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Abstract— Nowadays, Power Quality (PQ) events have been 

studied because they represent an essential aspect for the 

industries concerning the efficiency and the useful life of the 

elements connected to electrical systems. If the disturbances 

related to PQ events are classified (identified) fast and with 

reliable accuracy, the costs and losses generated would be reduced. 

In this paper, we present a machine learning-based approach to 

identify PQ events. Our proposal comprises the following stages:  

we employ a feature representation space based on time and 

frequency parameters. Besides, we include a supervised relevance 

analysis technique, called Relieff, to highlight the discriminant 

capability of the considered features. Then, we evaluate the success 

of classifying PQ events with different classifiers by adding 

different levels of noise under a cross-validation scheme. For 

concrete testing, a synthetic database based on the IEEE 1159 

standard is generated, considering 3000 signals and ten classes 

(300 samples per class).  Remarkably, obtained results show a 

suitable classification performance holding straightforward 

classifiers, e.g., quadratic and k-NN, in comparison to those state-

of-the-art methodologies. 

 
Index Terms — Frequency-domain features, machine learning, 

power quality, relevance analysis, time-domain features. 

 
Resumen— Actualmente, los eventos de calidad de potencia (PQ) 

se han estudiado dado su importancia para las industrias, en 

cuanto a la eficiencia y la vida útil de los elementos conectados a 

los sistemas eléctricos. Si las perturbaciones relacionadas con los 

eventos de PQ se clasifican (identifican) rápidamente y con una 

precisión confiable, los costos y las pérdidas generadas se 

reducirían. En este trabajo presentamos un enfoque basado en 

aprendizaje de máquina para la identificación automática de 

eventos PQ. Nuestra propuesta comprende las siguientes etapas: 

empleamos un espacio de representación de características basado 

en parámetros de tiempo y frecuencia. Además, utilizamos una 

técnica de análisis de relevancia supervisada, llamada Relieff, para 

resaltar la capacidad discriminante de las características 

consideradas. Luego, evaluamos el éxito de la clasificación de 

eventos PQ con diferentes clasificadores agregando diferentes 

niveles de ruido bajo un esquema de validación cruzada de 10 

particiones. En este sentido, se genera una base de datos sintética 
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basada en el estándar IEEE 1159, considerando 3000 señales y diez 

clases (300 muestras por clase). Los resultados obtenidos muestran 

un rendimiento de clasificación adecuado con clasificadores 

simples, cuadrático y k-NN, en comparación con las metodologías 

más avanzadas del estado del arte. 
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I. INTRODUCTION 

HE analysis of power quality (PQ) signals is a subject of 

total interest in the efficiency and commercialization of 

electric power. Such an analysis defines the transmission 

quality, increasing both the efficiency and the useful life of the 

elements that are connected to the electrical system. Overall, 

there are several types of disturbances (events) related to PQ, 

namely, root-mean-square voltage variations (RMS), 

harmonics, flickers, notches, and transient effects [1, 2]. The 

main aspects that contribute to the occurrence of PQ 

disturbances includes the ignition of large electric motors, the 

switching of capacitor banks, the non-linear loads, the operation 

of an electric arc furnace, and the faults in distribution systems 

[3]. Among other side effects, disturbances cause heating, 

malfunction, and reduction of the useful life of electric devices. 

Particularly, non-sinusoidal currents significantly increase 

losses in conductors and transformers [5]. Consequently, PQ 

events cause to the electricity sector losses between 26.000 and 

400.000 million dollars yearly in the US [4]. Currently, there 

are devices devoted to monitoring electrical networks to find 

faults or artifacts that affect its operation. However, due to the 

huge amount of recorded data, it is not practical to study it 

manually. 

Therefore, the use of machine learning approaches arises as an 

alternative to build automatic monitoring systems from PQ 

data. Thus, the operators would execute immediate or medium-

term actions to find the causes that respond to the failures. 
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Significant information can be extracted from time parameters; 

such a representation strategy is not enough to separate properly 

among different PQ events. On the other hand, frequency 

features based on the well-known Fourier transform are also 

deemed to estimate harmonic patterns. Also, some approaches 

employ both time and frequency-based characteristics to 

classify PQ events [23-25].  
Though time and frequency properties can be extracted, the 

parameters computed encode high dimensional feature spaces, 

which can cause overfitting in further classification stages, not 

mentioning the high computational burden. Traditionally, state-

of-the-art works employ sophisticated classifiers, e.g., support 

vector machines (SVM) and neural networks (NN), to 

discriminate PQ events [13-19]. Nonetheless, the use of 

complex classifiers can lead to overfitting and lack of suitable 

interpretability regarding the most relevant features. Hence, 

dimensional reduction must be carried out in order to extract the 

most important characteristics without losing relevant 

information [8,9].  
In this paper, we propose a machine learning methodology 

aimed at the automatic identification of PQ events. For this 

purpose, we use two characterization spaces: statistical 

parameters in time and frequency domains. Also, a feature 

selection algorithm based on the supervised Relieff algorithm 

is used to reduce the representation space. So, our approach 

favors the separability between different types of disturbance in 

later stages of classification.  Here, a synthetic database based 

on the IEEE 1159 standard is generated, considering 3000 

signals and ten classes (300 samples per class).  The results 

show that holding the most four relevant features, our 

methodology gets an accuracy close to 98% with 

straightforward classifiers, e.g., quadratic and k-NN. 

The rest of the document is organized as follows. In section I, 

we explain the main methods of our approach. In section II we 

describe de experimental set-up. In section III the results are 

shown and discussed. Finally, in section IV we conclude about 

the tests performed, naming the bonds and the limitations of the 

proposed methodology. 

 

II. METHODS 

 

A. POWER QUALITY FUNDAMENTALS 

 

The term Power or Power Quality (PQ) is described according 

to IEEE Standard 1159 as: "The concept of powering and 

grounding electronic equipment in a manner that is suitable for 

its operation and compatible with the premise wiring system 

and other connected equipment" [3]. Also, it is understood as 

the way to measure the differences between the signal that a 

charge is receiving and the one that it should ideally receive. 

These differences are called disturbances. Then, a voltage or 

current signal with perfect sinusoidal waveform has the best 

power quality, any variation (either in magnitude or frequency) 

is defined as a disturbance. Two leading causes generate 

disturbances reducing the power quality: i) connection of loads 

to the network and ii) problems in the systems or subsystems of 

transmission and distribution [1]. Besides, disturbances can be 

classified according to the distortion caused on the wave:  

amplitude-based distortions (swells, sags, and outage), 

harmonic distortion, notches, flicker, and transient effects 

(oscillatory and impulsive) [8]. 

 

B. PQ EVENT CLASSIFICATION 

Feature extraction. Let {𝒛𝑛 , 𝑦𝑛}𝑛=1
𝑵  be a data set holding N 

samples related to PQ events, where 𝒛𝑛 ∈ ℝ𝑇
 represents a given 

signal at T time instants and 𝑦𝑛 ∈ {0,1, . . . , C} codes the 

disturbance label, being C the total number of events studied. 

To estimate time domain-based features, we compute the 

following statistical parameters in Table 1: mean, RMS, 

standard deviation, kurtosis, skewness, maximum value, and 

minimum value. 

 

Moreover, we apply the well-known Fourier Transform over z 

aiming to extract harmonic patterns. Thus, for each provided 

signal in time domain, we obtain a vector 𝒔 ∈ ℂ𝑲  representing 

the frequency spectrum as 𝑠𝑘 = |∑ 𝑧𝑡𝑒−𝑖2𝜋𝑡/𝑇𝑇
𝑡=1 |, where 𝑧𝑡 ∈

𝒛. Also, we can define 𝝀 ∈  ℝ𝐾  as a frequency index vector, 

where 𝜆𝑘 = 𝑘𝐹
2𝐾⁄  and 𝐹 ∈ ℝ is the sampling frequency (𝑘 ∈

{0,1, . . . , K}). Next, the following parameters are computed over 

s as explained in Table 1: mean value, RMS value, standard 

deviation, skewness, kurtosis, maximum value, and THD. Once 

all the parameters are computed for all provided samples, a 

feature set {𝒙𝑛, 𝑦𝑛}𝑛=1
𝑵  is built after concatenation of the time 

and frequency-based features, where 𝒙𝑛 ∈ ℝ𝑄
 and Q is the 

number of features extracted. 

 
 

TABLE I 

FEATURES AND ITS EQUATIONS 

Feature Equation 

Mean (�̅�) ∑
𝑟𝑙

𝐿

𝐿

𝑙=1

 

RMS value (Υ) (∑
𝑟𝑙

2

𝐿

𝐿

𝑙=1

)

1
2

 

Standard Deviation (∑
(𝑟𝑙 − �̅�)2

𝐿

𝐿

𝑙=1

)

1
2

 

Kurtosis ∑
𝑟𝑙

4

𝐿Υ4

𝐿

𝑙=1

 

Skewness ∑
𝑟𝑙

4

𝐿Υ4

𝐿

𝑙=1

 

Maximum Value 𝑚𝑎𝑥(𝑟𝑙) 

Minimum Value 𝑚𝑖𝑛(𝑟𝑙) 

THD* 
∑ 𝑃𝑟

𝐾
𝑘=1

𝑃0

 

Statistical parameters for time and frequency domain-based features devoted 

to PQ event classification. 𝒓 ∈ ℝ𝐿 can be either the time domain signal z or the 
frequency vector s. 

* For the total harmonic distortion (THD), the power P_k must be calculated 
for the first K’ harmonics. 
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Relevance analysis. To reveal discriminant features and find 

a balance between classification complexity and accuracy [20], 

we compute the contribution of each feature concerning the 

label vector 𝒚 = {𝑦𝑛}𝑛=1
𝑵 . Therefore, we calculate the relevance 

vector 𝝊 ∈ ℝ𝑃 based on the Relieff approach as follows [21]: 

 

𝜐𝑞 =
1

𝑁
∑ (−

1

𝜑
 ∑ 𝑑(

𝒙𝑛′∈Ω𝑛
𝑦𝑛

𝒙𝑛 ,  𝒙𝑛′)

𝑁

𝑛=1

+
1

𝜑
 ∑

𝑝(𝑦 = 𝑐)

1 − 𝑝(𝑦 = 𝑦𝑛)
𝑐≠𝑦𝑛

∑ 𝑑(

𝒙𝑛′∈Ω𝑛
𝑦𝑛

𝒙𝑛 ,  𝒙𝑛′)), 

 

 

where d ∶ ℝ 𝑥 ℝ → ℝ is a given distance function, e.g., the 

Euclidean, Ω𝑛
𝑐  =  {𝒙𝑛′ ∶  n′ =  1,2, . . . , φ} holds the φ-nearest 

neighbors of 𝒙𝑛 according to d, and 𝑝(𝑦 = 𝑐) ∈ ℝ+ is the 

probability that a sample belongs to the c-th class (c ∈
{1,2, . . . , C}, q ∈ {1,2, . . . , Q}). Hence, the higher the 𝜐𝑛 value 

the better the q-th feature for discriminating PQ events [22]. 

 

III. EXPERIMENTAL SETUP 

A. DATASET 

Aiming to test our machine learning approach to identify PQ 

events, we generate a synthetic database following the models 

described in [9-13]. Thereupon, the following classes are 

studied: 1) Sag, 2) Swell, 3) Outage, 4) Impulsive transient, 5) 

Notch, 6) Spike, 7) Harmonics, 8) Oscillatory transient, 9) 

Flicker, and 10) Normal (pure sin wave). For each type of 

disturbance, 300 signals were generated, which provides a 

database of 3000 observations. The free parameters of each type 

of disturbance were chosen randomly for each signal generated 

in the range defined in Table II. We fix a sampling frequency 

equal to 18 kHz and a time length of 0.166 seconds that 

corresponds to ten cycles. Further, to evaluate the stability of 

the method, the experiments are performed by adding white 

Gaussian noise at 10dB, 20dB, 30dB, and 40dB [18] [14] [16]. 

Fig. 1 shows some PQ events of the studied dataset. 

 

B. TRAINING AND COMPARISON METHODS 

 

Regarding the feature extraction stage, the fast Fourier 

transform (FFT) is applied using the algorithm known as fft() 

implemented in Matlab©. The single-sided Fourier spectrum is 

obtained for frequencies up to 1 kHz. For the sake of clarity, we 

index the features extracted in time domain as follows: THD 

(1), mean (2), RMS (3), RMS_1 (4), RMS_2 (5), RMS_3 (6), 

standard deviation (7), kurtosis (8), asymmetry (9), maximum 

value (10), and minimum value (11).  Features 4, 5, and 6 

correspond to the RMS values calculated along the input signal 

fixing a window size equal to 55 ms, which is equivalent to one-

third of the total duration of the signal. Now, in the frequency 

domain, we compute the following parameters: mean (12), 

RMS (13), standard deviation (14), asymmetry (15), kurtosis 

(16), and the maximum value (17). Consequently, we built a 

feature space holding 17 features, 10 classes and 3000 

observations, which results in a matrix 𝑿 ∈ ℝ𝑁𝑥𝑃 with N = 3000 

and Q = 17. 

 

Concerning the relevance analysis stage, the Relieff 

algorithm is used by fixing the number of nearest neighbors to 

1. Moreover, we test our methodology with the following 

classifiers: Linear, KNN, quadratic, and SVM. A cross-

validation scheme with 30 repetitions is used, randomly 

choosing as the training set the 70% of the data. The 

classification accuracy is obtained as the average of the repeats. 

For the linear and quadratic classifiers, we set a pseudo-linear 

covariance matrix. In the case of the KNN, we utilize a nested 

cross-validation strategy to find the number of neighbors from 

the set 1, 3, 5, 7, 9, 11, 13, and 15 concerning the testing set 

accuracy. For the SVM, we fix a Gaussian kernel, and we also 

use a nested cross-validation scheme to find the bandwidth and 

the regularization parameters from the sets 0.01, 0.1, 1 and 10 

and 0.01, 0.1, 1, 10, 100, 500 and 1000, respectively. 

 

We compare the results obtained with the following state-

of-the-art methods: wavelet transform and self-organized 

learning matrix [15], discrete wavelet transform and wavelet 

networks [17], filtering techniques based on empirical mode 

decomposition (EMD) and Hilbert transform, and fuzzy logic-

based classification [18], variational mode decomposition 

(VMD) and SVM [14], double-S-transform with directed 

acyclic SVM [16], and fractional Fourier transform-based 

feature extraction [19]. 

IV. RESULT AND DISCUSSION 

 

As seen in Fig. 2, the frequency spectrum of the examples 

signals in Fig. 1 shows that some harmonic patterns would be 

useful to discriminate between PQ events. After visual 

inspection, the amplitude of the spectrum within the ranges 0 -

180 Hz and 240 – 480 Hz can distinguish some of the 

disturbances. Nonetheless, to quantify the dependencies among 

the 17 time and frequency-based parameters, Fig. 3 displays the 

correlation matrix of the input feature space. As seen, the RMS 

values of the signal in the time domain (features 3, 4, 5 and 6) 

are closely related to each other and all the characteristics in the 

frequency domain. The above can be explained because 

variations in frequency that affect the PQ signals generate 

changes in the amplitude, due to the harmonics introduced 

increase the RMS value of the signal. In turn, we calculate the 

matrix of distances among samples to inspect the inter-class 

overlapping visually. Fig. 4 displays the distance matrix and it 

is noted that samples from 1 to 1200 are separated from each 

other and with the rest of the examples. It is essential to identify 

the proximity between samples 600-900 (class 3) and 1-300 

(class 1) which is generated by the similarity between these 

types of disturbances. In Fig. 5 we present the normalized 

relevance value (0-1) of each feature according to the Relieff 

algorithm. Following, the four most relevant features are listed: 

rms_1 in time domain (4), skewness in time domain (9), 

standard deviation in frequency domain (14), and skewness in 

frequency domain (15). 
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TABLE II 

PQ DISTURBANCES 

 
PQ disturbances studied with their respective mathematical model and settable parameters as seen in [26]. 

 
 

 
Fig 1. Some examples of the PQ events in the studied dataset. 

 

 

 

 

 

 

Disturbance Mathematical model Parameters

Pure sine

Sag

Swell

Interruption

Flicker

Oscillatory transient

Impulsive transient

Notch

Spike

Harmonics + +
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Fig 2. Frequency spectrum of the sample signals in Fig. 1. 

 

 

 
Fig 3.  Correlation matrix between computed features for PQ events 

identification (see the feature number explanation in the Experimental set-up 
section). 

 

 

 
Fig 4.  Distance matrix among samples sorted according to the PQ labels. 

 

 

 

 
Fig 5.  Normalized relevance values for all considered features in PQ event 
classification. Blue: time-domain features, Red: frequency domain features. 

 

Further, the classification results can be seen in Fig. 6. Here, we 

calculated the testing set accuracy by adding one by one the 

features ranked concerning the relevance values in Fig. 5. As 

seen the quadratic and the KNN classifiers exhibit the highest 

performances holding the most 12 and 13 features, respectively. 

Notably, a feature space keeping only the four most relevant 

features achieves a suitable performance (see the squares in Fig. 

6). The confusion matrix presented in Fig. 7 emphasizes the 

discrimination capability of the relevant subset of features. The 

classification results reveal a slight overlap between classes 1 

and 3, which is quite logical because the Sag and Outage 

disturbances share similar wave shapes. Furthermore, both 

kinds of PQ events consist of the reduction of the RMS value 

of the signal for a short time. 

 

 

 
Fig 6. Number of relevant features versus classification accuracy. The 

diamonds identify the best result considering only the accuracy, while the 

squares highlight the trade-off between number of relevant features and 

classification accuracy. 

  

 

 
Fig 7. Confusion matrix obtained when performing the classification over the 

four most relevant features (quadratic classifier results). 

 

 

Finally, Table III shows the classification results against 

different noise levels and presents the state-of-the-art 

comparison. Our approach achieves competitive classification 

results. In fact, in most of the cases, we attain the highest 

accuracy with the lowest number of features required, even for 

challenging noise conditions. It is worth mentioning that we 
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include a straightforward classifier in comparison to those 

employed by the state-of-the-art. 
TABLE III. 

METHOD COMPARISON RESULTS. 

Reference #Classes #Feat. Noise Methodology Accuracy 

[15] 2006 6 11 - WT + SOLAR(NN) 94.93 

[17] 2010 16 8 - WT + WN 98.18 

[18] 2014 9 9 30 dB EMD + HT + FPA 91.67 

[14] 2016 9 17 20 dB (ST + VMD) + SVM 98.11 

[16] 2016 9 9 20 dB DRST + DAG-SVM 97.8 

[19] 2017 15 9 30 dB FRFT 98.6 

Ours 

2019 
10 

4 - 

T+F 

Relieff+Quadratic 

98.95 

12 - 99.43 

15 10 dB 86.6 

17 20 dB 96.8 

17 30 dB 99.15 

12 40 dB 99.39 

PQ event classification regarding the number of classes, number of features 

extracted, and level of noise. 

V. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we introduce a machine learning approach to 

support PQ event identification. We compute time and 

frequency-based patterns to reveal discriminate disturbance 

patterns. Besides, a Relieff-based approach is utilized to find a 

subset of features coding the most relevant properties on input 

data. Next, well-known classifiers are applied to estimate the 

disturbance label. Obtained results demonstrate that only 

computing the most four relevant features is enough to achieve 

a 98% accuracy. Moreover, our approach is competitive against 

state-of-the-art method concerning the required number of 

features and the classifier complexity (we achieve acceptable 

performances using a straightforward quadratic classifier). 

As future work, authors plan to test the proposal introduced on 

signals that are perturbed with more than one disturbance 

simultaneously. 
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