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RESUMEN: Este trabajo muestra que la regresión alzada puede considerarse como una metodoloǵıa
apropiada para reducir la multicolinealidad aproximada que aparece de forma natural en los problemas

de regresión lineal. Cuando se trata de tres variables explicativas, su aplicación reduce el número de

condición de la matriz asociada al conjunto de datos. Sin embargo, este procedimiento tiene un umbral:
aunque las columnas de dicha matriz se pueden separar, se demuestra que el número de condición nunca

será menor que una constante que se puede obtener fácilmente utilizando los elementos de la matriz inicial.
Finalmente, la contribución se ilustra a través de un ejemplo emṕırico.

Palabras Clave: Multicolinealidad, regresión alzada, número de condición, autovalores, transformación de
datos.

ABSTRACT: This manuscript shows that the raise regression can be considered as an appropriate
methodology in order to reduce the approximate multicollinearity that naturally appears in problems of

linear regression. When three explanatory variables are involved, its application reduces the condition

number of the matrix associated to data set. Nevertheless, this procedure has a threshold: although the
columns of X can be separated, it is proved that the condition number will never be less than a constant
that can be easily worked out by using the elements of the initial matrix. Finally, the contribution is

illustrated through an empirical example.
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1. Introduction

Regression analysis is a powerful methodology to describe the relationship between a response

variable (usually denoted by Y ) and one or more explicative variables (denoted by X1, X2, . . . , Xn).

Although researchers can consider a large list of possible models in order to study how variables

X1, X2, . . . , Xn explain the variable Y , linear models are, undoubtedly, the most used in practice.

Their simplicity and applicability lead most of researchers to use them at least as a first approach.

When studying a variable depending another ones, it is usual to involve a large number of

independent variables X1, X2, . . . , Xn (as many variables as we can handle in practice). In some

cases it appears a problem of multicollinearity because there is a high correlation among the

input variables X1, X2, . . . , Xn (even they could be linearly dependent). This can be interpreted

as such variables are measuring the same phenomena but in different ways. It is well-known that

the existence of multicollinearity affects to the estimation by ordinary least squares (OLS) of

the model as well as the interpretation of the obtained results. Ridge estimation (RE) (see e.g.

Hoerl and Kennard1,2) is commonly applied as alternative method to analyze data by reducing the

effects of multicollinearity. Usually labeled in statistic and econometric applications it is applied

in many different fields such as medicine, physics and chemistry (see McDonald3). Recently other

alternative methodologies have been proposed in order to (partially or totally) palliate the problem

of multicollinearity. For instance, Garćıa et. al.4 proposed to raise an independent variable to

mitigate the effects of the linear dependence between explicative variables. This methodology is

known as raise regression and was more developed by Salmerón et. al.5.

Whatever been the applied methodology, it is important to check that its application has

mitigated the collinearity. This fact justifies the development of measures to determine the presence

of multicollinearity. A widely used measure in the literature is the variance inflator factor (VIF)

(see e.g. Marquardt6, Theil7, Fox and Monette8 and O’Brien9). Salmerón et. al.5 presented the

application of the VIF in the raise regression. However, this measure is not to always applicable,

for example, when any of the independent variables is qualitative or there is an interaction term

obtained from a dichotomic variable. This fact justifies the study of the condition number to be

applied after the application or the raise regression. Garćıa et. al.10 showed, in an empiric study

with computational simulations, that the condition number decreases with the application of the

raise regression and presented some algebraical problems.

In this paper we establish the limits of such improvement when three explicative variables are

involved (including the constant term). In this way, we show that, if one variable is appropriately

raised, we can reduce the condition number of the data matrix up to a concrete limit (and not

beyond such limit). Therefore, the problem of multicollinearity can be partially overpassed by

using this process.

A second question of interest is the transformation data required to appropriately calculate

the condition number. In ordinary least squares (OLS), Belsley et. al.11 shown that the basic data

should be scaled to have equal length since it is assured that the matrix with orthogonal variables

presents a condition number equal to 1 (the minimum value possible). However, this condition is

also verified if the data are typified or standardized. The difference is that in these last cases the

model has no independent term. Thus, although a lesser condition number will be obtained (see

Belsley12) the influence of the independent term will be lost. In this paper, this question is treated

for the raise regression.

The paper is structured as follows: Section 2 reviews how to calculate the condition number

in OLS and introduces the raise regression. Section 3 develops the calculation of the condition

number in the raise regression transforming the data to be unit length and standardized. Finally,

Section 4 illustrates the contribution of this paper through an empirical example.
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2. Preliminaries about the problem of multicollinearity

This section introduces the problem of multicollinearity and some basic preliminaries. From now

on, let Mm×n (R) denote the family of matrices with m rows and n columns over the field of all

real numbers R, and let Mn (R) =Mn×n (R) the set of all real square matrices of order n. It will

be supposed that the vectors u ∈ Rn are given in columns.

2.1. The statement of the problem of approximate multicollinearity

Let us consider a multiple linear model

Y = β0 + β1X1 + β2X2 + U, (1)

in which a real random variable Y (called the dependent or response variable) is explained by

means of two real random variables X1 and X2 (called the independent or explicative variables).

Implicitly, the constant variable X0 ≡ 1 is considered. Given a random sample { (x1i, x2i, yi) }ni=1,

it is possible to establish the following matrix X associated to the independent variables X1 and

X2, and Y for response variable

X =


1 x11 x21
1 x12 x22
...

...
...

1 x1n x2n

 ∈Mn×3 (R) and Y =


y1
y2
...

yn

 ∈Mn×1 (R) .

When no confusion is possible, we will also denote the columns of X by X0 ≡ 1, X1 and X2,

respectively. The OLS estimation of the real coefficients β0, β1 and β2 is given by

β̂ =
(
XTX

)−1
XTY, (2)

where the matrix XTX ∈ M3 (R) plays a crucial role in this process: it must be invertible.

Such property holds if, and only if, the columns of X are linearly independent vectors. If this

property is not fulfilled, that is, if the columns of X are linearly dependent, it appears a problem

of multicollinearity. In some cases, although XTX can be invertible, its determinant can be near

to zero. In such cases, although the columns of X are linearly independent, they are near to be

dependent: this is the problem of approximate multicollinearity. Under this condition, although

estimation (2) can be computed, the estimation of model (1) will be unstable.

2.2. The condition number

A simple but effective procedure to diagnose approximate multicollinearity is based on the condition

number of the matrix X, which is given by

kX =

√
λmax

λmin
,

where λmax is the maximum eigenvalue and λmin is the minimum eigenvalue of a definite positive

matrix obtained as XT X by following three possible transformations of X: (1) Normalizing the

columns of X (obtaining a matrix Xu`); (2) standardizing the data (matrix Xs); and (3) typifying

the data. Taking into account that kX ≥ 1 (because 0 < λmin ≤ λmax), the aim to transform the

data is to consider a matrix such that its condition number is 1 when data are orthogonal. For

instance, if X is the diagonal matrix X = diag(1, 1, 10), the eigenvalues of XT X = diag(1, 1, 100)

verify λmax/λmin = 100, and a condition number like 10 would not detect that data are orthogonal.

Hence, it is necessary to consider a transformation of data in such a way that condition number is

1 when data are orthogonal. In the following lines, we describe each transformation.
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Normalizing the columns of X, we consider the modified matrix

Xu` =



1√
n

x11√∑
x21i

x21√∑
x22i

1√
n

x12√∑
x21i

x22√∑
x22i

...
...

...

1√
n

x1n√∑
x21i

x2n√∑
x22i


,

where we agree that, from now on, sums are given from i = 1 to i = n. Notice that, after this

normalization, columns of Xu` are unitary with respect to Euclidean metric on Rn, and the matrix

XT
u`Xu` has the form

XT
u`Xu` =



1

∑
x1i√

n
√∑

x21i

∑
x2i√

n
√∑

x22i∑
x1i√

n
√∑

x21i
1

∑
x2i x1i√∑
x21i

√∑
x22i∑

x2i√
n
√∑

x22i

∑
x2i x1i√∑
x21i

√∑
x22i

1


.

Matrix XT
u`Xu` is real, symmetric and definite positive, so its three eigenvalues, λ1, λ2 and λ3, are

strictly positive. For convenience, we agree that they will be ordered in the following way

0 < λ1 ≤ λ2 ≤ λ3.

With this notation, the condition number of X is

kX =

√
λmax

λmin
=

√
λ3
λ1
≥ 1.

It is usual to accept that the collinearity is moderate for values of the condition number between

20 and 30, high for values between 30 and 100, and unacceptable for values higher than 100.

The previous methodology is not the unique transformation to get that a matrix with orthogonal

variables has a condition number equal to 1. It is also possible to standardize the data since, in

this case, the matrix used to calculate the condition number coincides with the correlation matrix.

Xs =



x11 −X1√
nVar(X1)

x21 −X2√
nVar(X2)

x12 −X1√
nVar(X1)

x22 −X2√
nVar(X2)

...
...

x1n −X1√
nVar(X1)

x2n −X2√
nVar(X2)


, XT

s Xs=

(
1 corr(X1, X2)

corr(X1, X2) 1

)
.

Notice that this transformation implies the elimination of the independent term in model (1).

The third possible alternative is to typify the data. However, in this case, the condition number

will coincide with the one obtained from standardized data. Thus, throughout this manuscript, we

will only consider and compare the results obtained by employing the first two transformations of

data: unit length and standardization.
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2.3. Raise regression for reducing approximate multicollinearity

In order to overcome the above-mentioned drawbacks when collinearity appears, raise regression

was introduced in Garćıa et. al. 4, and in Salmerón et. al. 5. To correct the problem of approximate

multicollinearity before proceeding to the estimation, let assume that we are interested in raising

an independent variable (for instance, X1) by using the other ones (in this case, X0 and X2).

Hence we will separate them through the following auxiliary regression

X1 = α̂0 + α̂2X2 + E, (3)

whose estimation by OLS is α̂ = (XT
2 X2)−1XT

2 X1. The vector E = (e1, e2, . . . ,

en)T ∈ Rn cannot be zero because we assume that columns of X are not linearly dependent,

and it satisfies E ⊥ X0 ≡ 1 and E ⊥ X2, so

n∑
i=1

ei =
n∑
i=1

x2i ei = 0. (4)

The raise vector, denoted by X̃1(t), is defined as

X̃1(t) = X1 + tE, where t ∈ [0,+∞) .

Let us show that

X̃1(t) 6= 0 for all t ∈ [0,+∞) . (5)

Reasoning by contradiction, suppose that there is t0 ∈ [0,+∞) such that X̃1(t0) = 0. Then

−t0E = X1 = α̂0 + α̂2X2 +E, so α̂0X0 + α̂2X2 + (1 + t0)E = 0. Thus E is a linear combination of

X0 and X2, which is a contradiction because E ⊥ X0 and E ⊥ X2. This contradiction guarantees

that (5) holds.

The raise method will be obtained by substituting in model (1) the vector X1 by the raise

vector X̃1(t), that is, the raise method will be the OLS regression with the vectors X̃1(t) and X2

instead of X1 and X2. Then, the model to estimate will be given by

Y = β0 (t) + β1(t) X̃1(t) + β2(t)X2 +W, (6)

where the estimated parameters depend on t: they will be called raise estimators and they will be

denoted as β̂0 (t), β̂1(t) and β̂2(t).

By using this methodology, correlation between vectors X̃1(t) and X2 will be less than the

correlation between vectors X1 and X2, so the problem of multicollinearity is partially reduced.

Example 1 Next, let apply this technique to a set of data previously considered by Hurvich13.

Assume that X1 =“number of households” and X2 =“number of owner-occupied households” are

used as explanatory variables (both of them are measured in units of 10000 households) in order

to study the evolution of the monthly sales of backyard satellite antennas (variable Y ). Table 1

contains the data set obtained in nine randomly selected districts. The following linear model can

be computed by using the mentioned data set (with standard deviation in parentheses)

Ŷ = −2.38163 + 2.40179X1 + 1.4435X2, R2 = 0.9279, F2,6 = 38.63. (7)

(10.913) (2.221) (3.525)

Since X1 and X2 are linearly independent variables and the associated coefficient of determination

of the linear model (7) is 92.79%, one can believe that variables X1 and X2 explain variable Y

in an appropriate way. However, none of the estimated coefficients are significantly different to

zero while the model is globally significant which means that a possible problem of multicollinearity

appears. Also, the determinant of the correlation matrix, 0.0286, is very close to zero and the
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Tabla 1. Data set.

Satellite antenna sales

District Sales (Y ) Households (X1) Owner-occupied households (X2)

1 50 14 11

2 73 28 18

3 32 10 5

4 121 30 20

5 156 48 30

6 98 30 21

7 62 20 15

8 51 16 11

9 80 25 17

condition number of matrix X, calculated for unit length data, kX = 36.343, also confirms the

existence of this problem. As a consequence, collinearity between variables X1 and X2 is high.

Thus, this setting seems to be ideal to use the raise regression. The following results are obtained

by raising every variable for t = 5:

Ŷ = −4.7154 + 0.4003 X̃1(5) + 4.5741X2, R2 = 0.9279, F2,6 = 38.63.

(10.6103) (0.3702) (0.8311)

Ŷ = −0.9448 + 3.1489X1 + 0.2406 X̃2(5), R2 = 0.9279, F2,6 = 38.63.

(10.0927) (0.5237) (0.5875)

Note that the estimated coefficient of the not raised variable is now individually significant while

the coefficient of determination and the global significance test are not modified. It is possible to

find more information about this estimation method in Salmerón et al.5.

On the other hand, if the model is estimated from standardized data the condition number will

be lesser than 20 (kX = 11.741) suggesting that the problem of collinearity is solved. However, this

conclusion will be a contradiction to the rest of evidences since the symptoms of multicollinearity

still persist as it is shown in the estimated model

Ŷ = 0.7007X1 + 0.2654X2, R2 = 0.9279, F2,7 = 45.07.

(0.6) (0.6)

This example confirms that the Belsey’s statement12 about centered data (the problem is that a

low condition number for centered data need not indicate the absence of ill conditioning) is also

satisfied for standardized data.

3. About the limits of reducing the condition number by raise regression

This section studies the behavior of the condition number in the raise regression supposing two

data transformation: unit length and standardization.
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3.1. Unit length transformation

Before computing the condition number of the model (6), we have to modify the raised matrix

X (t) =


1 x11 + te1 x21
1 x12 + te2 x22
...

...
...

1 x1n + ten x2n

 , (8)

so that it has unit length

Xu` (t) =



1√
n

x11 + te1√∑
(x1i + tei)

2

x21√∑
x22i

1√
n

x12 + te2√∑
(x1i + tei)

2

x22√∑
x22i

...
...

...

1√
n

x1n + ten√∑
(x1i + tei)

2

x2n√∑
x22i


.

In this way, the columns of Xu` (t) are unitary vectors with respect to the Euclidean metric on

Rn. This normalization yields to the following matrix

Xu` (t)
T ·Xu` (t) =

1

∑
(x1i+tei)

√
n

√∑
(x1i+tei)

2

∑
x2i

√
n

√∑
x2
2i∑

(x1i+tei)
√
n

√∑
(x1i+tei)

2
1

∑
x2i (x1i+tei)√∑

x2
2i

√∑
(x1i+tei)

2

∑
x2i

√
n

√∑
x2
2i

∑
x2i (x1i+tei)√∑

x2
2i

√∑
(x1i+tei)

2
1


.

Notice that, by (4),
n∑
i=1

(x1i + tei) =
n∑
i=1

x1i + t
n∑
i=1

ei =
n∑
i=1

x1i

and
n∑
i=1

x2i (x1i + tei) =
n∑
i=1

x2i x1i + t
n∑
i=1

x2i ei =
n∑
i=1

x2i x1i

do not depend on t. Hence, for all t ∈ [0,+∞),

B (t) = Xu` (t)
T ·Xu` (t) =

 1 a (t) b

a (t) 1 c (t)

b c (t) 1

 ,

where

a(t) =

∑
x1i

√
n

√∑
(x1i + tei)

2
, b =

∑
x2i√

n
√∑

x22i
, (9)

c(t) =

∑
x2i x1i√∑

x22i

√∑
(x1i + tei)

2
. (10)
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Notice that numerators in (9)-(10) do not depend on t. We remark that

[ ∃ t0 ≥ 0 : a (t0) = c (t0) ] ⇔
∑
x1i√
n

=

∑
x2i x1i√∑
x22i

⇔ [ a (t) = c(t) for all t ≥ 0 ] . (11)

Furthermore, since E 6= 0,

lim
t→+∞

a (t) = lim
t→+∞

c (t) = 0. (12)

The characteristic polynomial of each matrix B (t) is:

pB(t) (λ) = det (B (t)− λI3) =

∣∣∣∣∣∣
1− λ a (t) b

a (t) 1− λ c (t)

b c (t) 1− λ

∣∣∣∣∣∣
= −λ3 + 3λ2 +

(
a(t)2 + b2 + c(t)2 − 3

)
λ

+
(
2a(t) b c(t)− a(t)2 − b2 − c(t)2 + 1

)
.

As each matrix B (t) must be symmetric and positive definite, it has three real eigenvalues that

are strictly positive. If we denote by λ1 (t), λ2 (t) and λ3 (t) the three positive eigenvalues of B (t)

such that

0 < λ1 (t) ≤ λ2 (t) ≤ λ3 (t) ,

then we have that

pB(t) (λ) = − (λ− λ1 (t)) (λ− λ2 (t)) (λ− λ3 (t)) .

In other words,

λ3 − 3λ2 +
(
3− a(t)2 − b2 − c(t)2

)
λ+

(
a(t)2 + b2 + c(t)2 − 2a(t) b c(t)− 1

)
= (λ− λ1 (t)) (λ− λ2 (t)) (λ− λ3 (t)) , (13)

for all λ ∈ R and all t ≥ 0. In particular

λ1 (t) + λ2 (t) + λ3 (t) = 3 for all t ≥ 0,

which means that functions λ1, λ2, λ3 : [0,+∞)→ (0,+∞) are bounded because, for all t ≥ 0 and

all j ∈ {1, 2, 3},

0 < λj (t) < λ1 (t) + λ2 (t) + λ3 (t) = 3. (14)

Theorem 1 Under the previous considerations,

lim
t→+∞

λ1 (t) = 1− | b | , lim
t→+∞

λ2 (t) = 1 and lim
t→+∞

λ3 (t) = 1 + | b | . (15)

In particular,

lim
t→+∞

kX(t) =

√
1 + | b |
1− | b |

.

Proof 1 Notice that

pB(t) (1− b) = − (1− b)3 + 3 (1− b)2 +
(
a(t)2 + b2 + c(t)2 − 3

)
(1− b)

+
(
2a(t) b c(t)− a(t)2 − b2 − c(t)2 + 1

)
= −b a(t)2 + 2a(t) b c(t)− b c(t)2 = −b (a (t)− c (t))

2
,
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and, similarly, pB(t) (1 + b) = b (a (t)− c (t))
2
. Furthermore,

lim
λ→−∞

pB(t) (λ) = +∞ and lim
λ→+∞

pB(t) (λ) = −∞.

Taking into account (11), there is t0 ∈ [0,+∞) such that a (t0) = c (t0) if, and only if, a (t) = c(t)

for all t ≥ 0. Hence, we consider the following four cases.

Case 1) b = 0. In this case, the characteristic polynomial of B (t) is:

pB(t) (λ) = −λ3 + 3λ2 +
(
a(t)2 + c(t)2 − 3

)
λ+

(
1− a(t)2 − c(t)2

)
= − (λ− 1)

(
λ− 1−

√
a (t)

2
+ c (t)

2

)(
λ− 1 +

√
a (t)

2
+ c (t)

2

)
,

whose roots are

λ1 (t) = 1−
√
a (t)

2
+ c (t)

2
, λ2 (t) = 1 and

λ3 (t) = 1 +

√
a (t)

2
+ c (t)

2
.

Then (12) guarantees that (15) holds because b = 0.

Case 2) There is t0 ∈ [0,+∞) such that a (t0) = c (t0). This case is equivalent to suppose that

a (t) = c(t) for all t ≥ 0. Therefore

pB(t) (λ) = −λ3 + 3λ2 +
(
a(t)2 + b2 + c(t)2 − 3

)
λ

+
(
2a(t)bc(t)− a(t)2 − b2 − c(t)2 + 1

)
= −λ3 + 3λ2 +

(
2a(t)2 + b2 − 3

)
λ+

(
2a(t)2b− 2a(t)2 − b2 + 1

)
= − (λ− 1 + b)

(
λ− 1− b−

√
8a(t)2+b2

2

)(
λ− 1− b+

√
8a(t)2+b2

2

)
.

Since a (t)→ 0 as t→ +∞,

1 +
b−
√
b2

2
=

{
1, if b ≥ 0,

1− b, if b < 0,

and

1 +
b+
√
b2

2
=

{
1 + b, if b ≥ 0,

1, if b < 0,

then the three eigenvalues of B (t) converge, as t→ +∞, to 1− b, 1 and 1 + b, respectively.

Case 3) b > 0 and a (t) 6= c (t) for all t ≥ 0. Since

pB(t) (0) = λ1 (t)λ2 (t)λ3 (t) > 0,

pB(t) (1− | b |) = pB(t) (1− b) = −b (a (t)− c (t))
2
< 0,

pB(t) (1 + | b |) = pB(t) (1 + b) = b (a (t)− c (t))
2
> 0,

lim
λ→+∞

pB(t) (λ) = −∞,

the alternate of the sign and the continuity of the polynomial function implies that

λ1 (t) ∈ (0, 1− b) , λ2 (t) ∈ (1− b, 1 + b) and λ3 (t) ∈ (1 + b,+∞) .

Therefore, each matrix B (t) has three simple eigenvalues that satisfy

0 < λ1 (t) < 1− b < λ2 (t) < 1 + b < λ3 (t) .
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Taking limit as t→ +∞ in (13), the bounded functions λ1, λ2 and λ3 must converge to the roots

of the polynomial

lim
t→+∞

[
−λ3 + 3λ2 +

(
a(t)2 + b2 + c(t)2 − 3

)
λ

+
(
2a(t) b c(t)− a(t)2 − b2 − c(t)2 + 1

) ]
= −λ3 + 3λ2 +

(
b2 − 3

)
λ+

(
1− b2

)
= − (λ− 1) (λ+ b− 1) (λ− b− 1) .

Then (15) holds.

Case 4) b < 0 and a (t) 6= c (t) for all t ≥ 0. In this case, since

pB(t) (0) = λ1 (t)λ2 (t)λ3 (t) > 0,

pB(t) (1− | b |) = pB(t) (1 + b) = b (a (t)− c (t))
2
< 0,

pB(t) (1 + | b |) = pB(t) (1− b) = −b (a (t)− c (t))
2
> 0,

lim
λ→+∞

pB(t) (λ) = −∞,

we can repeat the arguments of the third case. �

The following result shows that raise regression is useful to reduce condition number. However,

this process has a finite threshold.

Corollary 1 Under the hypothesis of Theorem 1, for all t ∈ [0,+∞),

kX(t) ≥ lim
s→+∞

kX(s) =

√ √
n
∑
x22i + |

∑
x2i |√

n
∑
x22i − |

∑
x2i |

= k∞.

In particular, kX ≥ k∞.

Proof 2 As we have shown in the four cases of the proof of the previous theorem, λ1 (t) ≤ 1− | b |
and λ3 (t) ≥ 1 + | b | for all t ≥ 0, so

kX(t) =

√
λ3 (t)

λ1 (t)
≥

√
1 + | b |
1− | b |

,

where

√
1 + | b |
1− | b |

=

√√√√√√√√√
1 +

∣∣∣∣∣
∑

x2i

√
n

√∑
x2
2i

∣∣∣∣∣
1−

∣∣∣∣∣
∑

x2i

√
n

√∑
x2
2i

∣∣∣∣∣
=

√√√√√√√√√
√
n

n∑
i=1

x22i +

∣∣∣∣ n∑
i=1

x2i

∣∣∣∣√
n

n∑
i=1

x22i −
∣∣∣∣ n∑
i=1

x2i

∣∣∣∣
.

In particular,

kX = kX(0) ≥

√
1 + | b |
1− | b |

=

√√
n
√∑

x22i + |
∑
x2i |√

n
√∑

x22i − |
∑
x2i |

.

�

Thus, for unit length data, kX(t) is continuous in t = 0 (kX(0) = kX) and always equal or higher

than 11.

1If k∞ < 1 then |b| < 0, which is not possible.
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Remark 1 For the sake of completeness, notice that | b | < 1 because of the Cauchy-Schwarz

inequality applied to vectors u = X0 = (1, 1, . . . , 1)
T

and v = X2 = (x21, x22, . . . , x2n)
T

. Indeed,

| (1, 1, . . . , 1) · (x21, x22, . . . , x2n) | ≤ ‖ (1, 1, . . . , 1) ‖2 ‖ (x21, x22, . . . , x2n) ‖2

⇔
∣∣∣∑x2i

∣∣∣ ≤ √n√∑x22i ⇔ | b | ≤ 1,

and the equality can only hold when u and v are linearly dependent, but this is impossible since we

assumed that the columns of X are linearly independent.

3.2. Decreasingness of condition number

In this subsection we study the monotonicity of the function kX(t) : [0,+∞) → [1,+∞). In

particular we show that it is decreasing, so its limit is, in fact, its infimum. We remark that

we will use the notions increasingness and decreasingness in a strict way, that is, a function

f : [0,+∞)→ R is increasing if 0 ≤ t1 < t2 implies that f (t1) < f (t2).

In order to study the monotonicity of the following functions, it is usual to assume that

∑
x1i ≥ 0,

∑
x2i ≥ 0 and

∑
x1ix2i ≥ 0. (16)

These conditions follows from two facts: on the one hand, socioeconomic variables are usually

non-negative; on the other hand, if this is not the case, we can replace variables X1 and X2 by

raised variables X1 = X1 + c1 and X2 = X2 + c2, where constants c1 and c2 are such that c1 ≥ x1i
and c2 ≥ x2i for all i ∈ {1, 2, . . . , n}. Then model (1) can be replaced by

Y = β0 + β1X1 + β2X2 + U = β0 + β1 (X1 − c1) + β2 (X2 − c2) + U

= (β0 − β1c1 − β2c2) + β1X1 + β2X2 + U

= γ0 + β1X1 + β2X2 + U.

If one of the constants given in (16) is zero, the eigenvalues of each matrix B (t) can be easily

computed.

Proposition 1 If at least one of the following conditions holds:


b = 0,

or there is t1 ∈ [0,+∞) such that a (t1) = 0,

or there is t2 ∈ [0,+∞) such that c (t2) = 0,

then the three eigenvalues of each matrix B (t) are, for all t ∈ [0,+∞),

λ1 (t) = 1−
√
a (t)

2
+ b2 + c (t)

2
, λ2 (t) = 1,

λ3 (t) = 1 +

√
a (t)

2
+ b2 + c (t)

2
.

Proof 3 Notice that condition “there is t1 ∈ [0,+∞) such that a (t1) = 0” is equivalent to “a (t) =

0 for all t ∈ [0,+∞)” because, in any case,
∑
x1i = 0. The same is true for function c. If at least

one of the previous conditions holds, then 2 a(t) b c(t) = 0 for all t ∈ [0,+∞). Therefore, the
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characteristic polynomial of B (t) is

pB(t) (λ) = −λ3 + 3λ2 +
(
a(t)2 + b2 + c(t)2 − 3

)
λ

+
(
2a(t) b c(t)− a(t)2 − b2 − c(t)2 + 1

)
= −λ3 + 3λ2 +

(
a(t)2 + b2 + c(t)2 − 3

)
λ+

(
1− a(t)2 − b2 − c(t)2

)
= − (λ− 1)

(
λ− 1−

√
a (t)

2
+ b2 + c (t)

2

)
·
(
λ− 1 +

√
a (t)

2
+ b2 + c (t)

2

)
,

whose roots are given by the above-mentioned functions. �

The previous result guarantees that if one of the numbers considered in (16) is zero, we can

work out the three eigenvalues of each matrix B (t), so the condition number of B (t) is, for all

t ∈ [0,+∞),

kX(t) =

√
λ3 (t)

λ1 (t)
=

√√√√√ 1 +

√
a (t)

2
+ b2 + c (t)

2

1−
√
a (t)

2
+ b2 + c (t)

2
.

As functions a2 and c2 decrease to zero, then the function t 7→ kX(t) is decreasing.

From now on, suppose that∑
x1i > 0,

∑
x2i > 0 and

∑
x1ix2i > 0. (17)

In particular, henceforth, b > 0.

Proposition 2 The function t 7→
∑

(x1i + tei)
2

is increasing on [0,+∞), so the functions a and

c are C∞ and decreasing on [0,+∞).

Furthermore, the function

t 7→ 2 a(t) b c(t)

is positive and decreasing on [0,+∞), and the function

t 7→ −
(
a(t)2 + b2 + c(t)2

)
is negative and increasing on [0,+∞), and both functions are C∞.

Proof 4 Taking into account (4), nVar(E) =
∑
e2i , so (3) and (4) imply that

∑
x1iei = nVar(E)

and
∑

(x1i + tei)
2

=
∑
x21i + nVar(E)t (2 + t). In particular, the function t 7→

∑
(x1i + tei)

2
is

C∞, increasing on [0,+∞) and strictly positive. As a result, the functions a and c are decreasing

on [0,+∞), and both are C∞ on the same interval. Furthermore, it can be checked that

2 a(t) b c(t) =
2 (
∑
x1i) (

∑
x2i) (

∑
x2i x1i)

n2 (
∑
x22i) Var(E)

· 1

t2 + 2t
, (18)

−
(
a(t)2 + b2 + c(t)2

)
= − (

∑
x2i)

2

n (
∑
x22i )

−
(
∑
x1i)

2 (∑
x22i
)

+ n (
∑
x2i x1i)

2

n2 (
∑
x22i) Var(E)

· 1

t2 + 2t
,

so the first function is decreasing on [0,+∞) and the second one is increasing on [0,+∞), and

both functions are C∞ on [0,+∞). �

Next, let consider the functions µ1, µ2, µ3 : [0,+∞)→ R given by

µi (t) = λi (t)− 1 for all t ∈ [0,∞) .
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By (14), for all t ∈ [0,∞), µ1 (t) ≤ µ2 (t) ≤ µ3 (t) and µ1 (t)+µ2 (t)+µ3 (t) = 0. Using the notation

µ = λ− 1, the previous functions are the solutions of the characteristic polynomial:

− µ3 +
(
a(t)2 + b2 + c(t)2

)
µ+ 2 a(t) b c(t)

=

∣∣∣∣∣∣
−µ a (t) b

a (t) −µ c (t)

b c (t) −µ

∣∣∣∣∣∣ = det (B (t)− (µ+ 1)I3)

= − (µ− µ1 (t)) (µ− µ2 (t)) (µ− µ3 (t))

= −µ3 + (µ1 (t) + µ2 (t)− µ3 (t))µ2 − [µ1 (t)µ2 (t) + µ1 (t)µ3 (t)

+ µ2 (t)µ3 (t)] µ+ µ1 (t)µ2 (t)µ3 (t) .

In particular {
µ1 (t)µ2 (t) + µ1 (t)µ3 (t) + µ2 (t)µ3 (t) = −

(
a(t)2 + b2 + c(t)2

)
,

µ1 (t)µ2 (t)µ3 (t) = 2 a(t) b c(t).
(19)

Theorem 2 Under (17), the function t 7→ kB(t) is decreasing on [0,+∞).

Proof 5 Taking into account that b > 0, in the proof of Theorem 1 we showed that if there is

t0 ∈ [0,+∞) such that a (t0) = c (t0) then

λ1 (t) = 1− b, λ2 (t) = 1 +
b−

√
8a(t)2 + b2

2
,

λ3 (t) = 1 +
b+

√
8a(t)2 + b2

2
.

In this case, the result follows from the fact that the function a (and also a2) is decreasing on

[0,+∞). Next, suppose that a (t) 6= c (t) for all t ∈ [0,+∞). In the above mentioned proof we also

showed that

pB(t) (0) = λ1 (t)λ2 (t)λ3 (t) > 0,

pB(t) (1− b) = −b (a (t)− c (t))
2
< 0,

pB(t) (1 + b) = b (a (t)− c (t))
2
> 0,

lim
λ→+∞

pB(t) (λ) < 0.

In particular,

λ1 (t) ∈ (0, 1− b) , λ2 (t) ∈ (1− b, 1 + b) and λ3 (t) ∈ (1 + b, 3) .

This property guarantees that the eigenvalues of each matrix B (t) are simple, so functions

λ1, λ2, λ3 : [0,+∞)→ (0,+∞) are at least C1 on [0,+∞). Then functions µ1, µ2, µ3 : [0,+∞)→ R
also are C1 on [0,+∞). Since

µ1 (t)µ2 (t)µ3 (t) = 2 a(t) b c(t) > 0 for all t ∈ [0,+∞) ,

then functions µ1, µ2 and µ3 has constant sign on [0,+∞). In fact,

µ1 (t) ∈ (−1,−b) , µ2 (t) ∈ (−b, b) and µ3 (t) ∈ (b, 2) .

As µ1 is negative, µ3 is positive and µ1 (t)µ2 (t)µ3 (t) = 2 a(t) b c(t) > 0 then necessarily the

function µ2 is negative on [0,+∞). Hence

µ1 (t) ∈ (−1,−b) , µ2 (t) ∈ (−b, 0) , µ3 (t) ∈ (b, 2) and

µ1 (t) < µ2 (t) < 0 < µ3 (t) .
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Next, we prove that

µ′3 (t) 6= 0 for all t ∈ [0,+∞) .

Reasoning by contradiction, suppose that there is t0 ∈ [0,+∞) such that µ′3 (t0) = 0. Since µ′1 (t) +

µ′2 (t) +µ′3 (t) = 0 we deduce that µ′2 (t0) = −µ′1 (t0). In this case, by (18), (19) and Proposition 2,

0 >
∂

∂t

∣∣∣∣
t=t0

[ 2 a(t) b c(t) ] =
∂

∂t

∣∣∣∣
t=t0

[ µ1 (t)µ2 (t)µ3 (t) ]

= µ′1 (t0)µ2 (t0)µ3 (t0) + µ1 (t0)µ′2 (t0)µ3 (t0) + µ1 (t0)µ2 (t0)µ′3 (t0)

= µ′1 (t0)µ2 (t0)µ3 (t0) + µ1 (t0) (−µ′1 (t0))µ3 (t0)

= µ′1 (t0)µ3 (t0) (µ2 (t0)− µ1 (t0)) .

As µ2 (t0)− µ1 (t0) > 0 and µ3 (t0) > 0, we deduce that

µ′1 (t0) < 0. (20)

On the other hand, also by (18), (19) and Proposition 2,

0 <
∂

∂t

∣∣∣∣
t=t0

[
−
(
a(t)2 + b2 + c(t)2

) ]
=

∂

∂t

∣∣∣∣
t=t0

[ µ1 (t)µ2 (t) + µ1 (t)µ3 (t) + µ2 (t)µ3 (t) ]

= µ′1 (t0)µ2 (t0) + µ1 (t0)µ′2 (t0) + µ′1 (t0)µ3 (t0) + µ1 (t0)µ′3 (t0)

+ µ′2 (t0)µ3 (t0) + µ2 (t0)µ′3 (t0)

= µ′1 (t0)µ2 (t0) + µ1 (t0) (−µ′1 (t0)) + µ′1 (t0)µ3 (t0) + (−µ′1 (t0))µ3 (t0)

= µ′1 (t0)µ2 (t0)− µ1 (t0)µ′1 (t0) = µ′1 (t0) (µ2 (t0)− µ1 (t0)) ,

but from this inequality we deduce that µ′1 (t0) > 0, which contradicts (20). As a result, we deduce

that µ′3 (t) 6= 0 for all t ∈ [0,+∞). Reasoning in the same way, we can also deduce that µ′1 (t) 6= 0

for all t ∈ [0,+∞). As a consequence, µ1 and µ3 are strictly monotone functions. Taking into

account that

µ1 (t) ∈ (−1,−b) and µ3 (t) ∈ (b, 2) for all t ∈ [0,+∞) ,

lim
t→+∞

µ1 (t) = lim
t→+∞

λ1 (t)− 1 = −b, lim
t→+∞

µ3 (t) = lim
t→+∞

λ3 (t)− 1 = b,

we conclude that µ1 is increasing and µ3 is decreasing on [0,+∞). As a consequence, the function

t 7→ kX(t) =

√
λ3 (t)

λ1 (t)
=

√
1 + µ3 (t)

1 + µ1 (t)

is decreasing on [0,+∞). �
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3.3. Standardization transformation

In this case, before computing the condition number of the model (6), we have to modify the

raised2 matrix (8) by

Xs (t) =



x11 + t e1 −X1√
n Var(X̃1(t))

x21 −X2√
n Var(X2)

x12 + t e2 −X1√
n Var(X̃1(t))

x22 −X2√
n Var(X2)

...
...

x1n + t en −X1√
n Var(X̃1(t))

x2n −X2√
n Var(X2)


.

so that Xs (t)
T
Xs (t) is the correlation matrix

Xs (t)
T
Xs (t) =

(
1 corr(X̃1(t), X2)

corr(X̃1(t), X2) 1

)
,

where, since cov(E,X2) = 0,

corr(X̃1(t), X2) =
cov(X̃1(t), X2)√

Var(X̃1(t))
√

Var(X2)

=
cov(X1, X2)√

Var(X1) + (t2 + 2t) ·Var(E)
√

Var(X2)
.

The condition number is

kX(t) =

√
1 + corr(X̃1(t), X2)2

1− corr(X̃1(t), X2)2

=

√
(Var(X1) + (t2 + 2t) ·Var(E)) ·Var(X2) + cov(X1, X2)2

(Var(X1) + (t2 + 2t) ·Var(E)) ·Var(X2)− cov(X1, X2)2
.

And, in such a case,

lim
t→+∞

kX(t) = lim
t→+∞

√√√√√
(

Var(X1)+(t2+2t)·Var(E)
t2

)
·Var(X2) + cov(X1,X2)2

t2(
Var(X1)+(t2+2t)·Var(E)

t2

)
·Var(X2)− cov(X1,X2)2

t2

=

√
Var(E) ·Var(X2)

Var(E) ·Var(X2)
= 1.

Also, kX(t) is decreasing in t since

∂ kX
∂t

(t) = −Var(X2) · cov(X1, X2)2 · (2t+ 2) Var(E)√
h(t) · (g(t) ·Var(X2)− cov(X1, X2)2)

2 < 0,

where

h(t) =

(
Var(X1) + (t2 + 2t) ·Var(E)

)
·Var(X2) + cov(X1, X2)2

(Var(X1) + (t2 + 2t) ·Var(E)) ·Var(X2)− cov(X1, X2)2
,

g(t) = Var(X1) + (t2 + 2t) ·Var(E).

2Without loss of generality, we consider that the first variable is raised.
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Thus, for standardized data, kX(t) is continuous in t = 0 (where kX(0) = kX), it is decreasing

on t and it is always greater than or equal to 1.

Remark 2 If we have considered typified data Xtyp (t), then we would have obtained the same

results because Xtyp (t)
T
Xtyp (t) = nXs (t)

T
Xs (t), and the condition number would not have

changed.

4. Illustrative example

In this section we illustrate our study by describing an example in which raise regression can be

useful in order to reduce the effects of collinearity (see Section 2) and, consequently, the condition

number of the matrix associated to the problem.

0 10 20 30 40

1

2

3 Eigenvalues

t

Fig. 1. Evolution of eigenvalues of the matrix X̃(t).

0 10 20 30 40

5.0574

10

20

30

40 Condition number

t

Fig. 2. Evolution of the condition number of the matrix X̃(t) = (X̃1(t), X2) and its limit for unit length (red) and

standardized data (blue).

For the data used previously by Hurvich13, if we raise variable X1 by considering the new

explanatory variable X̃1(t) = X1 + tE, where t ∈ [0,+∞), we observe that the highest eigenvalue

of X (t) decreases and the lowest one increases when t→ +∞ (see Figure 1). Thus, for unit length

data, condition number stabilizes itself around the value:

lim
t→+∞

kX(t) =

√
23759 + 444

√
2846

1855
≈ 5.0574.
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Figure 2 shows the evolution of condition number depending on t. For t = 1, the condition number

is 18.453, so multicollinearity can be considered moderate, and for t = 3, the condition number is

less than 10. For t = 50, it is 5.240596, which is very close to its lower bound.

If variable X2 is raised depending on t, then the limit of the condition number would have

been 4.78166 (see Figure 3). Note that the results are very similar to the one obtained when the

first variable is raised. In addition, in both cases, the condition number is continuous in t = 0

(kX(0) = kX), decreasing in t and it is always greater than the established threshold.

0 10 20 30 40

4.78166

10

20

30

40

t

Condition number

Fig. 3. Evolution of the condition number of the matrix X̃(t) = (X1, X̃2(t)) and its limit for unit length (red) and

standardized data (blue).

Finally, it is observed that, when data are standardized, the condition number is continuous in

λ = 0 (kX(0) = kX), decreasing in λ and its limit is one when t→ +∞.

5. Conclusions and prospect work

In this manuscript we have described why the raise regression can be considered as an appropriate

methodology in order to reduce the approximate multicollinearity that naturally appears in prob-

lems of linear estimation when three explanatory variables are involved. In general, its application

reduces the condition number of the matrix associated to data set. Nevertheless, this procedure has

a threshold: although we can employ values of t arbitrarily large in order to separate the columns

of X, the condition number will never be less than a constant that can be easily worked out by

using the elements of the associate matrix X.

On the other hand, the problem about that a low condition number for centered or standardized

data need not indicate the absence of ill conditioning commented by Belsey12 is still verified in

the raise regression. Therefore, it is preferable to calculate the condition number from normalized

data.

Immediately the following questions arise when we employ the raise regression technique:

Open problem 1: does a limit exist on the condition number when more than three explana-

tory variables are considered? If so, is this limit computable by a simple calculation, directly related

to the matrix X? This analysis must be done only with normalized data, that is, with Xu`.

Open problem 2: Does a threshold appear when we consider another measures of the impact

of collinearity (like the variance inflation factor)?

From our point of view, it is worth considering these problems in future work.
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