Boletín de Matemáticas Vol. XVII, Nº 1,2,3 (1983)

APUNTES DE SEMINARIO

EL ESPACIO DUAL DE $L^{\infty}(X,A,\mu)$

Myriam de Mayorga

Las presentes notas han sido el resultado de lecturas realizadas en un seminario dirigido por la profesora Myriam Muñoz de Ozak.

§1. INTRODUCCION.

Como sabemos, el dual del espacio L^p con $1 \le p < \infty$ es el espacio conjugado L^q , $\frac{1}{p} + \frac{1}{q} = 1$.

Este resultado nos sugiere la siguiente pregunta: Es L^1 el espacio dual de L^∞ ? Podría mos pensar que la respuesta a esta pregunta sea afirmativa ya que cada función $f \in L^1(X,A,\mu)$ de fine un funcional lineal $f \in L^\infty$ por medio de la ecuación

$$\Psi_{\delta}(g) = \int_{X} \delta g \ d\mu \ ; \qquad \forall g \in L^{\infty}(X, A, \mu)$$

Por medio del teorema de Radon-Nykodim, sabemos que podemos establecer un isomorfismo entre el espacio de medidas positivas y acotadas en A que son μ -continuas y el subespacio de las funciones $\delta \in L^1$, positivas. Una medida es una función de conjunto contablemente aditiva. Como $\delta = \delta^+ - \delta^-$ y $\lambda = \lambda^+ - \lambda^-$ quiere decir que además podemos establecer el isomorfismo entre las medidas acotadas μ -continuas y el espacio $L^1(X,A,\mu)$. Si una función de conjunto λ , acotada, μ -continua no es contablemente aditiva sino sólo aditiva (finitamente aditiva) no se puede asegurar la existencia de una función integrable $\delta \in L_1$ tal que

$$\lambda(E) = \iint_E d\mu ,$$

o sea que podemos encontrar medidas acotadas aditivas μ -continuas a las cuales no se les pue de asociar una función integrable. En este trabajo demostraremos que el dual de $L^\infty(X,A,\mu)$ es isomorfo al espacio de todas las funciones de conjunto μ_1 continuas acotadas y aditivas, definidas sobre A_1 con valores escalares, donde A_1 y μ_1 son extensiones especiales de A y μ que luego definiremos. De esta forma se demuestra que el dual de L^∞ contiene propiamente a L^1 ,

concluyendo entonces que L^1 no es un espacio reflexivo.

§2. DEFINICIONES PRELIMINARES.

Partimos de un espacio medible (X,A,μ) con A, una σ -álgebra sobre X y μ una función de conjunto sobre A que es contablemente aditiva o sea que para cada familia disyunta A_1,A_2,\ldots en A se tiene que $\mu(\bigcup_{i=1}^{\infty}A_i)=\bigcup_{i=1}^{\infty}\mu(A_i)$.

Consideramos la variación total de μ , denotada por $|\mu|(\cdot)$ ó por $V_{\mu}(\cdot)$ la cual define una medida positiva; también consideraremos la medida exterior asociada a μ y a V_{μ} que denotamos μ^* y V_{μ}^* respectivamente. Diremos además que E es μ -nulo si $V_{\mu}^*(E)$ = 0.

DEFINICION 2.1. Dado un espacio de medida (X, A, μ) la extensión de Lebesgue de este espacio es el espacio (X, A, μ) definido por

$$A^* = \{A \cup N : A \in A, N \subseteq M, M \in A, \mu(M) = 0\}$$

 $\mu_*(A \cup N) = \mu(A)$. Debido a esta definición iden

tificamos las dos medidas notando siempre la extensión de Lebesgue por (X,A^*,μ) . La extensión de Lebesgue también se llama el completado de (X,A,μ) .

Consideramos ahora el espacio F de todas las funciones $f: X \to B$ con B un espacio de Banach. Dotamos al espacio F de la topología de la convergencia en μ -medida, es decir $f_n \to f$ es μ -medible, sí y sólo si $\forall \epsilon > 0$, $\exists N \subseteq \mathbb{N}$ tal que $\forall n \geqslant N$

second
$$\mu = \{x : | f(x) - f_{n}(x) | \ge \varepsilon \} < \varepsilon$$
.

Esta misma topología se puede definir a partir de la seminorma

$$\| \xi \| = \inf_{\alpha > 0} \text{Arc } \tan \{ \alpha + V_{\mu}^{*}(\{x: \| \xi(x) \| > \alpha\}) \} .$$

DEFINICION 2.2. Decimos que { es μ-medible si

- i) Existe un conjunto μ -Nulo N tal que f(X-N) es separable.
- ii) Si $f^{-1}(B) \in A^*$ para cada conjunto de Borel B, en caso de que μ sea una medida finita 0.
- iii) $f^{-1}(B)$ $\bigcap F \subseteq A^*$ para cada conjunto de Borrel B y para todo $F \subseteq A$ tal que $\mu(F) < +\infty$

La primera exigencia se debe a que estamos tomando valores en un espacio de Banach cual
quiera y no en el conjunto de los complejos.

DEFINICION 2.3. Decimos que f es una función μ -simple si $f=\sum_{i=1}^n b_i \chi_{E_i}$; donde χ_{E_i} es la función característica de E_i y E_i \in A.

Podemos ver que 6 es una función μ -medible si y sólo si existe una sucesión $\{6_n\}$ de funciones simples que converge a 6 en la topología de la convergencia en μ -medida.

DEFINICION 2.4. Una función μ -simple es μ -integrable si y sólo si $b_{\hat{\mathcal{L}}} = 0$ cuando $V_{\mu}(\mathcal{E}_{\hat{\mathcal{L}}}) = \pm \infty$ y la integral se define como

$$\int_{E} 6 d\mu = \sum_{i=1}^{n} b_{i} \mu(E \cap E_{i})$$

con la conveniencia de que 0·∞ = 0.

Una función μ -medible es μ -integrable si existe una sucesión $\{f_n\}$ de funciones simples μ -integrables que convergen a ella en μ -medida y además

$$\lim_{m,n} \int_{X} |\delta_{n}(\cdot) - \delta_{m}(\cdot)| dV_{\mu} = 0.$$

decimos en este caso que $\{\delta_n\}$ determina a δ . Si δ es μ -integrable y $\{\delta_n\}$ determina a δ enton ces $|\delta|$ también es μ -integrable y $\{|\delta_n|\}$ la determina. Además

$$\left| \begin{array}{cc} \int\limits_{E} \delta \;\; d\mu \, \right| \; \leqslant \; \int\limits_{E} \;\; \left| \; \delta \; \right| d \; V \mu \, .$$

2.5. NOTA. Si ή es μ-integrable, definimos la función de conjunto

$$\lambda(E) = \int_{E} \int_{0}^{L} d\mu \qquad E \in A$$

entonces λ es contablemente aditiva sobre \not a y

$$V_{\lambda}(E) = \int_{E} |\delta| dV_{\mu} \qquad \forall E \in A.$$

En particular si $\{ \geq 0, \mu \geq 0 \text{ entonces } \lambda \geq 0 \}$ y $V_{\lambda} = \lambda$.

DEFINICION 2.6. Una medida μ se dice σ -finita si existe una sucesión $\{X_n\}$ de conjuntos en \mathbb{A} tal que

$$X_{i} \cap X_{j} = \emptyset, \quad X = \bigcup_{n=1}^{\infty} X_{n} \quad y \quad V_{\mu}(X_{n}) < \infty$$

$$n = 1, 2, \dots$$

DEFINICION 2.7. Sean λ , μ funciones de conjunto aditivas definidas sobre una σ -álgebra A, entontes λ se dice absolutamente continua respecto a μ ó μ -continua si

$$\ell \mathcal{L}m \qquad \lambda(E) = 0$$

$$V_{\mu}(E) \to 0$$

DEFINICION 2.8. Sea $f: X \to \mathcal{B}$ una función, donde \mathcal{B} es un espacio de Banach, la cantidad

inf sup
$$\|f(x)\|$$
, $x \in X-N$

donde el in δ está tomado sobre todos los conjuntos μ -Nulos y $\| \delta(x) \|$ es la norma en el espacio de Banach, es llamada el μ -supremo esencial de δ , escrito ess sup $| \delta(\cdot) |$ δ $\| \delta \|_{\infty}$.

Si $\| \cdot \| < \infty$ entonces $\cdot \| \cdot \|$ es llamada μ -esencialmente acotada.

DEFINICION 2.9. $L^{\infty}(X,A,\mu)$ es el espacio de todas las funciones de X en B μ -medibles μ -esencialmente acotadas dotadas con la norma $\|\cdot\|_{\infty}$

§3. DEMOSTRACION DEL TEOREMA.

DEFINICION 3.1. Sea (X,A,μ) un espacio de medida positiva, finita o σ -finita. Sea A^* la extensión de Lebesgue de A y sea

$$A_1 = \{ E \subset X : A \cap E \in A^* \text{ para todo } A \in A \text{ con } \mu(A) < \infty \}$$

 A_1 es una σ -álgebra que contiene a A; definimos μ_1 sobre A_1 por

$$\mu_1(E) = \begin{cases} \mu(E), & E \in A^* \\ + \infty, & E \in A_1 - A^* \end{cases}$$

μ, es contablemente aditiva.

LEMA 3.2. f es μ -medible si y sólo si f es μ_1 -medible.

Observación: $A \subseteq A^* \subseteq A_1 \subseteq A_1^*$.

Además los conjuntos μ_1 -Nulos coinciden con los conjuntos μ -Nulos.

Demostración: De acuerdo a la observación, la primera parte de la definición de función medible es obvia en ambas direcciones de la demostración, entonces basta demostrar que

 $\forall F \in A, \ \mu(F) < \infty, \quad F \cap f^{-1}(B) \in A^*, \quad \forall B \text{ de Borel}$ si y sôlo si

 $\forall F \in A_1, \ \mu_1(F) < \infty, F \cap {}_{0}^{-1}(B) \in A_1^*, \ \forall B \text{ de Borel.}$

" \Rightarrow " si $\mu_1(F) < \infty$, $F \in A_1$ entonces por definición de μ_1 , $F \in A^*$ esto es

 $F = E \cup N$, $E \in A$, $N \subseteq M$ con $\mu(M) = 0$

además, $\mu(F) = \mu(E) < \infty$ luego por hipótesis $E \cap f^{-1}(B) \in A^*$.

Lo que tratamos de ver es que $F \cap f^{-1}(B)$ $\in A_1^*$, pero

 $F \cap f^{-1}(B) = (E \cup N) \cap f^{-1}(B)$ $= [E \cap f^{-1}(B)] \cup [N \cap f^{-1}(B)];$

 $N \cap f^{-1}(B) \subseteq N \subseteq M \text{ con } \mu(M) = 0$, entonces $N \cap f^{-1}(B) \subseteq A^*$ y como vimos antes que $E \cap f^{-1}(B) \subseteq A^*$ entonces $F \cap f^{-1}(B) \subseteq A^* \subseteq A_1^*$ luego $f \in \mu_1$ -medible.

" \Leftarrow " Si F N $6^{-1}(B) \in A_1^*$, $\forall B$ de Borel y $F \in A_1$ por $\mu_1(F) < \infty$,

sea $F \in A$ con $\mu(F) < \infty$ entonces $F \in A_1$ y $\mu_1(F) < \infty$; o sea $F \cap G^{-1}(B) \in A_1^*$ para B conjunto de Borel entonces

$$F \cap f^{-1}(B) = E \cup N \text{ con } E \subseteq A_1, N \subseteq M, \mu(M) = 0$$

Como E \in A₁ entonces F \cap E \in A* (de $\{A_1\}$) así que E = F \cap E = E' U N', E' \in A, N' \subseteq M', μ (M') = 0 entonces

$$6^{-1}(\mathcal{B}) \cap \mathcal{F} = \mathcal{E} \cup \mathcal{N} = (\mathcal{E}' \cup \mathcal{N}') \cup \mathcal{N} = \mathcal{E}' \cup (\mathcal{N}' \cup \mathcal{N})$$

N' U N \subseteq M' U M y μ (M' U M) = 0 como E \subseteq A entonces $f^{-1}(B) \cap F \subseteq A^*$ luego f es μ -medible.

Asî concluîmos que las funciones $\mu\text{-medi-}$ bles y las $\mu_1\text{-medibles}$ coinciden y como los conjuntos $\mu\text{-Nulos}$ coinciden con los $\mu_1\text{-Nulos}$ deducimos que

$$L^{\infty}(X, A, \mu) = L^{\infty}(X, A_1, \mu_1).$$

NOTA 3.3. El espacio $\mathcal{O}_b(X,A,\mu)$ es el espacio de las funciones de conjunto μ -continuas, acotadas, aditivas de valor escalar definidas sobre A. La norma de un elemento en $\mathcal{O}_b(X,A,\mu)$ es su variación total es decir $\|\lambda\| = V_{\lambda}(X)$.

TEOREMA 3.4. Sea $\mathcal{T}_b(X,A_1,\mu_1)$ el espacio de todas las funciones de conjunto μ_1 -continuas, acotadas, aditivas de valor escalar, definidas sobre A_1 . Para cada $\lambda \in \mathcal{T}_b(X,A_1,\mu_1)$ definimos ψ_{λ} sobre $L^{\infty}(X,A,\mu)$ por

Entonces la aplicación $\Psi: \lambda \to \Psi_{\lambda}$ es una isometría lineal de $\mathscr{O}_b(X,A_1,\mu_1)$ sobre $(L^{\infty}(X,A,\mu))^*$.

Demostración. Sea $f \in L^{\infty}(X,A,\mu)$ entonces existe un conjunto N, μ -Nulo tal que f(X-N) está acota da por definición del supremo esencial. Sea $\epsilon > 0$, existen conjuntos disyuntos de Borel A_1, \ldots, A_n en el álgebra de escalares tales que diam $A_i < \epsilon$, $i = 1, 2, \ldots, n$ y

$$f(X - N) \subseteq \bigcup_{i=1}^{n} A_i$$

Como f es μ -medible **i)** existe M μ -Nulo tal que f(X - M) es separable.

ii) $\forall F \in A$, $\mu(F) < \infty$ entonces $\int_{-1}^{1} (A_{\lambda}) \int_{1}^{1} F$ $\in A^{*}$; $\lambda = 1, 2, ..., n$, por definición de A_{1} , $E_{\lambda} = \int_{1}^{1} (A_{\lambda}) \in A_{1}$, $\forall_{\lambda} = 1, 2, ..., n$.

Escogemos $\alpha_{i} \in A_{i}$ y definimos $\delta_{\varepsilon} = \sum_{i=1}^{n} \alpha_{i} \chi_{\varepsilon_{i}}$

entonces $\| \mathbf{f} - \mathbf{f}_{\varepsilon} \|_{\infty} < \varepsilon$

Sea $\lambda \in \mathcal{O}_h(X, A_1, \mu_1)$ como cada conjunto μ_1 -Nulo es λ -Nulo tenemos que f(X-M) es separable con $\lambda(M) = 0$ y además como N es μ -Nulo, es también μ₁-Nulo y λ-Nulo luego ή es λ-medible ya que $|f(x) - f_{\varepsilon}(x)| < \varepsilon$, $\forall x \in X-N$ entonces f converge a f λ-uniformemente; por lo tan to $f_c \rightarrow f$ en λ -medida lo que implica que f es λ -medible. Como $\lambda(N) = 0$ y $\delta(X-N)$ es acotada entonces δ es λ-integrable y además

$$\left| \int_{X} \delta d\lambda \right| \leq \int_{X} |\delta| dV_{\lambda} \leq \int_{X-N} \|\delta\|_{\infty,\lambda} dV_{\lambda} + \int_{N} |\delta| dV_{\lambda},$$

esta última integral es cero y Tive of (K.A., u). Además [

$$\int_{X-N} \| \mathbf{f} \|_{\infty,\lambda} dV_{\lambda} = \| \mathbf{f} \|_{\infty,\lambda} \| \lambda \| ,$$
 entonces

$$\left| \int_{X} d d \lambda \right| \leq \| \| \|_{\infty, \lambda} \| \lambda \| \qquad \forall \delta \in L^{\infty}(X, A, \mu).$$

Así, para cada $\lambda \in \mathscr{O}_b(X,A_1,\mu_1)$, la ecuación

$$\varphi_{\lambda}(\zeta) = \int_{X} \zeta d\lambda, \quad \zeta \in L^{\infty}(X, A, \mu)$$

define un funcional lineal acotado Ψ_{λ} sobre $L^{\infty}(X,A,\mu)$ ya que

$$| \Psi_{\lambda}(\mathfrak{f}) | = | \iint_{X} d\lambda | \leq | |\mathfrak{f}|_{\infty, \lambda} | | \lambda |, \text{ de donde}$$

$$| | \Psi_{\lambda} | | = | \sup_{|\mathfrak{f}| = 1} | \Psi_{\lambda}(\mathfrak{f}) | \leq | | \lambda | | \qquad (1)$$

Dado $\varepsilon > 0$, sean E_1, \ldots, E_n conjuntos disyuntos en A_1 tales que

$$\|\lambda\| - \varepsilon < \sum_{i=1}^{n} |\lambda(E_i)|$$

con

$$|\lambda(E_{i})| > 0$$
, $\forall i = 1,2,...n$

llamamos $\alpha_{i} = \frac{|\lambda(E_{i})|}{\lambda(E_{i})}$ y definimos $\delta = \sum_{i=1}^{n} \alpha_{i} X_{E_{i}}$ entonces $\delta \in L^{\infty}(X,A,\mu)$. Además $\|\delta\|_{\infty} = 1$.

Ahora
$$\| \Psi_{\lambda} \| > \Psi_{\lambda}(\delta) = \sum_{i=1}^{n} \alpha_{i} \lambda(E_{i}) =$$

 $= \sum_{i=1}^{n} |\lambda(E_i)| > ||\lambda|| - \epsilon , \text{ entonces } ||\Psi_{\lambda}|| > ||\lambda|| - \epsilon ,$ $\forall \epsilon > 0 \text{ luego}$

$$\| \Psi_{\lambda} \| > \| \lambda \|$$

$$(2)$$

De (1) y (2) obtenemos $\| \varphi_{\lambda} \| = \| \lambda \|$. Asi el ope-

rador Ψ : $\lambda \to \Psi_{\lambda}$ preserva las normas, teniendo en cuenta la linealidad de la integral respecto al integrando

$$\Psi \colon \varphi_b(X, A_1, \mu_1) \to [L^{\infty}(X, A, \mu)]^*$$

es entonces un operador lineal que preserva las normas, por lo tanto es inyectivo.

Falta ver que φ es sobreyectivo y así tendremos la isometría buscada.

Sea entonces $\psi \in [L^{\infty}(X, A, \mu)]^*$ veamos que existe un $\lambda \in \mathscr{T}_b(X, A_1, \mu_1)$ tal que $\psi = \Psi_{\lambda}$.

Definimos $\lambda(E) = \psi(\chi_E)$, $E \in A_1$, λ es acotada y aditiva ya que ψ es acotada y lineal.

 χ_E = 0 en casi toda parte, luego $\psi(\chi_E)$ = 0 \Rightarrow $\chi(E)$ = 0, entonces χ_E = 0, entonces χ_E = χ_D (χ_D).

Ahora sea $\delta \in L^{\infty}(X, A, \mu)$ dado $\varepsilon > 0$, análogamente a la primera parte del teorema podemos encontrar $\delta_{\varepsilon} = \sum_{i=1}^{n} \alpha_{i} \chi_{\varepsilon}$ tal que $\delta_{\varepsilon} \to \delta$ en $L^{\infty}(X, A, \mu)$, $\Psi_{\lambda}(\delta_{\varepsilon}) = \int_{X} \delta_{\varepsilon} d\lambda = \sum_{i=1}^{n} \alpha_{i} \chi(\varepsilon_{i}) = \int_{X} \delta_{\varepsilon} d\lambda$

$$= \sum_{i=1}^{n} \alpha_{i} \psi(\chi_{E_{i}}) = \psi(\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}}) = \psi(\delta_{\epsilon}).$$

Tenemos entonces $\Psi_{\lambda}(\delta_{\varepsilon}) = \psi(\delta_{\varepsilon})$.

Implicitamente tenemos que $\varphi_{\lambda} = \psi$ para funciones simples, por otra parte hemos escogido δ_{ε} de tal forma que $\delta_{\varepsilon} + \delta$ en $L^{\infty}(X,A,\mu)$ entonces $\psi(\delta) = \lim_{\varepsilon \to 0} \psi(\delta_{\varepsilon}) = \lim_{\varepsilon \to 0} \int_X \delta_{\varepsilon} d\lambda = \int_X \delta d\lambda$ de manera que $\psi = \varphi_{\lambda}$, y tenemos que φ es una isometría lineal definida en $\varphi_b(X,A_1,\mu_1)$ sobre $[L^{\infty}(X,A,\mu)]^*$.

extere un A & M (X, A, uy) < tod que + + + .

BIBLIOGRAFIA

- [1] Dundford-Schwartz, Linear Operators, Part I.
 Interscience, New York, 1958.
- [2] Köthe, G., Topological Vector Spaces, Springer-Verlag, Heidelberg, 1960.
- [3] Royden, Real Analysis, Collier Mac-Millan 1968.
 - [4] Taylor, Measure Theory,