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On an elementary functional equation

YU TAKEUCHI

Universidad Nacional de Colombia, Bogota

In the Internet page Favorite Mathematical Constants [2], maintained by Steven
Finch, the following question was posed (V: If ¢ is the Golden ratio, and
g(x) = ¢ — \/p? — x, is the solution of the functional equation

(0)

unique?

In this short note we show that both the existence and uniqueness of the
solution of (0) follow as a particular case of a more general result (Theorem
below), whose proof is based in the theory of iterated functions, the same
technique used by R. B. Paris to prove the existence of a solution of (0) in [3].
This author considers equation (0) while proving that

20
2p)"

cp—(pnrv( as n — oo,

(1) We thank professor Victor Albis for calling up our attention on these questions .
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where o1 =1, ¢, =1+ @,_1 for n > 2, and

1
C =¢F (;) ~ 1.098630 .

Theorem. Let g(z) be a continuous increasing function defined on the closed
interval [a,b], a < 0 < b, satisfying the following conditions:

glz) <z if 0<z<b
(i) S glz)>z if a<z<0
9(0)=0,
(i) 0)=a, 0<a<1l, andg"(0) exists.
Then the functional equation

F(g(z)) = aF (2) , (1)
with
F()=0, F'(0)=1, (2)
has a unique solution in the interval [a, b]

Proof. On [a,b] let us define recursively the following sequence of functions

It is well known that
X,(t) =0 (n— o) 4)

monotonically. Furthermore [1], the limit

im 22® _ o 5)

n—oo "1

exists, with C'(0) = 0. If the function F(z) satisfies (1), then we must have
F(g9(Xn(t)) = F(Xn41(t)) = aF (Xa(t)) , (6)
for all n. From this it follows easily that

F(Xnta1(t) = " F(X1(t)) = " F(2). (7)
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According to conditions (2) of the theorem, we must choose the value of F(t)
so that

— 70 = i L En1()) o F(t)
L=F0) =l =0 X )
i F®_F@)
n—00 "+1(t)/a" C(t) '
Then
F(t)=C(t) . (8)

On the other hand, from (5) we get

C(g(t)) - nlglgo an—1 nLoo an—1
— o tim 2@ oy )

Therefore, (8) guarantees the existence of a solution for (1).

To finish the proof we have to show that F'(t) defined by (5) and (8) has a
derivative at 0 and that F'(0) = 1. In order to accomplish this we have to show
first that the limit in (5) holds “uniformly”. From ¢(0) = 0 and ¢'(0) = «a, we
get

_g(;v) =a+7(z) (10)
where lim,_,o 7(z) = 0. Replacing in (10) = by X,,(¢) we obtain

Xnt1(t) = 9(Xa(t)) = Xn(t) [a + 7(Xn(1))]

X
= aX, (1) [1+7T( "(t))] ,
a
and from this
. T(Xk (1))
X —a® KASCLAVVA By
nr1(t) ="t ]| [1 + = (11)
k=1
Since ¢"(0) exists, there are § > 0 and M > 0 such that
|7(x)| < M -|z| forall ze(=4,0). (12)

On the other hand, by Dini’s theorem the sequence of functions ((X,(¢))n>1
converges uniformly to 0, that is, there is an integer N such that

Xn(t) € (=6,0) forall ¢, andall n>N. (13)
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Therefore, the following inequality holds:

Do TR < MY Xk(?)] - (14)
k=N k=N

The series in the member of the right of (14) converges uniformly. In fact,

Xpy1(t) | | g(Xk(t))
el = [ <k o)

SOé+M-|Xk(t)| s

which converges uniformly to a < 1, as k — oo. Therefore, the infinite product

ad X
I o+ T00)]
a
k=1
converges uniformly. Finally we get
o Xa(t) T T(Xk (1))

the convergence being uniform. Note that the function C(t) is continuous. Also,
the uniform convergence of the infinite product in (15) implies that C(t)/t is
continuous. Therefore

c)

F
limﬂzlim—zl,
t—0 ¢ t—0 ¢

ie. F'/(0)=1. O

Let us remark that the above argument does not prove that F' € C*°. How-
ever, an inductive argument on the order of the derivative, too lengthy and
cumbersome to be included here, allows us to assert that F' indeed is of class
C.

Now, let us go back to the original problem, where

1
g@)=p-Ve? -z (5<¢<1).

The function g(z) has two fixed points: z = 0 and z = 2p — 1 = V/5(< ¢?).
Furthermore,
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and
1

" _
g(O)—4<p3>0.

The function g(x) satisfies conditions (i) and (ii) of the theorem in the interval
1

(—00,2¢p — 1) = (—00,/5), with a = 25 < 1. Also, it is easy to verify that
¥

in this case the functional equation (1) does not have a solution in the interval
(2p — 1,¢%) = (V5,9%). Which shows that the convergence radius of the
expansion of F(t) as a power series about the origin, if it converges, is < /5,
a sharper bound that the one proposed by Paris: ¢? [3].
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