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Resumen 

Introducción: Se formula un modelo de monodominio de actividad eléctrica en un ventrículo 

aislado. Este modelo se escribe como una EDP de tipo reacción difusión acoplada a una EDO, se 

utiliza el modelo de Rogers-Mculloch para representar la actividad eléctrica a través de la 

membrana celular.  

Método: Se proponen definiciones de solución débil y fuerte respectivamente para el problema 

de Cauchy variacional asociado al modelo de monodominio. Se propone una sucesión de 

soluciones aproximadas de tipo Faedo-Galerkin.  

Resultados: Se demuestra que la sucesión de soluciones aproximadas converge a una solución 

débil según la definición que se propone. Finalmente, se obtiene que la solución débil es también 

una solución fuerte. 

Conclusión: El modelo de monodominio de actividad eléctrica en un ventrículo aislado que se 

propone tiene solución débil en un sentido apropiado. Además, esta solución débil también es una 

solución fuerte. 
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Abstract 

Introduction: A monodomain model of electrical activity for an isolated ventricle is formulated. 

This model is written as a reaction diffusion PDE coupled to an ODE, The Rogers-Mculloch 

model is used to represent the electrical activity through the cell membrane.                        

Method: We give a definition of weak and strong solution of the variational Cauchy problem 

associated to the monodomain model. A sequence of approximate solutions of Faedo-Galerkin 

type is proposed. 

Results: It is shown that the sequence of approximate solutions converge to a weak solution 

according to the proposed definition. Finally, we have that this weak solution is also a strong 

solution. 

Conclusion: The monodomain model of electrical activity in an isolated ventricle that is 

proposed has a weak solution in an appropriate sense. In addition, this weak solution is also a 

strong solution.                        
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Introduction 

 

 

The bidomain model represents an active myocardium on a macroscopic scale by relating 

membrane ionic current, membrane potential, and extracellular potential (Henriquez 1993). 

Created in 1969 (Schmidt 1969), (Clerc 1976) and first developed formally in 1978 (Tung 1978), 

(Miller 1978, I), the bidomain model was initially used to derive forward models, which compute 

extracellular and body-surface potentials from given membrane potentials (Miller 1978, I), 



(Gulrajani 1983), (Miller 1978, II) and (Gulrajani 1998). Later, the bidomain model was used to 

link multiple membrane models together to form a bidomain reaction-diffusion (R-D) model 

(Barr 1984), (Roth 1991), which simulates propagating activation based on no other premises 

than those of the membrane model, those of the bidomain model, and Maxwell’s equations. Other 

mathematical derivations of the macroscopic bidomain type models directly from the microscopic 

properties of tissue and using asymptotic and homogenization methods along with basic physical 

principles are presented in (Neu 1993), (Ambrosio 2000) and (Pennacchio 2005).    

Monodomain R-D models, conceived as a simplification of the R-D bidomain models, 

with advantages both for mathematical analysis and computation, were actually developed before 

the first bidomain R-D models, and few papers have compared monodomain with bidomain 

results. Those that did, have shown small differences (Vigmond 2002), and monodomain 

simulations have provided realistic results (Leon 1991), (Hren 1997), (Huiskamp 1998), (Bernus 

2002), (Trudel 2004) and (Berenfeld 1996). In (Potse 2006) has been investigated the impact of 

the monodomain assumption on simulated propagation in an isolated human heart, by comparing 

results with a bidomain model. They have shown that differences between the two models were 

extremely small, even if extracellular potentials were influenced considerably by fluid-filled 

cavities. All properties of the membrane potentials and extracellular potentials simulated by the 

bidomain model have been accurately reproduced by the monodomain model with a small 

difference in propagation velocity between both models, even in abnormal cases with the Na 

conductivity (Bernus 2002) reduced to 1=10 of its normal value, and have arrived at the same 

conclusions. The difference between the results that may be obtained with one or another model 

are small enough to be ignored for most applications, with the exception of simulations involving 

applied external currents or in the presence adjacent fluid on within, although these effects seem 

to be ignorable on the scale of a human heart. A formal derivation of the monodomain equation 

as we present here can be found in (Sundnes 2006). There are few references in the literature 

dealing with the proof of the well-posedness of the bidomain model. The most important seem to 

be Colli-Franzone and Savarés paper (Colli 2002), Veneroni’s technical report (Veneroni 2009) 

and Y. Bourgault, Y. Coudière and C. Pierre’s paper (Bourgault 2009). In (Colli 2002), global 

existence in time and uniqueness for the solution of the bidomain model is proven, although their 

approach applies to particular cases of ionic models, typically of the form 𝑓(𝑢, 𝑤) = 𝑘(𝑢) + 𝛼𝑤 

and 𝑔(𝑢, 𝑤) = 𝛽𝑢 + 𝛾𝑤, where 𝑘 ∈ 𝐶1(ℝ) satisfies infℝ 𝑘′ > −∞. In practice a common ionic 



model reading this form is the cubic-like FitzHugh-Nagumo model (Fitzhugh 1961), which, 

although it is important for qualitatively understanding of the action potential propagation, its 

applicability to myocardial excitable cells is limited (Keener 1998), (Panfilov 1997).However, 

from the results of (Colli 2002) is not possible to conclude the existence of solution for other 

simple two variable ionic models widely used in the literature for modelling myocardial cells, 

such as the Aliev-Panfilov (Aliev 1996) and MacCulloch (Rogers 1994) models. In (Veneroni 

2009), Colli-Franzone and Savarés results have been extended to more general and more realistic 

ionic models, namely those taking the form of the Luo and Rudy I model (Luo 1991), this result 

still does not include the Aliev-Panfilov and MacCulloch models. In reference (Bourgault 2009), 

global in time weak solutions are obtained for ionic models reading as a single ODE with 

polynomial nonlinearities. These ionic models include the FitzHugh-Nagumo model (Fitzhugh 

1961) and simple models more adapted to myocardial cells, such as the Aliev-Panfilov (Aliev 

1996) and Rogers-MacCulloch (Rogers 1994) models. 

In this paper, we give a definition of weak solution of the variational Cauchy problem 

and, from this one, we give a definition of strong solution. We aim to obtain the existence of a 

global weak solution for a monodomain R-D model when applied to a ventricle isolated from the 

torso in absence of blood on within, which is activated through the endocardium by a Purkinje 

current and for simpler ionic models reading as a single ODE with polynomial nonlinearities. 

Also, it is proved that this weak solution is strong in the sense of the given definition. We will 

consider a bounded subset Ω ∈ ℝ3 simulating an isolated ventricle surrounded by an insulating 

medium. The boundary 𝜕Ω of the spatial region is formed by two disjoint components; the 

component Γ0 imulating the epicardium and the component Γ1 simulating the endocardium. The 

way Ω is electrically stimulated is by means Purkinje fibers, which directly stimulate only the 

inner wall Γ1 then the excitable nature of the tissue allows this stimulus to propagate by Ω. We 

will assume that the ventricle is isolated from the heart and torso, that is to say that Γ0 is in 

contact with an electrically insulating medium. We will use the monodomain model and the 

Rogers-McCulloch model for ion currents through the cell membrane, in this way and for the 

above considerations this model can be written as one parabolic PDE with boundary conditions, 

coupled to a ODE, and some initial data: 

 



The unknowns are the scalar functions 𝑢(𝑡, 𝑥) and 𝑤(𝑡, 𝑥) which are the membrane potential and 

an auxiliary variable without physiological interpretation called the recovery variable, 

respectvely. We denote by 𝜂 the unit normal to 𝜕Ω out of Ω. The anisotropic properties of the 

tissue are included in the model by the conductivity tensor 𝜎(𝑥). The functions 𝑓(𝑢, 𝑤) and 

𝑔(𝑢, 𝑤) crrespond to the flow of ions through the cell membrane. The function 𝑠: (0, +∞) → ℝ 

represents the electrical activation of the endocardium by means of Purkinje fibers. The function 

𝜑: Ω → ℝ  represents the activation spatial density. Because we consider that Ω is surrounded by 

an insulating medium, there is no current flowing out of Ω, this is expressed in the boundary 

condition (3). 

 

The specific assumptions we will make about (1) - (5) are as follows: 

(h1) Ω has Lipschitz boundary 𝜕Ω. 

(h2) 𝜎(𝑥) is a symmetric matrix, function of the spatial variable 𝑥 ∈ Ω, with coefficients in 

 𝐿∞(Ω) and such that there are positive constants m and M such that 

 

 

 

 Is met for almost all 𝑥 ∈ Ω. 

(h3) 𝑠 ∈ 𝐿∞(0, +∞). 

(h4) 𝜑 ∈ 𝐿2(Γ1). 

(h5) 𝑓(𝑢, 𝑤) y 𝑔(𝑢, 𝑤) stands for Rogers-McCulloch ionic model, 

 



 

 

(h6) 𝑢0, 𝑤0 ∈ 𝐿2(Ω). 

 

 It is convenient to establish some notations that we will follow throughout this work. For 

convenience, we will denote 𝑉 = 𝐻1(Ω) and 𝐻 = 𝐿2(Ω) since we will make constant use of 

these spaces. It is important to note that in the context of this work the following inclusions are 

fulfilled for 2 ≤ 𝑝 ≤ 6  

 

 

 

Note that only 𝐻 is identified with its dual space. In particular, we will consider 𝑝 = 4 from here 

on. As usual, 𝑝′ denotes a positive number such that 
1

𝑝
+

1

𝑝′ = 1. 

 Let 𝑋 be a Banach space of integrable functions over Ω , we define the subspace 

 

 

 

Which is a Banach space with the norm induced by 𝑋. For any 𝑢 ∈ 𝑋, we denote 

 

Thus [𝑢] ∈ 𝑋/ℝ.  

This paper is organized as follows. The spaces 𝐿𝑞(0, 𝑇; 𝑋) are the functional setting we 

will work in, so in section 2.1 the definition of this spaces along with some important facts about 

them are presented. In section 2.2 some preliminary results are established, mainly related to the 

diffusion term ∇(𝜎∇𝑢) and with the model for the ionic current 𝑓 and 𝑔. In section 2.3 we state 



the definition of weak and strong solution, and enunciate some results that allow us to find a 

relation between them. The existence will be shown in sections 3.1 and 4.1. 

 

 

Method 

 

 

𝑳𝒒(𝟎, 𝑻; 𝑿) spaces 

Let 𝑋 be a Banach space, we denote by 𝐿𝑞(0, 𝑇; 𝑋) the space of the functions 𝑡 → 𝑓(𝑡) of 

[0, 𝑇] → 𝑋 that are measurable with values in 𝑋 such that 

 

 

 

with this norm 𝐿𝑞(0, 𝑇; 𝑋) is complete. Observe that  

 

 

 

where 𝑄𝑇 = [0, 𝑇] × Ω.  

It is necessary to give a definition of the derivative of an element of  𝐿𝑞(0, 𝑇; 𝑋), for this 

we will consider the space of distributions on [0, 𝑇] with values in 𝑋 , see (Lions 1969, 7). 

Definition 1. We define 𝒟′(0, 𝑇; 𝑋), the space of distributions on [0, 𝑇] with values in 𝑋, as 

 

 

 

where  𝒟(0, 𝑇) is the set of infinitely differentiable functions of compact support in (0, 𝑇). 



 If 𝑓 ∈ 𝒟′(0, 𝑇; 𝑋) we can define its derivative in the sense of distributions as 
𝜕𝑓

𝜕𝑡
∈

𝒟′(0, 𝑇; 𝑋) given by 

 

 

 

 If 𝑓 ∈ 𝐿𝑞(0, 𝑇; 𝑋) it corresponds a distribution 𝑓 in 𝒟′(0, 𝑇; 𝑋) defined as follows 

 

 

 

In this way, we can define the derivative in the sense of distributions of a function 𝑓 ∈

𝐿𝑞(0, 𝑇; 𝑋) as 

Theorem 1. Let 𝑄𝑇 a bounded open in ℝ × ℝ𝑁 , 𝑓𝑛 and 𝑓 functions in 𝐿𝑞(𝑄𝑇), 1 < 𝑞 < ∞, such 

that 

 

 

 

for a certain constant 𝐶 > 0, then, 

 

 

 

Proof. (Lions 1969, lema 1.3, p. 12). 



For the chain of inclusions (9) and the fact that the immersion 𝑉 → 𝐻 is compact we can 

enunciate the following result, which is a particular case of a classic compactness result, see 

(Lions 1969, th. 5.1, p.58). 

Theorem 2. We define for T finite and 0 <  𝑞𝑖  < ∞, 𝑖 = 0, 1, 

 

 

endowed with the norm ‖𝑣‖𝐿𝑝0(0,𝑇;𝑉) + ‖𝑣′‖𝐿𝑝1(0,𝑇;𝑉′) . Then, 𝑊1,𝑞0,𝑞1(0, 𝑇;  𝑉, 𝑉′) is a Banach 

space and 𝑊1,𝑞0,𝑞1(0, 𝑇;  𝑉, 𝑉′) ⊂ 𝐿𝑞0(0, 𝑇; 𝐻). The immersion of  𝑊1,𝑞0,𝑞1(0, 𝑇;  𝑉, 𝑉′) in 

𝐿𝑞0(0, 𝑇; 𝐻) is compact. 

Proposition 1. Let 𝑢 ∈  𝐿𝑞0(0, 𝑇;  𝑉 ) with 𝑞0 ≥ 2, then, 𝑢 ∈ 𝑊1,𝑞0,𝑞1(0, 𝑇;  𝑉, 𝑉′), for some 𝑞1 ≥

2, if and only if there exist a function 𝑢̃ ∈  𝐿𝑞1(0, 𝑇;  𝑉′) that satisfies 

 

 

where (∙,∙) represents the scalar product in H, and 〈𝑢̃, 𝑣〉𝑉′×𝑉 represents the evaluation of 

functional 𝑢̃ in 𝑢. That is, 𝑢̃ is the distributional derivative of 𝑢, and is the only function in 

𝐿𝑞1(0, 𝑇;  𝑉′), that satisfies 

 

 

 

From now on, we write 〈∙,∙〉 instead of 〈∙,∙〉𝑉′×𝑉. 

Theorem 3. If 𝑓 ∈  𝐿𝑞(0, 𝑇; 𝑋) and 𝜕𝑡𝑓 ∈  𝐿𝑞(0, 𝑇; 𝑋) (1 ≤ 𝑞 ≤ ∞), then, 𝑓 is continuous 

almost everywhere from (0, 𝑇) to 𝑋. 

Proof. (Lions 1969, lema 1.2, p. 7). 

 



 

Preliminaries 

 

 

Definition 2. For all 𝑢, 𝑣 ∈  𝑉 × 𝑉 we define the bilinear form 

 

 

Proposition 2. The bilinear form 𝑎(⋅,⋅) is symmetric, continuous and coercitive in V, 

 

 

with 𝛼, 𝑀 > 0. There is a growing sequence 0 = 𝜆0 < ⋯  < 𝜆𝑖  < ⋯ ∈ ℝ and there is an 

orthonormal basis of 𝐻 formed by eigenvectors {𝜓𝑖}𝑖∈ℕ such that,  𝜓𝑖 ∈ 𝑉 y 

 

 

 

Proof. The symmetry of  𝑎(⋅,⋅) is immediate consequence of the symmetry of 𝜎. By (h2) we have 

that 𝜎 is uniformly elliptic and symmetric, then satisfies the following inequality 

 

 

 

then, integrating over Ω and adding 𝑚‖𝑢‖𝐻
2  on both sides of the inequality we get 

 



 

 

which shows (17), the continuity of 𝑎(⋅,⋅) is also a consequence of (6). The existence of 

egenvalues and eigenvectors is obtained by a classical result, see (Raviart 1992, thm 6.2-1 y rem. 

6.2-2, p. 137-138), taking into account that 𝜆0 = 0 because the bilinear form 𝑎(⋅,⋅) is canceled 

only for constant functions. 

It is important to note that the properties of the bilinear form 𝑎(⋅,⋅) allow to introduce an 

operator in a natural way. 

Definition 3. By the previous lemma, the hypotheses of the Lax-Milgram theorem for the bilinear 

form 𝑎(⋅,⋅) are fulfilled and therefore there is an operator 𝐴: 𝑉 → 𝑉′ injective and continuous 

with continuous inverse such that 

 

 

 

If 𝑣 is a function defined on Ω we denote its trace to the boundary 𝜕Ω also as 𝑣, its 

meaning will always be clear from the context. 

Proposition 3. If 𝜑 ∈ 𝐿2(Γ1) then for 𝑣 ∈ 𝑉 the function  

 

 

 

defines a linear and continuous functional. This is, we have 𝜑̂ ∈ 𝑉′. 

We will denote  

 

 

 

with 



𝑓1(𝑢) = 𝑎1(𝑢 − 𝑢𝑟𝑒𝑠𝑡)(𝑢 − 𝑢𝑡ℎ)(𝑢 − 𝑢𝑝𝑒𝑎𝑘) = 𝑎1𝑢3 − 𝛼2𝑢2 + 𝛼1𝑢 − 𝛼0, 

𝛼0 = 𝑎1𝑢𝑟𝑒𝑠𝑡𝑢𝑡ℎ𝑢𝑝𝑒𝑎𝑘 

𝛼1 = 𝑎1(𝑢𝑟𝑒𝑠𝑡𝑢𝑝𝑒𝑎𝑘 + 𝑢𝑡ℎ𝑢𝑝𝑒𝑎𝑘 + 𝑢𝑟𝑒𝑠𝑡𝑢𝑡ℎ), 

𝛼2 = 𝑎1(𝑢𝑝𝑒𝑎𝑘 + 𝑢𝑟𝑒𝑠𝑡 + 𝑢𝑡ℎ), 

𝑓2(𝑢) = 𝑎2(𝑢 − 𝑢𝑟𝑒𝑠𝑡), 

𝑔1(𝑢) = −𝑏𝑢 + 𝑏𝑢𝑟𝑒𝑠𝑡 , 

𝑔2 = 𝑏𝑐3. 

Proposition 4. For 𝑝 = 4, there are constants 𝑐𝑖 ≥ 0, 𝑖 = 1, … ,6, such that for all 𝑢 ∈ ℝ the 

following inequalities hold. 

 

 

 

Proof. Due to Young’s inequality the following estimates are met 

 

 

 Then, 

 

 

Proposition 5. For = 4 , there are 𝑎, 𝜆 > 0, 𝜇, 𝑐 ≥ 0 such that for all (𝑢, 𝑤) ∈ ℝ  we have 

 



 

 

Proof. By direct calculation from (20) we have 

 

 

 

On the other hand, from Young’s inequality we have 

 

 

 Then, 

 

To continue, it is necessary to extract a common term from the coefficients corresponding 

to |𝑢|2 and |𝑤|2, for this we can write 
1

2
= 𝜌𝛾, with 𝜌 < 1 y 𝛾 =

1

2𝜌
> 2, 

 



 

 

To conclude it is necessary to verify that 𝜃, 𝛽 and 𝜌 can be chosen so that 

 

 

which is fulfilled for  

 

 

 

obviously, we can find a 𝜌 small enough to meet such conditions. We have 𝜇 = 𝛾, 𝜆 > 0 

arbitrary, 𝑎 =
𝜆𝑎1

4
 and  

 

 

 

Proposition 6. Let 𝑢 ∈ 𝐿𝑝(𝛺) and 𝑤 ∈ 𝐻, Then 𝑓(𝑢, 𝑤) ∈  𝐿𝑝′(𝛺) and 𝑔(𝑢, 𝑤) ∈  𝐻. In 

addition, the following inequalities are met  

 



 

 

where 𝐴𝑖 ≥ 0, 𝑖 =  0, … ,3, y 𝐵𝑖 ≥ 0, 𝑖 =  0, … ,3, are constants that depend only on 𝑐𝑖, 𝑖 = 1, … ,6 

and 𝑝. 

Proof. Let (𝑢, 𝑤) ∈ ℝ2, by proposition 4 we have 

 

 

 

with 𝐵1 = 𝑐5, 𝐵2 = 𝑐6 𝑦 𝐵3 = | 𝑔2|. On the other hand, by Young’s inequality, with 𝛽 =
2

𝑝′ > 1 

and 
1

𝛽
+

1

𝛽′ = 1, we have  

 

 

 

then, because (
𝑝

2
− 1) 𝛽′ = (

𝑝

2
− 1) 2 

𝑝−1

𝑝−2
= 𝑝 − 1 we have 

 

 

 

then, once more by Young’s inequality |𝑤| ≤
|𝑤|𝛽

𝛽
+

1

𝛽
 , therefore we can find constants 𝐴1, 𝐴2 y 

𝐴3 such that 

 

 

 



If (𝑢, 𝑣) ∈ 𝐿𝑝(Ω) × 𝐻, by direct calculation and taking into account that (𝑝 − 1)𝑝′ =

𝑝, 𝛽𝑝′ = 2 we have 

 

 

 In a similar way 

 

 

 

 

Definition of weak and strong solution 

 

 

This section establishes the definition of the solution that will be obtained in section 3.1 for the 

model (1)-(5) of a ventricle. Also, we define strong solution and give a result of selectivity of the 

weak solution. It will be necessary to consider the weak formulation both in time and space. In 

order to give a bit of context to this definition we will start by considering the variational 

formulation in the spatial variable of the original model, 

 

 

 



in this way it will be natural to introduce a succession of approximate solutions through a 

discretization of the space in which we will look for the solution. This procedure is known as the 

Faedo-Galerkin method. 

We will denote as 𝑉𝑚 the linear space generated by {𝜓0, 𝜓1, … , 𝜓𝑚}, where the functions 

𝜓𝑖 , 𝑖 = 0, … , 𝑚, are eigenfunction of the bilinear form 𝑎(⋅,⋅) as established in the proposition 2. 

Note that 𝑉𝑚 ⊂  𝑉. For each 𝑚, we consider the variational problem restricted to the space 𝑉𝑚,  

that is, instead of 𝑣 and 𝑧 we take  𝜓𝑖 , 𝑖 = 0, … , 𝑚, and approximate 𝑢(𝑡) and 𝑤(𝑡) by 𝑢𝑚(𝑡) and 

𝑤𝑚(𝑡) respectively, with 

 

 

 

By means of these substitutions we obtain from (22)-(24) the following system 

 

 

 

for  𝑖 = 0, … , 𝑚. 

Definition 4. (Weak Solution). Let 𝜏 >  0 and the functions 𝑢 ∶ 𝑡 ∈ [0, 𝜏) ↦ 𝑢(𝑡) ∈ 𝐻, 

𝑤 ∶ 𝑡 ∈ [0, 𝜏) ↦ 𝑤(𝑡) ∈ 𝐻. We say that (𝑢, 𝑤) is a weak solution of the varitional formulation 

of the problem (1)-(4) if for any 𝑇 ∈ (0, 𝜏), 

1. 𝑢 ∶ [0, 𝑇] ⟼ 𝐻 and 𝑤 ∶ [0, 𝑇] ⟼ 𝐻 are continuous. 

2. For almost all 𝑡 ∈ (0, 𝜏), we have 𝑢(𝑡) ∈ 𝑉, also 𝑢 ∈ 𝐿𝑝(𝑄𝑇) ∩ 𝐿2(0, 𝑇; 𝑉) and 𝑤 ∈

𝐿2(𝑄𝑇), with 𝑄𝑇 = (0, 𝑇) × Ω. 

In addition, the functions 𝑢 and 𝑤 satisfy 

 



 

 

where equality is considered in 𝒟′(0, 𝑇). 

 If, furthermore, given 𝑢0, 𝑤0 in 𝐻, 𝑢, 𝑤 are weak solutions that satisfy 

 

 

 

then we call 𝑢, 𝑤 a weak solution of variational Cauchy problem associated to (1)-(5). 

Remark 1. The derivatives that appear in the first terms of the equations (29) and (30) refer to 

derivatives in the sense of distributions, that is, for 𝜙 ∈  𝒟(0, 𝑇) we have 

 

 

 

Now, we can give a definition of strong solution for the variational formulation. Suppose 

that, 𝑢, 𝑤 are weak solutions, in the sense of definition 4, and furthermore, 𝑢 ∈

𝑊1,2,𝑝′
(0, 𝑇; 𝑉′, 𝑉) and 𝑤 ∈ 𝑊1,2,2(0, 𝑇; 𝐻, 𝐻), then the equation (29) means that 

 

thus, by proposition 1, it has 

 

 



 

which implies that 

 

 

 

From the above it follows that, 

 

 

which holds in 𝑉′. In a similar for it is possible to prove that 

 

 

 

is fulfilled in 𝐻. 

Definition 5. (Strong Solution). Let be 𝑢 ∈ 𝑊1,2,𝑝′
(0, 𝑇; 𝑉, 𝑉′) and 𝑤 ∈ 𝑊1,2,2(0, 𝑇; 𝐻, 𝐻) we 

call 𝑢, 𝑤 strong solutions of the variational formulation problem (1)-(4), if they satisfy the 

equation (31)-(32) in 𝑉′ and 𝐻, respectively. 

 If, besides, 

 

 

 

for 𝑢0, 𝑤0 given, we say that 𝑢, 𝑤 are strong solutions of variational Cauchy problem associated 

to (1)-(5). 

 

 



Results 

 

 

Existence of global solution 

 

 

The main result of this section is the following theorem. 

Theorem 4. (Existence of weak solution). Under the hypotheses (h1)-(h5) plus 

(h6’) the sequences um0, wm0 are bounded in H, 

the system (1)- (4) has a weak solution (𝑢, 𝑤) in the sense of the definition 4 with 𝜏 = +∞. 

The demonstration is developed in the following two subsections, 

 a sequence of approximate solutions 𝑢𝑚, 𝑤𝑚 is defined, 

 then, it is verified that the approximate solutions converge to a function that satisfies the 

definition 4. 

 

 

Existence of approximate solutions 

 

 

The next lemma states that the approximate solutions 𝑢𝑚, 𝑤𝑚 are defined for all 𝑡 >  0, other 

important estimates are also established to demonstrate later that the succession of approximate 

solutions converges to a solution. The following norms will be used. 

 

 

 

Lemma 1. The Cauchy problem (26) - (28) has solution for all 𝑡 >  0. In addition, there are 



constants 𝒞𝑖 > 0, 𝑖 = 1, … ,4, such that for all 𝑇 >  0. The following estimates are met a priori 

 

 

 

where 𝑢𝑚
′ = ∑ 𝑢𝑖𝑚

′ 𝜓𝑖
𝑚
𝑖=0  and 𝑤𝑚

′ = ∑ 𝑤𝑖𝑚
′ 𝜓𝑖

𝑚
𝑖=0  are the derivatives of the functions 𝑢𝑚 ∶

[0, 𝑇] ⟼ 𝑉 and 𝑤𝑚 ∶ [0, 𝑇] ⟼ 𝐻. 

Proof. Note that the integrals in (26) and (27) are well defined, in deed, as 𝑢𝑚(𝑡) ∈ 𝑉 ⊂ 𝐿𝑝(Ω) 

and 𝑤𝑚(𝑡) ∈ 𝐻 we have from proposition 6 that 𝑓(𝑢𝑚(𝑡), 𝑤𝑚 (𝑡)) ∈ 𝐿𝑝′
(Ω) ⊂ V′and 

𝑔(𝑢𝑚, 𝑤𝑚) ∈ 𝐻, then because 𝜓𝑖 ∈ 𝑉 ⊂ 𝐿𝑝(Ω) and 𝜓𝑖 ∈ 𝐻 we have  

 

 

 

The terms in (26) and (27) are continuous as functions of 𝑢𝑖𝑚(𝑡) and 𝑤𝑖𝑚(𝑡), then the 

initial value problem formed by (26) - (27) with initial conditions (28) has a unique maximal 

solution defined for 𝑡 ∈ [ 0, 𝑡𝑚 ) with 𝑢𝑖𝑚 and 𝑤𝑖𝑚 in 𝐶1, for each initial condition 𝑢0𝑚, 𝑤0𝑚, 

(by Cauchy-Peano theorem). 

If (𝑢𝑚, 𝑤𝑚) is not a global solution, this is 𝑡𝑚 < 1, then it is not bounded in [ 0, 𝑡𝑚 ). 

Suppose that (𝑢𝑚, 𝑤𝑚) is a maximal solution of (26)-(28). Multiplying (26) by λ𝑢𝑖𝑚, (27) by 𝑤𝑖𝑚 

and adding on 𝑖 = 0, … , 𝑚 we get 

 



 

Note that for being {𝜓𝑖} an orthonormal set we have 

 

 

 

Then, by the previous observations, adding (37) and (38) we have for all 𝑡 ∈ [ 0, 𝑡𝑚) 

 

On the other hand, note that for being 𝑎(⋅,⋅) coercitive, see (17), we have 

 

 

 

Also, from proposition 5, by integrating both sides of (21) on Ω we get   

 

 

 

Then, adding (40) and (41) we get 

 

 



 

Adding 
1

2

𝑑

𝑑𝑡
(𝜆‖𝑢𝑚(𝑡)‖𝐻

2 + ‖𝑢𝑚(𝑡)‖𝐻
2 ) on both sides of the previous inequality we get 

from (39) the following 

 

 

Then, reorganizing terms and adding 𝛼‖𝑤𝑚(𝑡)‖𝐻
2  to the right side of the previous 

inequality we get 

 

 

 

On the other hand, by Young’s inequality we have for all 𝜃 > 0 the following  

 

 

 

then, by taking 𝜃 = 𝜆𝛼 we get the following inequality that will be useful a little later. 

 

 

 

From (42) it follows immediately that 

 



 

Then, integrating with respect to 𝑡 over the interval [0, 𝑡𝑚) on both sides of the previous 

inequality we get 

 

 

 

Recall now that, there exist a constant 𝑐 > 0, such that ‖𝑢𝑚(0)‖𝐻 ≤ 𝑐 y ‖𝑤𝑚(0)‖𝐻 ≤ 𝑐, 

also we have that Ω  is bounded. Then, from the previous inequality and from Gronwall’s 

inequality it follows that there is a constant 𝒞1 that depends only on 𝑐, 𝜎, 𝑓, 𝑔, 𝑢0, 𝑤0, Ω, 𝑠, 𝜑̂  and 

𝑡𝑚, such that 

 

 

 

As a consequence we have that (𝑢𝑚, 𝑤𝑚) is bounded in any finite interval of time, this is 

𝑡𝑚  = +∞. For 𝑇 > 0 fixed we have shown (33). 

In order to get (34) we begin by integrating (42) in the interval [0, 𝑇] 

 

 

 

with 𝑘1 = 𝑐|Ω|𝑇 +
𝜆

2𝛼
‖𝑠‖∞

2 ‖𝜑̂‖𝑉′
2 +

1

2
(𝜆‖𝑢𝑚(0)‖𝐻

2 + ‖𝑤𝑚(0)‖𝐻
2 ). Then, we use (33) on the 

integral on the right side of the previous inequality, 



 

 

with 𝑘2 = 𝑘1 + (𝛼 + 𝜇)𝒞1𝑇. Therefore, we have shown inequality (34) with 

 

 

 

Integrating (33) on [0, 𝑇] we also get a bound for wm in 𝐿2(𝑄𝑇). 

Now we will obtain the estimates for 𝑢𝑚
′  and 𝑤𝑚

′ . Consider the projection operator 𝑃𝑚 ∶ 𝑉′ → 𝑉′ 

defined by 𝑢 ∈ 𝑉′ ↦ 𝑃𝑚𝑢 = ∑ 〈𝑢, 𝜓𝑖〉𝜓𝑖
𝑚
𝑖=0 . Equivalently, 𝑃𝑚𝑢 is defined as the only element in 

𝑉𝑚 such that 〈𝑢, 𝑣〉 = 〈𝑃𝑚𝑢, 𝑣〉 for all 𝑣 ∈  𝑉𝑚. On the other hand, note that for all 𝑣 ∈ 𝑉 and for 

all 𝑡 >  0 we have 

 

 

 

because 𝑢𝑚
′ (𝑡) ∈ 𝑉𝑚 ⊂ 𝑉′, 𝑓(𝑢𝑚(𝑡), 𝑤𝑚(𝑡)) ∈ 𝐿𝑝′

(𝑄𝑇) and 𝑣 ∈ 𝑉 ⊂ 𝐿𝑝(𝑄𝑇). Thus, from (26) it 

follows that 

 

 

 

and then 

 

 

 

where 𝐴 is the weak operator defined in (19). For the continuity of 𝐴 and the estimate (34) we 

have for all 𝑇 > 0 



 

On the other hand, from the estimates (33), (34) and by lemma 6 

 

 

 

The next thing will be to obtain a bound for the projection operator 𝑃𝑚. We begin by 

highlighting that, as 𝑃𝑚(𝑉′) ⊂ 𝑉𝑚 ⊂ 𝑉, the restriction of 𝑃𝑚 to V can be considered as an  

operator from 𝑉 on 𝑉 defined by 𝑢 ∈ 𝑉 ↦ 𝑃𝑚𝑢 = ∑ (𝑢, 𝜓𝑖)𝜓𝑖
𝑚
𝑖=0 . If 𝑢 ∈ 𝐻, 𝑃𝑚𝑢 is the orthogonal 

projection of 𝑢 in 𝑉𝑚, and then ‖𝑃𝑚𝑢‖𝐻 ≤ ‖𝑢‖𝐻. The transpose operator 𝑃𝑚
𝑇 of 𝑃𝑚|𝑉 identifies 

with 𝑃𝑚 ∶  𝑉′ → 𝑉′, and therefore we have ‖𝑃𝑚𝑢‖ℒ(𝑉′,𝑉′) = ‖𝑃𝑚𝑢‖ℒ(𝑉,𝑉). If 𝑢 ∈ 𝑉 we can 

calculate 

 

 

 

Therefore, for all 𝑢 ∈ 𝑉 we have 

 

 

 

The previous inequality shows that the family of operators 𝑃𝑚 is uniformly bounded in 𝑉′, 

 

 

 

Then, the following inequalities are met 



 

 

Inequality (35) is obtained from the previous inequalities and (43). We will proceed 

similarly to obtain the estimate for 𝑤′𝑚 . From (27) it follows that 

 

 

 

and therefore 

 

 

 

where we take the operator 𝑃𝑚 restricted to the orthogonal projection 𝑃𝑚|𝐻, so ‖𝑃𝑚‖ℒ(𝐻,𝐻) ≤ 1. 

Then, for 𝑇 > 0 fixed, from (33), (34) and by proposition 6, we have (36) 

 

 

 

 

Convergence of approximate solutions 

 

 

In the previous section it was shown that the approximate solutions proposed in (25) exist and are 

defined for all 𝑡 >  0. In this section we will use the a priori estimates (33) - (36) to show that, 

there exist subsequences of the approximate solutions (𝑢𝑚, 𝑤𝑚) that converge, in a suitable form, 



to a weak solution according to the definition 4. Furthermore, we prove that this weak solutions is 

also a strong solution. 

Lemma 2. There are subsequences, which for convenience are also denoted as 𝑢𝑚, 𝑢𝑚
′ , 𝑤𝑚 and 

𝑤′𝑚 such that 

 

 

 

and  

 

 

 

Proof. Evidently 𝐿𝑝(𝑄𝑇  ) ∩  𝐿2(0, 𝑇; 𝑉) is a reflexive space since 𝐿𝑝(𝑄𝑇) is reflexive, see (Brezis 

2011, prop. 3.20, p. 60). By inequality (34), 𝑢𝑚 is a bounded sequence in 𝐿𝑝(𝑄𝑇 ) ∩  𝐿2(0, 𝑇; 𝑉), 

then it has a subsequence that converge weakly, see (Brezis 2011, thm. 3.18, p. 69). So (44) has 

been proved. By a similar argument we obtain (45)-(47). 

Note that, because 2 ≥  𝑝′, we have 𝐿𝑝′
(𝑄𝑇) +  𝐿2(0, 𝑇; 𝑉′) ⊂ 𝐿𝑝′

(0, 𝑇; 𝑉′). By lemma 

1 we know that 𝑢𝑚
′  is bounded in 𝐿𝑝′

(0, 𝑇; 𝑉′) while 𝑢𝑚 is bounded in 𝐿2(0, 𝑇; 𝑉) and then 𝑢𝑚 

is a bounded sequence in 𝑊1,2,𝑝′
(0, 𝑇;  𝑉, 𝑉′), see theorem 2. Then, by the compact immersion of 

𝑊1,2,𝑝′
(0, 𝑇; 𝑉, 𝑉′) in 𝐿2(𝑄𝑇), there is a subsequence that converge in 𝐿2(𝑄𝑇). 

Corollary 1. The subquences 𝑢𝑚, 𝑤𝑚 satisfy 

 

 

 



and also, it has that 

 

 

 

in 𝒟′(0, 𝑇). That is,𝑢 ∈ 𝑊1,2,𝑝′
(0, 𝑇;  𝑉, 𝑉′), and 𝑤 ∈ 𝑊1,2,2(0, 𝑇; 𝐻, 𝐻). 

Proof. Let us take  𝑣 ∈ 𝑉, 𝜙 ∈ 𝒟(0, 𝑇), and note that, 

 

 

 

by taking limit in the above equality we obtain 

 

 

 

Thus, we have obtained (50). Also, by the weak converge of 𝑢𝑚
′ , we get 

 

 

 

and, due to the uniqueness the weak limit 

 

 

that is 



 

 

In a similar form are proved the affirmations for 𝑤. 

Corollary 2. For  𝜓𝑖, 𝑖 ≥ 0 and the bilinear form 𝑎(⋅,⋅) defined in (15) we have 

 

 

 

Proof. Because 𝑎(⋅,⋅)  is a continuous bilinear form, the map 

 

 

 

is a continuous linear functional on 𝐿𝑝(𝑄𝑇) ∩ 𝐿2(0, 𝑇;  𝑉 ), and then the result follows 

immediately from the fact that 𝑢𝑚 converges to 𝑢 weakly in 𝐿𝑝(𝑄𝑇) ∩ 𝐿2(0, 𝑇;  𝑉 ). 

Corollary 3. For 𝑓 and 𝑔 defined in (7)-(8) and for all  𝜓𝑖 , 𝑖 ≥ 0, we have 

 

 

 

Proof. Given that 𝑢𝑚 → 𝑢, and 𝑤𝑚 → 𝑤, in 𝐿2(𝑄𝑇), it obtains 

 

 

and by the continuity of 𝑓, 



 

Also, 

 

 

 

And 

 

 

 

Using an argument of dominated convergence type, see (Lions 1969), we can affirm that 

𝑓(𝑢𝑚, 𝑤𝑚), converges to 𝑓(𝑢, 𝑤), and 𝑔(𝑢𝑚, 𝑤𝑚), converges to 𝑔(𝑢, 𝑤), weakly in 𝐿𝑝′
(𝑄𝑇), and 

𝐿2(𝑄𝑇), respectively, that is, for all 𝜁 ∈ 𝐿𝑝(𝑄𝑇) and 𝜂 ∈ 𝐿2(𝑄𝑇), it has 

 

 

 

taking  𝜁 = 𝜙𝑣, 𝜂 = 𝜙ℎ with 𝜙 ∈ 𝒟′(0, 𝑇), 𝑣 ∈ 𝑉 and ℎ ∈ 𝐻, it has the result. 

 

 

Conclusion 



 

 

By the three previous corollaries it is concluded that the functions 𝑢 and 𝑤 satisfy for all 𝑖 ≥ 1 

the following 

 

 

 

where equality is considered in 𝒟′(0, 𝑇). Then, because functions  𝜓𝑖, 𝑖 ≥ 0 are dense in 𝑉, it 

follows that 𝑢 and 𝑤 satisfy the equations (29)-(30) in the definition of weak solution 4. 

For other hand, by corollary 1, these weak solutions 𝑢, 𝑤 belong to 𝑊1,2,𝑝′
(0, 𝑇;  𝑉, 𝑉′) 

and 𝑊1,2,2(0, 𝑇; 𝐻, 𝐻), thus they are strong solutions , too. 

In other words, we have proved that if the systems of Faedo-Galerkin (26)-(27) are 

considered with uniformly bounded initial conditions the corresponding solutions, 𝑢𝑚, 𝑤𝑚, have  

subsequences that converge, in a suitable form, to a weak solution of the considered problem. 

Note that, in the case that the Cauchy problem be considered for the variational 

formulation, that is, initial conditions 𝑢0, 𝑤0 be given the systems of Faedo-Galerkin (26)-(27) 

have initial conditions 𝑢0𝑚, 𝑤0𝑚 which are the projections of 𝑢0, 𝑤0 in the subspaces 𝑉𝑚, for each 

𝑚 = 0, 1, …, and are uniformly bounded. In fact, 

 

 

 

thus, by applying the results previously exposed we obtain the existence of weak solution of the 

variational Cauchy problem. 

 

 

Continuity 



 

 

From the previous section we have that 𝑢 ∈  𝑊1,2,𝑝′
(0, 𝑇;  𝑉, 𝑉′) ⊂  𝑊1,2,2(0, 𝑇;  𝑉 ′ 𝑉 ′), and 

𝑤 ∈ 𝑊1,2,2(0, 𝑇; 𝐻, 𝐻). Then, by theorem (3) it follows that the functions 𝑢: 𝑡 ∈ [0, 𝑇] → 𝑢(𝑡) ∈

𝑉′ and 𝑤: 𝑡 ∈ [0, 𝑇] →  𝑤(𝑡) ∈ 𝐻 are continuous. Regarding 𝑢, it only shows that 𝑢 it is weakly 

continuous in 𝑉. 

 By corollary 1 it follows that  

 

 

 

where equality is considered in 𝒟′(0, 𝑇). Then, from (52), we have 

 

 

 

so that the function 𝑡 →  ‖𝑢(𝑡)‖𝐻
2  is in 𝐻1(0, 𝑇), and then is continuous from [0, 𝑇] to ℝ. Then, it 

follows that function 𝑢: 𝑡 ∈  [0, 𝑇] ↦  𝑢(𝑡) ∈  𝐻 is continuous. 

 When we consider 𝑢𝑚0 and 𝑤𝑚0 as the orthogonal projections in 𝐻 of 𝑢0 and 𝑤0 

respectively, we obtain that 𝑢(0) = 𝑢0 and 𝑤(0) = 𝑤0. 
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