
Lecturas Matemáticas
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Epsilon-delta proofs and uniform continuity
Demostraciones de ĺımites y continuidad usando sus definiciones

con epsilon y delta y continuidad uniforme
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Abstract. We present two heuristic methods to get epsilon-delta

proofs. From these methods, a new approach to study uniform con-

tinuity of real functions comes up. In addition, some results on uniform

continuity of homeomorphisms in the real line are established.
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Resumen. Se presentan dos métodos heuŕısticos para obtener demos-

traciones sobre ĺımites y continuidad usando sus deficiones en términos

de epsilon y delta. De estos métodos surge un nuevo abordaje para estu-

diar la continuidad uniforme de funciones reales. Además se establecen

algunos resultados sobre la continuidad uniforme de homeomorfismos

de la recta real.
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1. Introduction

Despite its importance, the construction of proofs of limits using only the
definition of limit is not a topic discussed much on basic calculus courses. As we
know, in most cases those proofs are difficult and involve hard estimates and
several algebraic manipulations, which make this type of proofs fundamental for
those who want to understand some other concepts in mathematical analysis.
For these reasons, this paper aims to study two issues:

1. Epsilon-delta proofs: the task of giving a proof of the existence of the
limit of a function based on the epsilon-delta definition.

2. The role of delta-epsilon functions (see Definition 2.2) in the study of
the uniform continuity of a continuous function.
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We begin by recalling the definition of limit of a function.

Definition 1.1. Let I be a non empty open interval, f : I → R a function
defined on I. We say that f tends to L ∈ R when x tends to a ∈ I, and write

ĺım
x→a

f(x) = L,

if for every ε > 0, there exists δ > 0 so that

if x ∈ I and 0 < |x− a| < δ, then |f(x)− L| < ε. (1)

If L = f(a), then we say that f is continuous at a.

1.1. How to construct a epsilon-delta proof? In this section, we present
two heuristic methods to obtain epsilon-delta proofs. That is, we want to prove
that

ĺım
x→a

f(x) = L,

by applying Definition 1.1. The question is: given a positive number ε, how
to find out a positive number δ, such that (1) is satisfied? As we know, for
most functions f , this is a complicated task which involves not only a good
knowledge of the properties of f , but also tricky algebraic calculations and
hard estimates. Namely,

Lemma 1.1. The first method. Let I be a nonempty interval, f : I → R a
function defined on I, and a ∈ I. If there exists b > 0 and g : [0, b)→ [0, g(b))
an increasing, bijective function satisfying

|f(x)− f(a)| ≤ g(|x− a|), (2)

then, for ε > 0, there exists

δ = g−1(ε0), (3)

with 0 < ε0 < g(b), such that

if x ∈ I and |x− a| < δ, then |f(x)− f(a)| < ε. (4)

In particular, f is a continuous function at a.

Proof. Without loss of generality, we can consider ε > 0 such that 0 < ε < g(b).
Taking 0 < δ = g−1(ε), we obtain that if 0 ≤ y < δ then 0 ≤ g(y) < ε.
Therefore, if |x− a| < δ = g−1(ε), since g is increasing we have g(|x− a|) < ε,
and from (2), we conclude that |f(x)− f(a)| < ε. This finishes the proof of the

lemma. �X

Example 1.1. Using epsilon-delta proofs, we want to show that

ĺım
x→2

x2 = 4. (5)

According to Lemma 1.1, it is enough to get an estimate of the form

|x2 − 4| ≤ g1(|x− 2|). (6)
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From the triangular inequality, we obtain that

|x2 − 4| = |x− 2||x+ 2| ≤ |x− 2|(|x− 2|+ 4), (7)

Therefore, the function g1 : [0,∞) → [0,∞), g1(y) = y(y + 4) satisfies the
condition of Lemma 1.1. Thus, for ε > 0 there exists

δ = g−11 (ε) =
√

4 + ε− 2 (8)

such that (4) is satisfied. Specifically, we have that for every ε > 0 there exists
δ ∈ (0,

√
ε+ 4− 2] such that

if |x− 2| < δ, then |x2 − 4| < ε. (9)

As we wanted to prove.

Example 1.2. Another way to prove (5) proceeds as follows: If |x − 2| < 1,
then from (7), we obtain that

|x2 − 4| < 5|x− 2|. (10)

Hence, the function g2 : [0, 1) → [0, 5), g2(y) = 5y satisfies the condition of
Lemma 1.1. Thus, for ε > 0 there exists

δ = g−12 (ε) =
ε

5
(11)

such that (9) is satisfied.

For monotonic and bijective functions, another way to find out the delta
number can be done as follows,

Lemma 1.2. The second method. Let I, J be open intervals such that a ∈ I.
Considering f : I → J , an increasing bijective function (actually continuous),
then, for ε > 0 with f(a)− ε, f(a) + ε ∈ J , there exists

δ = mı́n{f−1(f(a) + ε)− a, a− f−1(f(a)− ε)} (12)

such that,

if x ∈ I and |x− a| < δ, then |f(x)− f(a)| < ε. (13)

In particular, f is a continuous function at a.

Proof. Since f(a)− ε, f(a) + ε ∈ J , the number δ given in (12) is well defined.
Now, if |x− a| < δ then

f−1(f(a)− ε) ≤ a− δ < x < a+ δ ≤ f−1(f(a) + ε). (14)

Since f is increasing, applying f to the previous inequality we get that

f(a)− ε < f(x) < f(a) + ε. (15)

In other words, |f(x)− f(a)| < ε, as we wanted to prove. �X
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Remark 1.1. In Lemma 1.2, if the function f is taken to be decreasing instead
of increasing, the conclusion of the lemma remains valid if we change the value
of δ in (12) by

δ′ = mı́n{a− f−1(f(a) + ε), f−1(f(a)− ε)− a}. (16)

Example 1.3. Since f : (0,∞)→ (0,∞), f(x) = x2 is an increasing bijective
function. Then we can apply Lemma 1.2 to get a epsilon-delta proof of (5).
Thus, for ε > 0, there exists

δ = mı́n{2−
√

4− ε,
√
ε+ 4− 2} =

√
ε+ 4− 2,

such that the condition (9) is satisfied.

2. Uniform continuity

In this section, from epsilon-delta proofs we move to the study of the re-
lationship between continuity and uniform continuity. For this purpose, we
introduce the concept of delta-epsilon function, which is essential in our discus-
sion. Using this concept, we also give a characterization of uniform continuity in
Theorem 2.1. In addition, as an application of this theorem, we give a sufficient
condition for an unbounded homeomorphism not to be uniformly continuous
at infinite. Now, we recall the definition of uniform continuity.

Definition 2.1. Let I be a nonempty interval. A function f : I → R is called
uniformly continuous on I, if for every ε > 0, there exists δ > 0 such that for
every x, y ∈ I with |x− y| < δ, we have that |f(x)− f(y)| < ε.

Example 2.1. The function f : R− {0} → R given by

f(x) =

{−1 if x < 0,

1 if x > 0,
(17)

is continuous but not uniformly continuous.

Example 2.2. It is well known that continuous functions defined on compact
sets are uniformly continuous (see [1]).

Definition 2.2. Let I be a nonempty interval, f : I → R a continuous function.
For a fixed ε > 0, we say that a function δε : I → (0,∞) is a delta-epsilon
function for f , if δε(a) satisfies the continuity definition for f at a. Namely

if x ∈ I and |x− a| < δε(a), then |f(x)− f(a)| < ε.

Example 2.3. For ε > 0, the function

δε(a) =

{−a if a < 0,

a if a > 0,
(18)

is a delta-epsilon function for the function of the Example 2.1.
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Theorem 2.1. Let I an interval, f : I → R a continuous function. Then f
is uniformly continuous on I if and only if there exists a family {δε}ε>0 of
delta-epsilon functions for f such that,

ηε := ı́nf
a∈I

δε(a) > 0, (19)

for every ε > 0.

Proof. If f : I → R is uniformly continuous on I, then for ε > 0 there is δ > 0
such that for every x, y ∈ I with |x − y| < δ, we have that |f(x) − f(y)| < ε.
Thus, the constant function δε : I → (0,∞), δε(a) = δ, is a delta-epsilon
function for f that clearly satisfies the condition (19). Conversely, let {δε}ε>0

be a family of delta-epsilon functions for the continuous function f that satisfies
the condition (19). Hence, for ε > 0 and x, y ∈ I, if |x− y| < ηε ≤ δε(x), since
f is continuous at x and δε(x) is so that the continuity definition 1.1 is verified

at x, we can conclude that |f(x)− f(y)| < ε. �X

Remark 2.1. Roughly speaking, the previous theorem tells us that continuous
functions f that admit a family of delta-epsilon constant functions {ηε}ε>0 are
uniformly continuous.

Example 2.4. For every positive M , the function f : [0,M ]→ R, f(x) = x2

is uniformly continuous. In fact, for ε > 0 the function δε : [0,M ] → (0,∞)
defined as

δε(a) =
√
a2 + ε− a,

is a delta-epsilon function for f that is continuous, decreasing and

ı́nf
a∈[0,M ]

δε(a) =
√
M2 + ε−M > 0.

Hence, from Theorem 2.1, we get that f is uniformly continuous. We notice
that in this example the function ρε(a) =

√
M2 + ε − M is a delta-epsilon

function for f that is constant and less than δε.

Remark 2.2. In terms of Theorem 2.1, in order to show that a continuous
function f is not uniformly continuous, we must verify that any family of delta-
epsilon functions has an element δε0 such that

ı́nf
a∈I

δε0(a) = 0.

This seems to be a difficult task. The proof of the following theorem gives us a
good idea of how to deal with this type of problem.

Theorem 2.2. Let b ∈ R and let f : [b,∞) → [f(b),∞) be an increasing
homeomorphism. If there exists ε0 > 0 with

ĺım
x→∞

f−1(f(x) + ε0)− x = 0, (20)

then f is not uniformly continuous.
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Proof. We give two proofs of this theorem. We first observe that, since the image
of the function f is an unbounded interval, the expression f−1(f(x) + ε0) is
always well defined, in other words, it is not necessary to impose any restrictions
on the variable ε0.

First proof. It will be divided in four steps:
1- For ε > 0, the function given by

δε(x) = mı́n
{
f−1(f(x) + ε)− x, x− f−1(f(x)− ε)

}
(21)

is a delta–epsilon function for f that is maximum. In fact, from Lemma
1.2, for every ε > 0, δε is a delta-epsilon function. Now, we proceed
to prove that δε is maximum, that is, δε is greater than any other
delta-epsilon function for f . We will prove this by contradiction. If ρε is
another delta-epsilon function for f such that there exists x0 in (b,∞)
with δε(x0) < ρε(x0), then, we can consider p such that

x0 + δε(x0) < p < x0 + ρε(x0), (22)

and then δε(x0) < p− x0 < ρε(x0). Now, if we assume that

δε(x0) = f−1(f(x0) + ε)− x0,

from (22) we get that

f−1(f(x0) + ε) < p.

Since f is an increasing function, we obtain that ε < f(p)− f(x0). This
contradicts the fact that ρε is a delta-epsilon function for f . The proof
that δε is maximum when δε(x0) = x0−f−1(f(x0)−ε) proceeds similarly.
2- Let ε > 0 and ρε a delta-epsilon function for f . If

ı́nf
x∈[b,∞)

δε(x) = 0, then, ı́nf
x∈[b,∞)

ρε(x) = 0. (23)

The proof of this assertion follows from step one, since

0 < ρε(x) ≤ δε(x), for all x ∈ [b,∞).

3- Let 0 < ε ≤ ε0, then, ı́nfx∈[b,∞) δε(x) = 0. In fact, by definition of δε
in (21) and since f is increasing, we have that

δε(x) ≤ f−1(f(x) + ε)− x ≤ f−1(f(x) + ε0)− x, fol all x ∈ [b,∞).

Hence, from condition (20), we obtain that ĺımx→∞ δε(x) = 0 and thus

ηε = ı́nf
a∈I

δε(a) > 0.

4- End of proof. Let {ρε}ε > 0 be a family of delta-epsilon functions for
f . From step 3, for every ε with 0 < ε < ε0 we have ı́nfx∈[b,∞) δε(x) = 0.
By step 2, ı́nfx∈[b,∞) ρε(x) = 0, so finally, from Theorem 2.1, we can
conclude that f is not uniformly continuous.
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Second proof. Since ĺımx→∞ f−1(f(x) + ε0) − x = 0 for some ε0, then
for every η > 0 there exists R > 0 such that, for all x > R, we have that

f−1(f(x) + ε0)− x < η, (24)

or equivalently, since f is increasing, ε0 < f(x + η) − f(x). Hence, for
any δ > 0, taking η such that 0 < η < δ and a > R, we have that
|(a+ η)− a| = η < δ, but ε0 < f(a+ η)− f(a). This shows that f is not

uniformly continuous. �X

Corollary 2.1. If f : I → R admits a maximum delta–epsilon function δε0
such that

ı́nf
x∈I

δε0(x) = 0,

then f is not uniformly continuous.

Example 2.5. From examples 2.1 and 2.3 we have that, for 0 < ε < 2, δε is a
maximum delta-epsilon function. In addition,

ı́nf
x∈R−{0}

δε(x) = 0.

Then, from Corollary 2.1, we obtain that f (the function given in Example 2.1)
is not uniformly continuous on R− {0}.

Example 2.6. For M positive, the function f : [M,∞)→ R, f(x) = x2 is not
uniformly continuous. In fact, for every ε > 0 we have that

ĺım
x→∞

√
x2 + ε− x = 0,

hence, from Theorem 2.2, we get that f is not uniformly continuous.

Corollary 2.2. (A well-known result) Let b, c be real numbers with b < c.
Then every increasing homeomorphism f : [b, c) → [f(b),∞) is not uniformly
continuous.

Proof. It is possible to prove that

ĺım
x→c−

f(x) =∞, (25)

and that for every ε > 0,

ĺım
x→c−

f−1(f(x) + ε)− x = 0. (26)

Now, the proof of the corollary follows from Theorem 2.2 by making convenient
alterations. �X
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3. Examples

In this section, we give several examples of how to use the heuristic methods
introduced above to get epsilon-delta proofs. We also give examples of how to
use the technique developed in Section 2 to study uniform continuity.

1. Linear functions. For m > 0, the linear function f : R→ R, f(x) = mx
is a continuous, bijective and increasing function. Therefore, to find out
a family of delta-epsilon functions for f , it is enough to apply the formula
(12) of Lemma 1.2. Thus, for ε > 0 and a ∈ R, there exists

δε(a) =
ε

m
, (27)

so that, if

|x− a| < δ, then |mx−ma| < ε. (28)

Furthermore, since for every ε > 0

ı́nf
a∈R

δε(a) =
ε

m
> 0,

then from Theorem 2.1 we conclude that f is uniformly continuous.
2. The power functions with natural power. Since for n ∈ N the power

function f : (0,∞) → (0,∞), f(x) = xn, is continuous, bijective and
increasing, then from lemma 1.2, for ε > 0, there exists

δε(a) = n
√
an + ε− a, (29)

so that, if

|x− a| < δ, then |xn − an| < ε. (30)

Now, since for n > 1

ĺım
a→∞

n
√
an + ε− a = 0,

then from Theorem 2.2, for n > 1 the function f(x) = xn is not uni-
formly continuous on [M,∞), for any M positive. On the other hand,
the power function f(x) = xn is uniformly continuous on [0,M ] for every
n ∈ N. In fact, for every ε > 0, the constant functions

ı́nf
a∈[0,M ]

δε(a) = n
√
Mn + ε−M,

form a family of delta-epsilon functions for f on [0,M ].
3. The function f(x) = 1

x . Since f : (0,∞) → (0,∞), f(x) = 1
x is a

continuous, bijective and decreasing function, the formula (16) of the
Lemma 1.2 can be applied. Hence, for ε > 0, there exists

δε(a) =
a2ε

1 + aε
(31)

so that, if

|x− a| < δ, then

∣∣∣∣ 1x − 1

a

∣∣∣∣ < ε. (32)
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Additionally, for M > 0 and ε > 0, the function δε : [M,∞) → (0,∞)
given in (31) is increasing, so we obtain that

ı́nf
a∈[M,∞)

δε(a) =
M2ε

1 +Mε
> 0.

Hence, we conclude from Theorem 2.1 that f is uniformly continuous on
[M,∞). In contrast, since

ı́nf
a∈(0,M ]

δε(a) = 0,

then by making slight changes to Corollary 2.2, we can conclude that f
is not uniformly continuous on (0,M ].

4. The square root function. Function f : (0,∞) → (0,∞), f(x) =
√
x

is continuous, bijective, and increasing. Hence, for
√
a > ε > 0, from

Lemma 1.2 there exists

δε(a) = 2
√
aε− ε2 (33)

such that, if

|x− a| < δ, then |
√
x−
√
a| < ε. (34)

Additionally, if a > M > 0, then
√
a >
√
M , so for every ε <

√
M , since

δε is an increasing function, we conclude that

ı́nf
a∈[M,∞)

δε(a) = 2
√
Mε− ε2,

and from the Theorem 2.1, we deduce that f(x) =
√
x is uniformly

continuous on [M,∞).
5. The function f(x) = x

1+x . Since f : (−1,∞) → (−∞, 1), f(x) = x
1+x is

a continuous, bijective and increasing function, from Lemma 1.2 there
exists

δε(a) =
ε(a+ 1)2

1 + ε(1 + a)
(35)

so that, if

|x− a| < δ, then

∣∣∣∣ x

1 + x
− a

1 + a

∣∣∣∣ < ε. (36)

Similarly, from Theorem 2.1 it is not difficult to see that f is uniformly
continuous on [M,∞), for any M > −1.

6. The natural exponential function. Since for every ε > 0

ĺım
a→∞

ln (ea + ε)− a = 0,

then by Theorem 2.2 the function f(x) = ex is not uniformly continuous
on [M,∞), where M denotes any real number.
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7. The natural logarithm function. From Lemma 1.2, it is not difficult to
check that the functions

δε(a) = a(1− e−ε)
form a family of delta-epsilon functions for the natural logarithm func-
tion ln : (0,∞)→ R. Furthermore, since for M > 0

ı́nf
a∈[M,∞)

δε(a) = M(1− e−ε) > 0,

then from Theorem 2.1 we conclude that the function ln : [M,∞) → R
is uniformly continuous.

4. Conclusions

In general, to obtain an epsilon-delta proof is hard work. Under certain
assumptions, the methods we presented in Section 1 to deal with that issue
give us a fast way to construct epsilon-delta proofs. In this way, the method in
Lemma 1.2 is actually more useful than the method given in Lemma 1.1, where
difficult estimates are needed.

The concept of delta-epsilon function introduced in Section 2 provides ano-
ther way to characterize uniform continuity (see Theorem 2.1). In our opinion,
this theorem gives us a good way to understand the concept of uniform conti-
nuity. In addition, Theorem 2.1 together with the study of epsilon-delta proofs
provide a different approach to deal with uniform continuity. Although it might
not be the best way to study uniform continuity of a function, our approach
allows us to obtain new interesting results: see Theorem 2.2 and its corollaries.

On the other hand, Corollary 2.2 is not a new result, see [1]. Hence, it would
be interesting to describe some other classic results about uniform continuity
in terms of our new approach.

Theorem 2.1 can be rewritten in a more general setting, for instance, in
terms of metric spaces. Thus, an interesting question would be how to obtain
similar conditions as in Theorem 2.2 that would allow us to study uniform
continuity of functions defined on metric spaces.
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