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ABSTRACT 

This paper explores different approaches to modelling and forecasting VaR, using both historical simulation and volatility-weighted bootstrap 
methods, where volatility is estimated using GARCH (1,1) and EGARCH (1,1). It examines the one day predictive ability of three historical 
simulation VaR models at the 90%, 95%, and 99% confidence levels for developed and emerging equity markets for the period 2011- 2017 
that witnessed difficult and extreme market conditions. 870 scenarios of future returns are generated for each of the 500 days representing the 
out of sample period extending from March 2015 up to January 2017 in order to estimate the corresponding VaR for both markets. The 
GARCH (1,1) volatility-weighted model is accepted for both markets and is classified as the best performing model. The EGARCH (1,1) 
volatility-weighted model’s results were inconclusive; in fact, the back-test was accepted at all confidence levels for the developed markets 
while rejected at the 99% confidence level for the emerging markets. The basic historical simulation failed in estimating an accurate VaR for 
the emerging markets.  

Key words: Modeling Value at Risk (VaR); MSCI world index; MSCI emerging markets index; volatility-weighted bootstrap methods; 
GARCH models 

RESUMEN 

Este documento explora diferentes enfoques para modelar y pronosticar el VaR, utilizando tanto la simulación histórica como los métodos de 
bootstrap ponderados por volatilidad, en los que la volatilidad se estima utilizando GARCH (1,1) y EGARCH (1,1). Examina la capacidad 
predictiva de un día de tres modelos VaR de simulación histórica en los niveles de confianza del 90%, 95% y 99% para los mercados de 
valores desarrollados y emergentes para el período 2011-2017 que fueron testigos de condiciones de mercado difíciles y extremas. Se generan 
870 escenarios de rentabilidad futura para cada uno de los 500 días que representan el período fuera de muestra que se extiende desde marzo 
de 2015 hasta enero de 2017 con el fin de estimar el VaR correspondiente para ambos mercados. El modelo GARCH (1,1) ponderado por 
volatilidad es aceptado para ambos mercados y está clasificado como el modelo de mejor desempeño. Los resultados del modelo EGARCH 
(1,1) ponderado por volatilidad no fueron concluyentes; de hecho, la prueba retrospectiva fue aceptada en todos los niveles de confianza para 
los mercados desarrollados, mientras que fue rechazada en el nivel de confianza del 99% para los mercados emergentes. La simulación 
histórica básica falló en la estimación de un VaR preciso para los mercados emergentes.  

Palabras Clave: Modelado del valor en riesgo (VaR); índice mundial MSCI; índice MSCI de mercados emergentes; métodos bootstrap 
ponderados por volatilidad; modelos GARCH 
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1. INTRODUCTION 

Increased insecurity in financial markets is the main reason behind developing effective market 
risk’s measures. Wide movements in market prices led to using risk measures that allow capturing and 
mitigating financial risk. Upper managements along with regulatory requirements demand allocating 
risk in order to make comprehensive investment decisions. For this reason, quantifying market risk 
became essential in the world of finance. A well-known tool called Value at Risk (VaR) for the specific 
area of market risk management became a widely used instrument in the 1990s although its origins go 
back to the 1952. The motivation behind estimating VaR was contributed to previous financial crisis 
that led the Basel Committee to set minimum capital requirements which can be computed through 
VaR. VaR is defined as the maximum loss amount given a specific confidence interval and a specific 
time horizon. VaR allowed quantifying the market risk to better compare risk limits. Additionally, VaR 
facilitates the formulation of hedging policies and evaluating the effect of a transaction on the portfolio 
net risk. If the definition of VaR is agreed upon, there is no consensus on how to calculate it. Today, no 
ideal model was derived to calculate VaR and risk managers are using different ways of calculation. 
Models for VaR calculation include the parametric approaches for exposures that assume a certain 
distribution such as the variance-covariance method and the non-parametric approaches such as 
historical simulation which can assume any distribution and looks at historical data, as well as the Monte 
Carlo simulation which involves developing a model for future returns (Jorion, 2007).  

This paper models the VaR of a particular type of assets: the “MSCI world index” and the “MSCI 
emerging markets index”. Both indices capture large and mid-cap representations across 23 developed 
markets and 23 emerging markets. The purpose behind choosing these two indices is to compare the 
different outcomes of VaR when applied on diverse markets during a critical period extending from 
2011 to 2017 that was particularly representative of unusual market conditions and extreme events.  

This paper attempts to evaluate three methods of calculating VaR which are categorized under the 
non-parametric approach. The first method used is the historical simulation which is a traditional 
approach extensively used by risk managers due to its simplicity. In 1998 Hull and White introduced 
an extension for the basic historical simulation that allows incorporating volatility into updating 
historical data. Hence, the second and third methods involve the use of the volatility-weighted bootstrap 
model, whereby volatility is computed using symmetric and asymmetric GARCH models, GARCH 
(1,1) and EGARCH (1,1) respectively. For each stock index, the parameters are estimated whereby the 
goodness of fit of these models is tested. The winning model based on the back-testing methodology 
reveals how diverse markets and selected time periods can affect the performance of VaR.  

The paper is structured as follows. Section 2 is a literature review of the performance of different 
VaR models for emerging and developed markets. Section 3 reviews the methodology and defines the 
in sample and out of sample data while reviewing the specificities of the applied econometric models 
together with the back-testing methodology.  Section 4 portrays the main findings where the parameters 
of each of the GARCH models are estimated 10 times, each 50 sub-sample, in order to have an accurate 
estimate of the volatility, and where 870 scenarios of future returns are generated for each of the 500 
days representing the out of sample period to estimate the corresponding VaR. Also, this section 
assesses the results of the Kupiec back-test and the predictive ability of the chosen VaR models. Section 
5 concludes and discusses the empirical findings. 

2. LITERATURE REVIEW 

Many studies tried to assess the accuracy of VaR models for different types of commodities. Some 
of them compare different types of VaR models to a certain type of asset, while others determine the 
power of a certain model when used on different types of assets and different time period of observations 
(Montero et al 2010). 

A comprehensive study by Berkowitz and O’Brien (2002) examines VaR models for six US financial 
institutions. The results showed that VaR was highly inaccurate in some cases and losses suffered in 
banks exceeded the estimated VaR. The banks models examined were not able to adapt to changes in 
volatility. Their results suggest that simpler models such as GARCH can perform better than banks’ 
structural models and could even be a replacement for these models. Same was echoed by Lucas (2000) 
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who found that simpler univariate VaR models perform better than much more sophisticated models. 
Additionally, Jorion (2007) states that in the presence of volatility clusters, VaR estimates are more 
accurate when utilizing the GARCH models. 

Angelidis et al. (2004) evaluated the accuracy of daily VaR, using a family of ARCH models, for 
five stock indices in Europe, Japan, and U.S. (CAC40, DAX30, FTSE100, NIKKEI225 and S&P500), 
with different distributional assumptions and different sample sizes. The results showed that using 
ARCH models, based on student’s-t distribution or generalized error distribution, produces acceptable 
results. In contrary, using these models with normal distribution gave insufficient VaR estimates. 
Additionally, the sample size was seen to have important impact on VaR accuracy; for example, when 
using low confidence levels with a sample size less than 2000 observations, the probability values 
improved for GARCH(1,1) model. 

Dimitrakopoulos et al. (2010) investigated the efficiency of VaR approaches for 20 stock markets, 
covering America, Asia and Europe, 16 of which represent the emerging market and 4 represent the 
developed market. The second part of their research was examining VaR approaches for the same stock 
markets in crisis period, hence they took the period 1997 - 1999, covering the Asian, Russian, and 
Brazilian financial crisis. Interestingly, for both markets, the same VaR models were seen to perform 
best. They noticed a certain pattern, whereby the majority of the VaR models tended to overestimate 
VaR for portfolios in emerging markets, when large sample size is used, and underestimate VaR for 
portfolios in developed markets, irrespective of the sample size chosen. Additionally, VaR models 
seemed to be affected less during crisis period in developed markets. Finally, the performance of 
parametric VaR models enhanced in post-crisis period in comparison to non-parametric models. 

Gencay, Selcuk, and Ulugulyagci (2003) studied VaR models for markets with high volatility 
represented by the Istanbul Stock Exchange (ISE-100) Index. They compared the traditional approaches 
of VaR such as GARCH, historical simulation and variance-covariance methods to the extreme value 
theory models. They concluded that the variance-covariance method performed the worst on any sample 
size. The GARCH(1,1) was seen to also perform bad except at a confidence level of 95%. On the other 
hand and at higher confidence levels, the extreme value VaR performed the best.  

Maghyereh and Al-Zoubi (2006) were interested in estimating VaR for emerging stock markets in 
the MENA region specifically in Bahrain, Egypt, Jordan, Morocco, Oman, Saudi Arabia, and Turkey. 
For most indices the extreme value theory seems to give the best VaR estimates. However, the weak 
performance of the EVT in Morocco and Turkey markets was contributed to the low number of extreme 
values in such markets.  

Choi and Min (2011) attempted to find the factors behind the different performances of VaR by 
using conditional and unconditional approaches. Their analysis was conducted on different set of 
financial data constituted of stock market indices, stock prices and exchange rate data. The results 
showed that the GARCH models can be improved if used with more flexible distribution. Thus, 
replacing the normal distribution with Student’s-t or generalized T distributions will considerably 
improve the performance of VaR models and solve the underestimation problem accompanied with the 
GARCH-normal model at 99% and 99.5% confidence levels.  

Huang and Tseng (2009) used the kernel estimator (KE) approach which is a non-parametric method 
of estimating VaR and an improvement of the extreme value theory. The kernel estimator (KE) allowed 
them to directly study the tail behavior of the asset return. The most reliable VaR estimates were the 
models of the KE approach for both developed and emerging countries, while the other approaches 
were found to overestimate VaR. Also, Giot and Laurent (2003) estimated VaR for three international 
stock indices for traders with short and long positions. They found that VaR models based on a skewed 
Student’s-t distribution performed better than the ones based on normal distribution or on Student’s-t 
distribution.  

Andjelic et al. (2010) used the delta normal and historical simulation approaches to test the 
performance of VaR. They used a sample of data for stock indices representing the central and Eastern 
European countries (Slovenian, Croatian, Serbian and Hungarian stock indices) aiming at investigating 
VaR performance in developing countries by using different rolling windows with confidence levels of 
95% and 99%. In stable conditions, the proposed approaches performed well at a confidence level of 
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95%, however in volatile market conditions, the tested approaches gave accurate results at a confidence 
level of 99%.  

Driven by the fact that the available literature does not clearly indicate a superior model for VaR 
estimation, Miletic et al. (2015) also chose several stock exchange indices in the central and Eastern 
European emerging capital markets specifically in Czech Republic, Hungary, Croatia, Romania and 
Serbia, to study the performance of VaR models. They used symmetric and asymmetric GARCH 
models based on Student’s-t distribution and normal distribution. They found that results vary 
significantly at different confidence levels and that GARCH type models perform better than 
RiskMetric and historical simulation models.  

Many articles tackled the sample size issue to check whether it affects the accuracy of VaR estimates. 
For instance, Hendricks (1996) applied twelve approaches of VaR and the results showed that models 
used with longer observations period produce better outcomes. Same was the conclusion of Danielsson 
(2002) who found that VaR estimates are more accurate with longer time period. On the other hand, 
Hoppe (1998) in Angelidis et al. (2004) argued that a smaller sample size could result in a more accurate 
VaR. Frey and Michaud (1997) also stated that in order to capture the recent structural changes in the 
return data, due to the changes in trading behavior, a smaller sample size would be appropriate. 

3. METHODOLOGY AND SAMPLE 

The review of the available literature in the previous section reveals the absence of a superior model 
for the VaR calculation. Knowing the growing importance of VaR calculation in the world of finance, 
the need to continuously research further the models of VaR with different sample size and periods 
becomes more evident. Therefore, this paper attempts to evaluate VaR for two market indices, the 
“MSCI world index” and the “MSCI emerging markets index” for the period November 2011 - January 
2017 that witnessed several volatile episodes including the plunge in oil prices in the second half of 
2014. The tested models are all under the non-parametric approach and involves the basic historical 
simulation with equal weights, and the incorporation of volatility using GARCH (1,1) and EGARCH 
(1,1). Outputs will be compared and ranked from the most to least accurate.  

3.1 Sample and Data Collection 

“MSCI world index” and “MSCI emerging markets index” closing prices data are downloaded from 
www.msci.com from November 1, 2011 till January 31, 2017 totaling 1,371 daily observations. For 
each index the 1,371 observations are used to build 500 sub-samples each consisted of 871 observations 
resulting in a total of 871,500 daily observations. The mentioned sub-samples are constructed as a 
moving window, whereby to construct a new sub-sample, the first observation of the previous sub-
sample should be deleted and the next observation following the previous sub-sample should be added.  
The data from November 1, 2011 till March 3, 2015 totaling 871 observations, which is considered as 
the first sub-sample, is used to compute VaR for March 4, 2015 that is the first day of the out-of-sample 
period then the second sub-sample from November 2, 2011 till March 4, 2015 is used to compute VaR 
for March 5, 2015 which is the second day of the out-of-sample period and so on. The data from March 
4, 2015 till January 31, 2017 totaling 500 is used for the out of sample period to back-test VaR. For the 
purposes of VaR calculation the daily observations of the two indices are converted into daily returns 
using the following equation: 

     𝑢௜ =
௏೔ି௏೔షభ

௏೔షభ
        (1) 

Where V୧ and  V୧ିଵ are respectively the closing prices of the index at the end of day i and at the end 
of the previous day i − 1 

The descriptive statistics of the daily returns of the two indices are presented in Table 1. 
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Table 1. Descriptive Statistics of the “MSCI World Index” and “MSCI Emerging Markets Index” 

Source: Own elaboration 

The mean daily return for the “MSCI world index” was 0.0337% with a standard deviation of 
0.7504% compared to -0.000365% and 0.9228% respectively for the MSCI emerging markets index. 
Both markets exhibit very close maximum and minimum returns. The Jarque-Bera probability confirms 
the non-normality of both return distributions. This is further confirmed by the kurtosis values greater 
than 3 revealing a leptokurtic returns’ distribution of both markets.  

From the plot of return series in Figure 1 and Figure 2, persistence and volatility clustering are 
visible, which implies that the volatility can be forecasted.  

Figure 1. Time Series of “MSCI World Index” Daily Returns 

 

Source: Own elaboration 
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MSCI world index MSCI emerging markets index 

Mean 0.000337 -0.00000365 

Median 0.000498 0.000219 

Maximum 0.039403 0.033796 

Minimum -0.049042 -0.049995 

Std. Dev.  0.007504 0.009228 

Skewness -0.333058 -0.131926 

Kurtosis 6.616137 4.751391 

Jarque-Bera 771.7757 179.0698 

Probability 0.000000 0.000000 
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Figure 2. Time Series of “MSCI Emerging Markets Index” Daily Returns 

 

Source: Own elaboration 
 

The Augmented Dickey Fuller (ADF) test is used to check for stationarity. Table 2 summarizes the 
ADF test for the two indices’ returns. The test statistics confirm the stationarity of data samples. 
Consequently, no transformation of the return series is needed.  

Table 2. Augmented Dickey Fuller Test 

       
       

   

MSCI World Index 

t-Statistic Prob.* 

MSCI EM 
Index 

t-Statistic 

 

 

Prob.* 

       
       Augmented Dickey-Fuller test statistic -32.36838 0.0000 -30.22557 0.0000 

Test critical values: 1% level  -2.566652  -2.566652  

 5% level  -1.941055  -1.941055  

 10% level  -1.616544  -1.616544  

       
       *MacKinnon (1996) one-sided p-values. 
Source: Own elaboration    

3.2 Selected Models 

3.2.1 Value at Risk 

VaR is defined as the maximum loss amount given a specific confidence interval and a specific time 
horizon (Jorion, 2007). Mathematically it can be written as: 

                                                 P(L(t) ≤ VaR) = 1 −α            (2) 
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with 0 ≤ 𝛼 ≤ 1, and L(t) is the maximum probable loss that VaR at time t will not exceed with a 
probability of (1 −α). 

Using the 500 sub-samples of data, 500 VaR estimates are calculated for each day of the out of 
sample period from March 4, 2015 till January 31, 2017 at different confidence levels: 90%, 95% and 
99% for both the developed and emerging markets.  

In order to estimate VaR, all models used are under the historical simulation approach known to be 
non-parametric.   

3.2.2 Basic Historical Simulation 

The main assumption for this method is that the returns are independently and identically distributed 
(IID), which means that returns are affected only by new information and they are time uncorrelated. 
Historical simulation approach assumes that the historical price changes will reflect the future price 
changes and it requires collecting as many historical data as possible to estimate the VaR. The historical 
simulation includes generating a set of data representing the daily changes in the market variable 
through a period of time. Using the past observed day-to-day variations in the values of the two selected 
market indices, the profit/loss probability distribution can be estimated for each index over a future 
period of time. The first sub-sample of each stock index, consisting of 871 days of observation from 
November 1, 2011 till March 3, 2015, is used to create 870 alternative scenarios for what can happen 
on day 872 (March 4, 2015). Scenario 1 assumes that the percentage changes in the value of the stock 
index are equivalent to what they were on day 1 and scenario 2 assumes that the percentage changes in 
the value of the stock index are equivalent to what they were on day 2, etc. The value under the ith 
scenario is calculated mathematically as follows (Hull, 2012):  

                                                   𝑉௜௧௛ ௦௖௘௡௔௥௜௢ = 𝑣௡
௩೔

௩೔షభ
                  (3) 

where 𝑣௜ is the value of the stock index on day 𝑖; 𝑣௡ is the value of the stock index on the last day 
of the chosen time period 

Using equation (4), the return scenarios are calculated for each simulation trial resulting in 870 return 
scenarios for the reason of deducing the losses and gains expected on the first day of the out of sample 
period. 

                                     𝑢௜௧௛ ௦௖௘௡௔௥௜௢ =
(௏೔೟೓ ೞ೎೐೙ೌೝ೔೚ି௩೙) 

௩೙
                                          (4) 

where: 

𝑣௜௧  ௦௖௘௡௔௥௜௢ is the value of the stock index under the 𝑖𝑡ℎ scenario 

𝑣௡ is the value of the stock index on the last day of the chosen time period 

The same procedure outlined above is repeated for each sub-sample in order to estimate VaR for 
500 days from March 4, 2015 till January 31, 2017. 

3.2.3 Incorporating Volatility Updating into Historical Simulation 

Hull and White (1998) elaborated an extension for the basic historical simulation which involves 
incorporating volatility in updating the historical return.  Because the volatility of a market variable 
may vary over time, sometimes it is high other times low, they recommend modifying the historical 
data to reflect the variation in volatility. This approach uses the variation in volatility in a spontaneous 
way to estimate VaR by including more recent information. The first sub-sample of each stock index, 
consisting of 871 days of observation from November 1, 2011 till March 3, 2015, is used to create 870 
alternative scenarios for what can happen on day 872 (March 4, 2015). Using this approach, the value 
of the stock index under the ith scenario becomes:  

                                𝑉௜௧  ௦௖௘௡௔௥௜௢ = 𝑣௡
௩೔షభା(௩೔ି௩೔షభ)ఙ೙శభ/ఙ೔

௩೔షభ
                           (5) 
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where: 

𝑣௜ is the value of the stock index on day 𝑖; 

𝑣௡ is the value of the stock index on the last day of the chosen time period; 

𝜎௜ is the estimate of the daily volatility on day 𝑖; 

𝜎௡ାଵ is the most recent estimate of the daily volatility  

Similar to the basic historical simulation method, for the reason of deducing the losses and gains 
expected on the first day of the out of sample period, equation (4) will be used to calculate the return 
scenarios for each simulation trial resulting in 870 return scenarios. Hull and White (1998) replaced the 
return scenarios by the following equation: 

                                                  𝑢௜௧௛ ௦௖௘௡௔௥௜௢ = 𝜎௡ାଵ
௨೔

ఙ೔
                           (6) 

where: 

𝑢௜ is the return on day 𝑖; 

𝜎௜ is the estimate of the daily volatility on day 𝑖; 

𝜎௡ାଵ is the most recent estimate of the daily volatility  

Equation (6) allows calculating the return scenarios directly using the volatilities and the returns of 
the indices; hence calculating different price scenarios is irrelevant through this technique. However, 
equation (6) is used only to confirm the results obtained from equation (4), under the method of 
incorporating volatility updating into historical simulation. The same procedure outlined above is 
repeated for each sub-sample in order to estimate VaR for 500 days from March 4, 2015 till January 31, 
2017. 

As previously indicated, incorporating volatilities requires estimating daily variance using the 
Generalized Autoregressive Conditional Heteroskedasticity model GARCH(1,1), and the Exponential 
GARCH model EGARCH(1,1) described below.  

3.2.4 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

Engle (1982) introduced the Autoregressive Conditional Heteroskedastic model, ARCH, which 
permitted the conditional variance to vary over time as a function of past errors. Bollerslev (1986) 
generalized this model and developed the GARCH model by adding the lagged conditional variances. 
GARCH(p,q) can be written as: 

                                                𝜀௧|𝜓௧ିଵ ~ 𝑁(0, ℎ௧)    (7) 

                                         ℎ௧ = 𝛼଴ + ∑ 𝛼௜𝜀௧ି௜
ଶ + ∑ 𝛽௜ℎ௧ି௜

௣
௜ୀଵ

௤
௜ୀଵ                           (8) 

= 𝛼଴ + 𝐴(𝐿)𝜀௧
ଶ + 𝐵(𝐿) ℎ௧ 

with 

 p ≥ 0,           q > 0 

α଴ > 0          α୧ ≥ 0,          i = 1, … , q 

β୧ ≥ 0           i = 1, … , p 

Where 𝜀௧ indicate a real-valued discrete-time stochastic process, and 𝜓௧ denote the information set 
(𝜎-field) of all information during time t. 

The GARCH(p,q) regression model could be achieved, by letting the 𝜀௧’s be innovations in a linear 
regression: 

                                                     𝜀௧ =  𝑦௧ − 𝑥′௧𝑏             (9) 
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where 

 𝑦௧: dependent variable;  

𝑥 ௧: a vector of explanatory variables; 

𝑏: a vector of unknown parameters 

ℎ௧ can be expressed as a distributed lag of past 𝜀௧
ଶ’s, when all the roots of 1 − 𝐵(𝑧) = 0 lie outside 

the unit circle: 

                              ℎ௧ = 𝛼଴(1 − 𝐵(1))ିଵ + 𝐴(𝐿)(1 − 𝐵(𝐿))ିଵ𝜀௧
ଶ       (10) 

=  𝛼଴(1 − ∑ 𝛽௜
௣
௜ୀଵ )ିଵ + ∑ 𝛿௜𝜀௧ିଵ

ଶஶ
௜ୀଵ  

The power series expansion of 𝐷(𝐿) = 𝐴(𝐿)(1 − 𝐵(𝐿))ିଵ allows finding the  𝛿௜’s. 

Brooks (2008) stated that the lag (1,1) is adequate to capture the data’s volatility clustering. 
Additionally, GARCH(1,1) is the most popular between the GARCH models since it calculates σଶ 
based on the latest observation and the latest estimate of the variance rate; GARCH (1,1) model is 
defined by the following equation: 

                                                ℎ௧ = 𝛼଴ + 𝛼ଵ𝜀௧ିଵ
ଶ + 𝛽ଵℎ௧ିଵ                                     (11) 

With  𝛼଴ > 0,  𝛼ଵ ≥ 0, 𝛽ଵ ≥ 0 

And for a stable model the following should be met: 𝛼ଵ + 𝛽ଵ <1 

The following notation of GARCH(1,1) will be adopted in this study to calculate the variance for 
day 𝑡 : 

                                               𝜎௧
ଶ =  𝛾𝑣௟ + 𝛼𝑢௧ିଵ

ଶ + 𝛽𝜎௧ିଵ
ଶ               (12) 

where 𝛾𝑣௟ = 𝜔 and the parameters ω,α, and β are weights; α, and β are the weights assigned 
to u୲ିଵ

ଶ  and σ୲ିଵ
ଶ  respectively.  

𝛾 can be calculated using equation (13): 

                                                        𝛾 = 1 − 𝛼 − 𝛽                (13) 

𝑣௟ is the long-run variance and it can be calculated using the following equation: 

                                                              𝑣௟ =
ఠ

ఊ
                           (14) 

Parameters of the GARCH(1,1) model are estimated 10 times each 50 sub-sample using the 
maximum likelihood approach (equation 17) in order to get an accurate estimate of the volatility and to 
keep the computation time short. Therefore, the estimation period will slide down to each day of the 
out of sample period.  

Despite the simplicity of GARCH(1,1) model, it doesn’t allow the effect of a shock to be independent 
of its sign, whereas the stock market is known to have asymmetric response. In fact, the volatility 
increases due to a drop in price levels in stock market, however it may decrease even more due to a rise 
of the same magnitude in price levels. Actually, the GARCH(1,1) model includes only the squared 
residuals in its conditional variance equation, hence the signs of the residuals have no impact on the 
calculated conditional volatility. In finance, bad shocks are known to have larger effect on the volatility 
than good shocks, or a falling market will lead to a higher volatility than a rising market. The asymmetric 
news influence on the market variable is known as the leverage effect (Miron and Tudor, 2010). To 
solve this problem, we will use the EGARCH model which allows for asymmetric effect to be 
considered. 

3.2.5 Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) 

Using the EGARCH(1,1) model that was first proposed by Nelson in 1991, the variance for day 𝑡 is 
calculated using equation (15): 
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Whereby the error terms are presumed to be normally distributed with mean equal toට
ଶ

గ
, 𝜔 is the 

long-term average value and 𝛼 represents the “GARCH” effect or the symmetric effect of the model. 
Including the parameter 𝛽 allows capturing the persistence of volatility shocks. The parameter 𝛾 allows 
to determine if there is leverage effect. Hence, if 𝛾 = 0 then the model is symmetric. When 𝛾 < 0, 
negative shocks generate more volatility than positive shocks of same magnitude.  

By nature the EGARCH model assures that the conditional variance 𝜎௧
ଶ will always be positive even 

if the parameters are negative, since 𝑙𝑛 𝜎௧
ଶ instead of 𝜎௧

ଶ is used to calculate the conditional variance. 
Hence, one advantage of the EGARCH model over the GARCH model is that the positive constraints 
of the parameters could be ignored. The parameters 𝜔, 𝛼, 𝛽, 𝛾 will be estimated 10 times as previously 
explained, similar to the symmetric GARCH model, using the maximum likelihood approach (equation 
17). 

3.2.6 Maximum Likelihood for Parameters Estimation 

The maximum likelihood method is a technique that involves determining the parameters values of 
GARCH and similar models by maximizing the likelihood of historical data occurring.  𝑓(𝑦|𝜃) 
represents the probability density function, where 𝑦  is random variable conditioned on a set of 
parameters 𝜃. This function is a mathematical description, whereby given an observed sample of time 
series, the process of generating data can be identified. From this process, the joint density of n 
observations, known as the likelihood function, is the product of the individual densities: 

                                     𝑓(𝑦ଵ … , 𝑦௡|𝜃) = ∏ 𝑓(𝑦௜|𝜃) =௡
௜ୀଵ 𝐿(𝜃|𝑦)                      (16) 

𝑦  is used to indicate the time series at time 𝑖  and 𝜃  denotes the vector of model parameters. 
Furthermore, the parameters are constants and their estimation will be based on the observed data.  We 
use the Log of the Likelihood Function (LLF) since it is relatively simpler to work with (Greene, 2003): 

                                            ln 𝐿(𝜃|𝑦) = ∑ ln 𝑓(𝑦௜|𝜃)௡
௜ୀଵ                     (17) 

3.2.7 Back-Testing Methodology 

To evaluate the models of VaR, a back-test is done. This shows how well the model used for 
estimating VaR has performed if used in the past. Usually the number of times the actual loss exceeds 
VaR is considered as an exception. If exceptions occurred on 1% of the days, the current model for 
calculating a one-day 99% VaR will be accurate. 

The most common test used for back-testing VaR is the Kupiec (1995) test which will be used in 
this study. 

If the confidence level is X%, and if the model is accurate, then the probability that the actual loss 
exceeds VaR will be 𝑝 = 1 − 𝑋%/100 

The number of exceptions will follow a binomial distribution: 

                                       𝑃 ቀ
ே

்
, 𝑝ቁ = ቀ

𝑇
𝑁

ቁ 𝑝ே(1 − 𝑝)்ିே                                       (18) 

where:  

𝑁 is the number of exceptions; 

𝑇 is the number of trials; 

𝑝 is the probability of failure.  

Kupiec (1995) suggested the following log-likelihood Ratio (LR) to test the accuracy of VaR: 
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Equation (19) follows a chi-square distribution with one degree of freedom. There is a 5% 
probability that the chi-square variable with one degree of freedom will be more than 3.84. Hence, the 
VaR model is rejected whenever the LR is greater than 3.84. The LR value is large for either low or 
high number of exceptions, hence the VaR models are rejected in both cases were high or low failures 
occur. Additionally, the 𝑝 values (probability of failure) are 0.1, 0.05, and 0.01 corresponding to VaR 
confidence levels of 90%, 95% and 99% respectively. The 𝑇 value (number of trials) is 500, constant 
for all models since the out of sample period is equivalent to 500 days. Furthermore, the daily losses 
are taken into consideration and compared with the estimated VaRs, consequently the 𝑁 values (number 
of exceptions) will be determined by counting the number of times the actual loss return exceeds the 
computed VaR on a given day. 

4. FINDINGS 

4.1 Basic Historical Simulation 

As illustrated in Table 3, the number of violations where the actual loss exceeds VaR is greater for 
the emerging markets index than for the developed markets index. Particularly, at a 95% confidence 
level, the world index returns exceeded the VaR limits in 5.8% of the observations, while the 
corresponding percentage for the emerging index is 8.4%. 

Table 3. Number of Exceptions Using Basic Historical Simulation 

 
90% CL VaR 95% CL VaR 99% CL VaR 

Exceptions “MSCI world index” 64 29 9 

Exceptions “MSCI emerging markets index” 66 42 13 

Source: Own elaboration 

Figures 3 and 4 illustrate the results for the whole out of sample period for both the “MSCI world 
index” and the “MSCI emerging markets index”. Clearly, the emerging markets index exhibits a more 
volatile structure, hence the basic historical simulation method wasn’t able to capture the large losses 
and VaR is exceeded in several occasions as presented in Table 3 where the number of exceptions is 
greater for the emerging markets index compared to the developed markets index. Also, VaR at 90% 
confidence level visibly displays the poorest performance and seems to understate the risk of both stock 
indices. On the contrast, the number of times the loss return exceeded the 99% VaR for the world index 
seems to be relatively limited. 

Using equally weighted observations fails in capturing the shifts in risk, which is a major 
disadvantage of the basic historical simulation.  
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Figure 3. “MSCI World Index” Out-of-Sample Daily Returns Vs. VaR (Basic Historical Simulation) 

 
Source: Own elaboration 

Figure 4. “MSCI Emerging Markets Index” Out-of-Sample Daily Returns Vs. VaR (Basic Historical Simulation) 

 
Source: Own elaboration 

4.2 Incorporating Volatility Updating into Historical Simulation 

The parameters of the GARCH(1,1) and EGARCH(1,1) models are found using EViews 7. We 
assume that the probability distribution function of errors is normally Gaussian distributed knowing that 
the Student’s t-distribution and the Generalized Error Distribution (GED) were also tested to optimize 
the predictive ability of both models, GARCH(1,1) and EGARCH(1,1). The Log Likelihood Function 
and the Akaike-Information Criterion were calculated in addition to a series of tests done on the 
standardized residuals (Exhibit 1 and Exhibit 2) which all confirm that the models’ assumptions are 
respected and that both models are stable. In fact, the calculated means and standard deviations of the 
errors are all found to be close to zero and one respectively and the absence of ARCH effect was 
confirmed by applying the heteroskedasticity test and the serial correlation in the squared residuals is 
insignificant under the assumption of normal distribution of errors.  

4.2.1 GARCH(1,1) Volatility-Weighted Historical Simulation 

As previously mentioned, the GARCH(1,1) parameters are estimated 10 times each 50 sub-samples 
under the assumption of normal distribution of errors and are shown in Table 4. 
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Table 4. GARCH(1,1) Estimated Parameters 

 

The constant 
in the 

conditional 
volatility 
equation 

The first 
coefficient 

of the 
ARCH 

component 

The first 
coefficient 

of the 
GARCH 

component 

Goodness of Fit 
(Normal Distribution) 

“MSCI world index” Time 
period chosen for 
parameters’ computation 

𝜔 𝛼 𝛽 LLF AIC 

02/11/2011 03/03/2015 0.00000191 0.078393 0.88170 3,112.24 -7.145379 

11/01/2012 12/05/2015 0.00000323 0.08933 0.840825 3,148.897 -7.229649 

21/03/2012 21/07/2015 0.00000271 0.079249 0.86175 3,145.979 -7.222941 

30/05/2012 29/09/2015 0.00000390 0.118751 0.800846 3,135.359 -7.198525 

08/08/2012 08/12/2015 0.00000428 0.120818 0.785989 3,164.989 -7.266641 

17/10/2012 16/02/2016 0.00000352 0.12826 0.803475 3,130.197 -7.18666 

26/12/2012 26/04/2016 0.00000311 0.119648 0.81939 3,125.102 -7.174948 

06/03/2013 05/07/2016 0.00000321 0.14833 0.803015 3,100.618 -7.118662 

15/05/2013 13/09/2016 0.00000463 0.172041 0.752104 3,104.452 -7.127476 

24/07/2013 22/11/2016 0.00000438 0.173787 0.74732 3,129.433 -7.184903 

“MSCI emerging markets 
index” Time period chosen 
for parameters’ 
computation 

     

02/11/2011 03/03/2015 0.00000135 0.058404 0.921335 2,960.075 -6.795575 

11/01/2012 12/05/2015 0.00000144 0.05273 0.925343 2,986.421 -6.856141 

21/03/2012 21/07/2015 0.00000255 0.074926 0.887233 2,993.274 -6.871895 

30/05/2012 29/09/2015 0.00000204 0.074955 0.896666 2,968.875 -6.815806 

08/08/2012 08/12/2015 0.00000251 0.083301 0.88206 2,979.469 -6.84016 

17/10/2012 16/02/2016 0.00000110 0.063885 0.924658 2,947.169 -6.765906 

26/12/2012 26/04/2016 0.00000138 0.064866 0.919423 2,914.659 -6.691171 

06/03/2013 05/07/2016 0.00000157 0.075318 0.909924 2,885.933 -6.625134 

15/05/2013 13/09/2016 0.00000375 0.095363 0.86453 2,873.636 -6.596865 

24/07/2013 22/11/2016 0.00000244 0.092289 0.882427 2,891.936 -6.638933 

Source: Own elaboration 



Viviane Naimy and Melissa Bou Zeidan 

146 

Based on the above estimated parameters the daily variances are calculated 871 times for each sub-
sample using equation (12), which results in a total of 435,500 values of variances for each stock index. 
These volatilities are then plugged in equation (5) to generate various price scenarios. The outcome is 
870 price scenarios on each day from March 4, 2015 till January 31, 2017 and a total of 435,000 
scenarios for each stock index. Accordingly, the generated price scenarios are fitted into equation (4) 
for the purpose of estimating the return scenarios. On each day of the out of sample period, 870 return 
scenarios are created, which represents profit and loss distribution. Additionally, the return scenarios 
are deduced using equation (6). The results obtained from equation (4) and equation (6) led to generating 
equivalent return scenarios which further favors our results. The 90th, 95th, and 99th percentiles of the 
profit/loss probability distribution are estimated and represent the VaR confidence levels. We ended up 
with 500 VaR estimates covering the out of sample period, for each confidence level and for each stock 
index. The actual returns in the out of sample period are considered to determine the number of 
exceptions were the loss return exceeded VaR as a loss value. Table 5 depicts the number of exceptions 
obtained from computing VaR using the GARCH(1,1) volatility-weighted historical simulation. 

Table 5. GARCH(1,1) Volatility-Weighted Historical Simulation: Number of Exceptions 

 90% CL VaR 95% CL VaR 99% CL VaR 

Exceptions “MSCI world index” 54 25 7 

Exceptions “MSCI emerging markets index” 51 33 8 

Source: Own elaboration 

Incorporating GARCH(1,1) using historical simulation led to a decrease in the number of violations 
compared to the basic historical simulation, for both sock indices and at all confidence levels, however, 
this is to be confirmed by the Kupiec test.  Figures 5 and 6 show the distribution of daily returns in 
comparison with VaR weighted by GARCH (1,1) at the three confidence levels. The VaR curves are 
slightly shifting downwards with a falling market, hence allowing a better capture of the changes in risk 
which justifies the decrease in the number of exceptions.  

Figure 5. “MSCI World Index” Out-of-Sample Daily Returns Vs. VaR (GARCH(1,1) Volatility-Weighted Historical 

Simulation) 

 
Source: Own elaboration  
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Figure 6. “MSCI Emerging Markets Index” Out-of-Sample Daily Returns Vs. VaR (GARCH(1,1) Volatility-

Weighted Historical Simulation) 

 
Source: Own elaboration 
 
 

4.2.2 EGARCH(1,1) Volatility-Weighted Historical Simulation 

The same methodology is also implemented at this level. Table 6 summarizes the EGARCH(1,1) 
parameters together with models fit, LLF and AIC.  

Coefficients of the asymmetric effect 𝛾 range between -21% and -5% indicating that negative shocks 
are more destabilizing than positive shocks. On the other hand, the observed values of the first 
coefficient of GARCH component 𝛽 vary between 91% and 99% for the two stock indices which 
explains the high relative importance of the observations on the returns in determining the current 
variance rate. Table 7 and Figures 7 and 8 demonstrate how incorporating EGARCH(1,1) into historical 
simulation also resulted in a lower number of violations, compared to the basic historical simulation, 
for both stock indices and at all confidence levels. However, compared to the GARCH(1,1) volatility-
weighted model, the outcomes of exceptions are inconclusive.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

-.06

-.04

-.02

.00

.02

.04

I II III IV I II III IV I

2015 2016 2017

Actual returns
Value at risk 90% - HW GARCH (1,1) for the EM Index
Value at risk 95% - HW GARCH (1,1) for the EM Index
Value at risk 99% - HW GARCH (1,1) for the EM Index



Viviane Naimy and Melissa Bou Zeidan 

148 

Table 6. EGARCH(1,1) Estimated Parameters 

 

The 
constant in 

the 
conditional 
volatility 
equation 

The first 
coefficient 

of the 
ARCH 

component 

The first 
leverage 

coefficient 

The first 
coefficient 

of the 
GARCH 

component 

Goodness of Fit 
(Normal 

Distribution) 

“MSCI world index”  Time 
period chosen for 
parameters’ computation 

𝜔 𝛼 𝛾 𝛽 LLF AIC 

02/11/2011 03/03/2015 -0.451016 0.101003 -0.149391 0.9630160 3,142.06 7.211632 

11/01/2012 12/05/2015 -0.808185 0.121118 -0.174131 0.9293450 3,178.617 7.295671 

21/03/2012 21/07/2015 -0.633244 0.082618 -0.172772 0.9437810 3,178.559 7.295538 

30/05/2012 29/09/2015 -0.651277 0.082557 -0.187581 0.9418250 3,170.970 7.278091 

08/08/2012 08/12/2015 -0.933459 0.101108 -0.207546 0.9158040 3,201.957 7.349328 

17/10/2012 16/02/2016 -0.670377 0.058454 -0.202982 0.9382490 3,171.616 7.279576 

26/12/2012 26/04/2016 -0.5152 0.068294 -0.190747 0.9542960 3,165.643 7.265845 

06/03/2013 05/07/2016 -0.563856 0.135315 -0.170907 0.9534670 3,120.962 -7.16313 

15/05/2013 13/09/2016 -0.552897 0.098937 -0.18634 0.9518930 3,126.669 7.176251 

24/07/2013 22/11/2016 -0.640584 0.134997 -0.171361 0.9462950 3,146.134 7.220998 

“MSCI emerging markets 
index”  Time period chosen 
for parameters’ computation 

     

02/11/2011 03/03/2015 -0.086315 0.022871 -0.067451 0.9929510 2,981.045 6.841483 

11/01/2012 12/05/2015 -0.218505 0.067677 -0.054669 0.9829150 2,997.839 -6.88009 

21/03/2012 21/07/2015 -0.095404 0.005307 -0.080796 0.9905930 3,018.017 6.926477 

30/05/2012 29/09/2015 -0.061144 -0.0259 -0.082128 0.9914350 3,002.524 -6.89086 

08/08/2012 08/12/2015 -0.168643 0.022236 -0.079692 0.9842550 3,001.893 6.889408 

17/10/2012 16/02/2016 -0.101029 -0.01635 -0.088045 0.9882010 2,979.528 6.837996 

26/12/2012 26/04/2016 -0.088801 0.004657 -0.078066 0.9905390 2,944.507 6.757488 

06/03/2013 05/07/2016 -0.10293 0.030997 -0.074351 0.9914520 2,908.235 6.674103 

15/05/2013 13/09/2016 -0.16995 0.054703 -0.084836 0.9862590 2,889.595 6.631253 

24/07/2013 22/11/2016 -0.191068 0.082169 -0.078883 0.9864750 2,905.647 6.668154 

Source: Own elaboration 
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Table 7. EGARCH(1,1) Volatility-Weighted Historical Simulation: Number of Exceptions 

 90% CL VaR 95% CL VaR 99% CL VaR 

Exceptions “MSCI world index” 52 29 4 

Exceptions “MSCI emerging markets index” 56 33 11 

Source: Own elaboration 

Figure 7. “MSCI World Index” Out-of-Sample Daily Returns Vs. VaR (Volatility-Weighted Historical Simulation 

(EGARCH(1,1)) 

 

Source: Own elaboration 

The VaR plots for the developed markets seem more coherent compared to the ones of the emerging 
markets. It is also apparent that VaR with a confidence level of 99% overrates the risk for the emerging 
markets during 2015 although it generated 11 violations hence underrating the risk during other 
different periods. Consequently, it cannot be concluded if EGARCH(1,1) volatility-weighted model 
yields accurate VaR estimates. 

4.3 Kupiec Test and Log-likelihood Ratio Outputs 

Comparing the violations’ outcome of each model is inconclusive as to which model yields the most 
accurate VaR. The Kupiec test is therefore utilized by calculating LR using equation (19). Results of 
the Kupiec test for the developed and emerging markets index are presented in Table 8. 
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Figure 8. “MSCI Emerging Markets Index” Out-of-Sample Daily Returns Vs. VaR (Volatility-Weighted Historical 

Simulation (EGARCH(1,1)) 

 

Source: Own elaboration 

Table 8. Kupiec Test for Developed and Emerging Markets 
 

Source: Own elaboration 

Kupiec test results unveil that both the GARCH(1,1) and the EGARCH(1,1) volatility-weighted 
historical simulation models are classified as the best performing models at all confidence levels for the 
developed markets index, while the basic historical simulation model is ranked the worst in terms of 
accuracy as it is rejected at a 90% confidence level.  
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Models Applied  

   
 

“MSCI world 
index” 

MSCI emerging 
markets index” 

 

VaR 
CL 

 

95% 
Critical 

value (Chi-
square 

distribution 
with one 
degree of 
freedom) 

LR 
Test 

Outcome 
LR 

Test 
Outcome 

Basic Historical Simulation 90%  3.84 4.04 Reject 5.22 Reject 

95%  3.84 0.64 Accept 10.19 Reject 

99%  3.84 2.61 Accept 8.97 Reject 

Incorporating volatility to 
historical Simulation using 
GARCH (1,1) 

90%  3.84 0.35 Accept 0.02 Accept 

95%  3.84 0.00 Accept 2.46 Accept 

99%  3.84 0.72 Accept 1.54 Accept 

Incorporating volatility to 
historical Simulation using 
EGARCH (1,1) 

90%  3.84 0.09 Accept 0.77 Accept 

95%  3.84 0.64 Accept 2.46 Accept 

99%  3.84 0.22 Accept 5.42 Reject 
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5. DISCUSSION AND CONCLUSION 

The GARCH(1,1) volatility-weighted model was the only model accepted at all confidence levels 
for the emerging markets index, whereby the basic historical simulation failed to produce an accurate 
VaR at a 90%, 95% and 99% confidence levels. The EGARCH(1,1) volatility-weighted model is ranked 
as the second best model since the 90% and 95% VaRs are accepted while the 99% VaR underestimates 
the risk of emerging markets index. The superiority of the GARCH(1,1) model can be related to its 
ability in taking into account the volatility changes in a natural way and generating VaR estimates that 
include more recent information. Such findings confirmed by those of Dimitrakopoulos et al. (2010), 
who state that the filtered historical simulation which is a mix between the GARCH model and the 
traditional historical simulation and the extreme value method- peaks over threshold are the most 
successful VaR models for both emerging and developed markets. 

On the other hand, the ability of the GARCH(1,1) and the EGARCH(1,1) in incorporating 
information into the historical simulation VaR allowed to obtain VaR estimates that surpass the 
maximum loss in the historical data. This is in agreement with the conclusion reached by Hull and 
White (1998).  The basic historical simulation was ranked as the worst method since it overlooks the 
volatility changes, which is a main drawback.  

Interestingly, VaR models performed differently for the developed and emerging markets indices in 
some cases. While the basic historical simulation VaR estimates are accurate using 95% and 99% 
confidence levels for the developed markets index, this method failed at all confidence levels for the 
emerging markets index. Similarly, EGARCH(1,1) volatility-weighted model led to rejecting the 99% 
VaR for the emerging markets index and accepting the same model for the developed markets index.  
This implies that VaR models may act differently depending on the attributes of the market chosen 
which corroborates with the results reached by Andjelic et al. (2010) who proposed that VaR models 
which perform well in developed markets do not necessarily in developing and illiquid markets. Finally, 
our results are in line with Jorion (2007) who stated that when there are volatility clusters, VaR estimates 
are more accurate when utilizing GARCH models.  
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Exhibit 1: Residuals Analysis of GARCH(1,1) Assuming a Normal Distribution of Errors 

   Null Hypothesis 

“MSCI world index” 
Residual Analysis for 

each sub-sample 
AVG STDEV 

"There is no 
serial 

correlation 
in the 

squared 
residuals" 

 “Errors 
are 

normally 
distributed” 

"There 
is no 

ARCH 
effect" 

02/11/2011 03/03/2015 -0.032536 1.002737 

Accepted Rejected Accepted 

11/01/2012 12/05/2015 -0.034637 0.999799 

21/03/2012 21/07/2015 -0.034492 1.001031 

30/05/2012 29/09/2015 -0.047173 1.0001 

08/08/2012 08/12/2015 -0.046767 0.998998 

17/10/2012 16/02/2016 -0.056566 0.999604 

26/12/2012 26/04/2016 -0.049559 1.000391 

06/03/2013 05/07/2016 -0.04869 0.99876 

15/05/2013 13/09/2016 -0.047147 0.999115 

24/07/2013 22/11/2016 -0.047752 0.998953 

“MSCI emerging 
markets index”  

Residual Analysis for 
each sub-sample 

  

02/11/2011 03/03/2015 -0.02702 1.003626 

Accepted Rejected Accepted 

11/01/2012 12/05/2015 -0.020922 1.00362 

21/03/2012 21/07/2015 -0.025783 1.000915 

30/05/2012 29/09/2015 -0.038121 1.00054 

08/08/2012 08/12/2015 -0.036427 0.999717 

17/10/2012 16/02/2016 -0.045983 0.998672 

26/12/2012 26/04/2016 -0.035669 1.00219 

06/03/2013 05/07/2016 -0.035623 0.999113 

15/05/2013 13/09/2016 -0.0295 1.000936 

24/07/2013 22/11/2016 -0.02648 1.0002 
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Exhibit 2: Residuals Analysis of EGARCH(1,1) Assuming a Normal Distribution of Errors 

   Null Hypothesis 

“MSCI world index”  
Residual Analysis for 

each sub-sample 
AVG STDEV 

"There is no 
serial 

correlation 
in the  

squared 
residuals" 

 “Errors 
are 

normally 
distributed” 

"There 
is no 

ARCH 
effect" 

02/11/2011 03/03/2015 0.002836 1.005313 

Accepted Rejected Accepted 

11/01/2012 12/05/2015 0.000146 1.002045 

21/03/2012 21/07/2015 -0.000917 1.001545 

30/05/2012 29/09/2015 0.000617 0.999885 

08/08/2012 08/12/2015 -0.006545 1.000092 

17/10/2012 16/02/2016 -0.004191 0.998202 

26/12/2012 26/04/2016 0.002645 1.002761 

06/03/2013 05/07/2016 0.005644 1.00363 

15/05/2013 13/09/2016 0.00576 1.002256 

24/07/2013 22/11/2016 0.000634 1.000868 

“MSCI emerging 
markets index”  

Residual Analysis for 
each sub-sample 

  

02/11/2011 03/03/2015 0.014417 1.012125 

Accepted Rejected Accepted 

11/01/2012 12/05/2015 0.020225 1.013081 

21/03/2012 21/07/2015 -0.003619 1.007475 

30/05/2012 29/09/2015 0.017266 1.02589 

08/08/2012 08/12/2015 0.010538 1.009677 

17/10/2012 16/02/2016 -0.0114 1.003296 

26/12/2012 26/04/2016 0.063195 0.98456 

06/03/2013 05/07/2016 0.024841 0.994022 

15/05/2013 13/09/2016 0.021192 1.011055 

24/07/2013 22/11/2016 0.000926 1.003354 

Note: Exhibit 1& 2 show the residual analysis of EGARCH(1,1) model assuming a normal distribution of errors. The calculated 
means and standard deviations of the errors are found to be close to zero and one respectively. Moreover, the absence of ARCH 
effect was confirmed by applying the heteroskedasticity test and the serial correlation in the squared residuals is insignificant 
under the assumption of normal distribution of errors. However, the errors are found to be not normally distributed. 


