

card (X) = card (X \ Y ⇤). Moreover F ✓ Y ⇤ and Y ⇤ 2
k+1T
i=1

U
i

.

A topology is principal if and only if it is closed under arbitrary intersec-
tions. If ⌧ and � are topologies for a set X, we denoted by ⌧ _ � the topology
generated by the set ⌧[�. A base for ⌧_� is the set {U \ V : U 2 ⌧ and V 2 �}.

It is well known that on an infinite set X, there are 22
card(X)

topologies and
2card(X) principal topologies for X. In the following theorem we obtain the
number of complements, and principal complements, for a great collection of
ordinable topologies.

Theorem 5.2. Let X be an infinite set and {x1, x2, . . . , xr

} ✓ X. Let U11,
U12, . . . , U1n1 , U21, U22, . . . , U2n2 , . . . , Ur1, Ur2, . . . , Urnr ultrafilters on X, not

necessarily distinct, such that {x1, x2, . . . , xr

} /2
rS

i=1

niS
j=1

U
ij

. If � is the topo-

logy
rT

i=1

"
P (X \ {x

i

}) [
niT
j=1

U
ij

#
then � has exactly 22

card(X)

complements and

2card(X) principal complements in the lattice (Top (X) ,✓).

Proof. If F = {x1, x2, . . . , xr

} then Lemma 5.1 guarantees that there is V ✓
X \ F such that card(V ) = card(X \ V ) = card(X) and V /2

rS
i=1

niS
j=1

U
ij

.

Let � 2 Top(V ), arbitrary. Consider the following topology for X:

�⇤ = {U [ F : U 2 �} [ {?, X} .

If i 2 {1, 2, . . . , r} then (X \ F ) [ {x
i

} 2
rT

i=1

niT
j=1

U
ij

✓ �, and since F 2 �⇤ we

have that {x
i

} = [(X \ F ) [ {x
i

}] \ F 2 � _ �⇤. And since P(X \ F ) ✓ �, we
have that � _ �⇤ = P (X).

Now, it is clear that, for all U 2 � and i 2 {1, 2, . . . , r}, we have that

U [ F /2 P (X \ {x
i

}) [
niT
j=1

U
ij

, and then U [ F /2 �. Thus � \ �⇤ = {?, X},

and �⇤ is a complement of �.
On the other hand, if �1,�2 2 Top(V ) then �⇤

1 = �⇤
2 if and only if �1 = �2,

and consequently � has exactly 22
card(V )

= 22
card(X)

complements in the lattice
(Top(X),✓).

Now, if � is a principal topology then �⇤ is a principal topology, and since
there are 2card(V ) = 2card(X) principal topologies for V , then � has exactly
2card(X) principal complements in the lattice (Top(X),✓).

The topology � of this theorem is an ordinable topology in the lattice
(Top(X),✓), because it is the intersection of a finite number of elements of the
lattice Top

ord

(X).

Corollary 5.3. If � is an ordinable topology for the infinite set X, with � 6=
P (X), and none of the ultratopologies for X that contain � is principal, then

� has exactly 22
card(X)

complements and 2card(X) principal complements in the
lattice (Top (X) ,✓).
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The next corollary provides additional information about the ordinable
topologies presented in Proposition 3.14. This corollary generalizes the re-
sult of Schnare, concerning the number of complements of an ultratopology,
mentioned previously.

Corollary 5.4. Let X be an infinite set, F be a non-empty finite subset of X

and U1,U2, . . . ,Ur

be ultrafilters on X such that F /2
rS

i=1
U
i

. If � is the topo-

logy P (X \ F )[
rT

i=1
U
i

then � has exactly 22
card(X)

complements and 2card(X)

principal complements in the lattice (Top (X) ,✓).

The natural question is: the result of Theorem 5.2 is applicable to any or-
dinable topology? The answer is no, as we will see in the following proposition.

If X is a set and a 2 X, then we denote by hai the principal ultrafilter on
X generated by {a}.

Proposition 5.5. If X is an infinite set and a, b 2 X, with a 6= b, and if � =
[P(X \ {a}) [ hbi]\[P(X \ {b}) [ hai] then � has exactly 2card(X) complements
in the lattice (Top (X) ,✓).

Proof. Let � be a complement of �. If W 2 � and ? 6= W 6= X then
card (W \ {a, b}) = 1. There exist A,B 2 � and U, V 2 � such that {a} =
A \ U and {b} = B \ V . We have that U \ V = ?, since otherwise U \ V 2
(� \ �)\{?, X}, which is absurd. Moreover, as U [V 2 �\� then U [V = X.
Thus V = X \ U . Hence we conclude easily that � = {?, U,X \ U,X}.

On the other hand, if Z ✓ X and card (Z \ {a, b}) = 1, then the topology
�
Z

= {?, Z,X \ Z,X} is a complement of �.
All this allows us to conclude that � has exactly 2card(X) complements in

the lattice (Top (X) ,✓).
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