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One-qubit purity in terms of the discrete Wigner transform 

Pureza de un qubit en términos de la transformada discreta de Wigner

Manuel Ávila Aoki
Universidad Autónoma del Estado de México, México
manvlk@yahoo.com

Abstract
An explanation and an illustration of the meaning of a discrete phase-space is given. The class of a discrete Wigner transform (DWT) 
for the specific case of a one-qubit state is introduced. We derive the one-qubit state formalism around its formulation in terms of 
the DWT in detail. A novel structure of a one-qubit purity in terms of the DWT is introduced. We find a criterion for stating when 
a one-qubit state is either mixed or pure.
Keywords: Discrete phase space, Hilbert space, unbiased bases, discrete Wigner transform, purity.

Resumen 
Se proporciona e ilustra una explicación del significado de espacio fase discreto dirigida a un lector no especialista. Se presenta también 
la clase de la transformada discreta de Wigner (TDW) para el caso específico de un estado de un qubit. Asimismo, derivamos detalla-
damente el formalismo involucrado en la formulación del estado de un qubit en términos de la TDW. En este contexto, se introduce 
una estructura novedosa de la pureza de un qubit en términos de la TDW y se halla un criterio para decidir cuando el estado de un 
qubit es puro o mixto. 
Palabras clave: espacio fase discreto, espacio de Hilbert, bases imparciales, transformada discreta de Wigner, pureza.

Introduction 

The real-valued Wigner function W(q, p) play the role of a quasi-probability distribution for continuous-variable 
quantum systems in continuous coordinates (q) versus momentum (p) (phase) space (Wigner, 1932; Hillary 
et al., 1984). In spite of the fact that W(q, p) allows us to calculate properties of a system through phase-space 
integrals weighted by it, however this cannot be interpreted as the positive-valued probability of simultaneously 
measuring observables p and q with eigenvalues p0 and q0. In fact,  W(q, p) could be negative in some phase-space 
regions (from there the term quasi-probability). 

Buot (1974), Hannay and Berry (1980) were the first to propose the novel idea of the analogous Wigner 
function for a discrete (finite-dimensional) Hilbert space. Later on, such findings were rediscovered by Cohen 
and Scully (1986) and Feynman (1987) who defined a discrete Wigner function W for a single qubit. The above 
works were extended by Wootters (1987) and Galetti and De Toledo Piza (1988) by introducing a Wigner 
function for prime-dimensional Hilbert spaces. 

These extensions have been employed for teleportation protocols (Koniorczyk et al., 2001; Paz, 2002), quantum 
algorithms (Bianucci et al., 2002; Miquel et al., 2002), and decoherence (Lopez, 2003).

There is scarce (almost null) information in the literature about the concept of purity of a single qubit from 
the point of view of the discrete Wigner transform. Within such a formalism it is difficult to find a criteria for 
stating whether a qubit state is pure. In the present paper we discuss both the discrete Wigner function for a 
single qubit and introduce the concept of purity for it.   
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Aprobación: 29 de mayo de 2019



E-ISSN: 2395-8782 Espacio del Divulgador

cienciaergosum.uaemex.mxe77     2|

1. One-qubit in terms of a discrete Wigner function

The conventional definition of continuous phase space is a plane where the horizontal axis denotes 
the continuous position coordinate q while the vertical axis represents the continuous linear momen-
ta variable p. At this stage it arises the following question: what does a discrete phase space mean? By 
discrete phase space (DPS) we mean that the coordinate variable q takes a finite set of real values Q = 
{q1, q2,….,qn} while the momenta variable takes also a finite set of real values P = {p1, p2,….,pn} in such 
a way that the DPS is the set {(qi, pj)|qi U Q, pj U P}. We can state that the discrete analogue of phase 
space in a d–dimensional Hilbert space is a d × d real array. Thus, for the case of one qubit one has d = 
2. Consequently a 2–dimensional Hilbert discrete phase space can be represented by the following four 
real numbers denoted by:    

x11     x12
x21     x22

                                                                                                (1) 

In the continuous phase space (continuous XY –plane) we can draw continuous lines while in the 
discrete case this is not the case. We define a “line” in the d–dimensional discrete phase space as a set of 
d points in discrete phase space. Thus, a “line” in the case of a 2–dimensional discrete phase space is a 
set of 2 points in the discrete phase space of Eq. (1). The discrete phase space of Eq. (1) will contain the 
following six “lines”

                                        

α1,1 = {x11, x21},
α1,2 = {x11, x22},
α1,3 = {x11, x12},

α2,1 = {x12, x21},
α2,2 = {x12, x22},
α2,3 = {x21, x22}.                                                                                   (2)

The discrete phase space can then be partitioned into a collection of parallel lines. By a parallel line it is under-
stood disjoint sets of d = 2 phase space points. Such partitions are called striations (Wootters, 1987). According 
to Eq. (2), in the present case there will be the following  d + 1 = 2 + 1 = 3 striations 

                                                       
S1 = {α1,1, α2,2},
S2 = {α1,2, α2,1},
S3 = {α1,3, α2,3}.                                                                                   (3)

Wootters’ definition of discrete Wigner functions employs a special set of  d + 1 = 2 + 1 = 3 bases for a d–
dimensional Hilbert space. Such bases can be defined in terms of eigen-states of generalized Pauli operators. In 
this way, for the Pauli matrix σx = 0    1

1    0







 the respective eigen-states should be:

|ex1� =        (|0�+ |1�) =              ,

|ex2� =         (|0�- |1�) =              ,

1
1
  1
-1

















1
2√

1
2√

1
2√

√
1
2                                                                    (4)
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where we have employed the matrix notation 1
0









|0� =  and 0
1









|1� = . In the above equation by eigenstates of 
the Pauli operator σx we mean the following σx|ex1� = |ex1� and  σx|ex2� = –|ex2� where we have used that 
σx |0� = |1� and  σx|1� = |0�.

For the Pauli matrix σy = 0  -i
i    0








 the eigen-states are:

|ey1� =        (i|0�+ |1�) =              ,i
1









1
2√

1
2√

                                                      

|ey2� =        (-i |0�+ |1�) =               ,-i
1









1
2√

1
2√                                                       (5)

Clearly,  σy|ey1� = -|ey1� and σy|ey2� = |ey2�. 

While for  σz = 1    0
0  -1








 the respective eigen-states will be:

|ez1�  = |0�,
|ez2�  = |1�.                                                                                       (6)

Clearly  σz|ez1� = |ez1� and σz|ez2� = -|ez2�.
A set  B = {|e1�, | e2 �}  is a basis for a Hilbert space if any state |φ� of the space can be written as |φ� = a|е1� + b|е2� 

where a and b are complex numbers such that |a|2 + |b|2 = 1.  The basis B is orthonormal if Œei|ej� = δij where




δij =
0 if i ≠ j 
1 if i = j .  Let us observe that Œ0|0� = Œ1|1� = 1 and Œ0|1� = Œ1|0� = 0.   

The states given by (5), (6), (7) define the following d + 1 = 2 + 1 = 3 different bases 

Bx = {|ex1�, |ex2�},
By = {|ey1�, |ey2�},
Bz = {|ez1�, |ez2�}.                                                                               (7)

We must observe that there is a one-to-one correspondence between the striations of Eq. (3) and the bases of 
Eq. (7), that is:

S1 → Bx,
S2 → By,
S3 → Bz.                                                                                         (8)

On the other hand, the bases of Eq. (7) are unbiased, that is 

                                                                                 |Œei, j | ek, l�|2 =     =             i ≠ k                              1
d

1
2                                                                                  (9)

2. Discrete Wigner functions

We have the necessary ingredients to define a class of discrete Wigner functions. On one hand, there is a  d + 1 = 
2 + 1 = 3  mutually unbiased bases {Bx, By, Bz} and on the other a set of d + 1 = 2 + 1 = 3 striations {S1, S2, S3} 
of the d × d = 2 × 2 = 4 phase space into d = 2 parallel lines. We need to choose a one-to-one maps as follows:
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(I)   Each basis set Bi is associated with one striation Si. 
(II) Each basis vector |ei, j� is associated with a line αi, j (the jth line of the ith striation).

With the above association, the Wigner function W is uniquely defined if we demand that 

Tr(|ei, j�Œei, j|ρ) = ∑eU∝i,j We,                                                                   (10)

where  |ei, j� are the basis states of Eqs. (5)-(7) and ρ is the one-qubit density state (Nielsen, & Chuang, 2000). Let 
us observe that Eq. (10) gives rise to the following Wigner functions associated to the four real numbers of Eq. (1)

 

Tr(|ex,1�Œex,1|ρ) = ∑eU∝1,1   We = W(x11) + W (x21) = p1,1,

		  Tr(|ex,2�Œex,2|ρ) = ∑eU∝1,2   We = W(x11) + W (x22) = p1,2,

		  Tr(|ey,1�Œey,1|ρ) = ∑eU∝1,3   We = W(x11) + W (x12) = p2,1,

		  Tr(|ey,2�Œey,2|ρ) = ∑eU∝2,1   We = W(x12) + W (x21) = p2,2,

		  Tr(|ez,1�Œez,1|ρ) = ∑eU∝2,2   We = W(x12) + W (x22) = p3,1,

		  Tr(|ez,2�Œez,2|ρ) = ∑eU∝2,3   We = W(x21) + W (x22) = p3,2.                             (11)

where the probabilities satisfy:

∑i,j pi,j = 1                                                                                     (12)

Eq. (11) define uniquely the Wigner function W in terms of the probabilities:

                                      

W(x11) =       (p1,1 + p2,1 + p3,1 -1),

W(x12) =       (p1,1 + p2,2 + p3,2 -1),

W(x21) =       (p1,2 + p2,1 + p3,2 -1),

W(x22) =       (p1,2 + p2,2 + p3,1 -1).

1
2

1
2
1
2

1
2

                                                           (13)

3. Wigner formulation of one-qubit purity 

In the literature is scarce the information on the one-qubit purity. We then propose the following formulation 
of the purity in terms of the Wigner function:            
                                    

πi,j = Tr(|ei,j�Œei,j|ρ2) = ∑eU∝i,j ce We,                                                         (14)

where 0 ≤ ce ≤ 1 are real numbers. Eq. (14) can be expanded in terms of the following six equations as follows
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Tr(|ex,1�Œex,1|ρ2|) = ∑eU∝1,1 ceWe = c11W(x11) + c21W(x21) = π1,1,

	 Tr(|ex,2�Œex,2|ρ2) = ∑eU∝1,2 ceWe = c11W(x11) + c22W(x22) = π1,2,

	 Tr(|ey,1�Œey,1|ρ2) = ∑eU∝1,3 ceWe = c11W(x11) + c12W(x12) = π2,1,

	 Tr(|ey,2�Œey,2|ρ2) = ∑eU∝2,1 ceWe = c12W(x12) + c21W(x21) = π2,2,

	 Tr(|ez,1�Œez,1|ρ2) = ∑eU∝2,2 ceWe = c12W(x12) + c22W(x22) = π3,1,

	 Tr(|ez,2�Œez,2|ρ2) = ∑eU∝2,3 ceWe = c21W(x21) + c22W(x22) = π3,2.                  (15)

We say that one qubit is in a mixed state if 

∑i,j πi,j < 1.                                                                                    (16)

On the other hand, one qubit is in a pure state if
                                                                               

∑i,j πi,j = 1.                                                                                    (17) 

Conclusions 

We have formulated the one-qubit state in terms of the Wigner transform operating on a discrete phase-space. 
In classical approaches the phase-space is usually understood as the composition of both the continuous spatial 
coordinates {X} and the continuous momentum space {P}, that is, a {X, P} continuous generalized coordinates 
space. In the present approach we focus on two spatial coordinates {q1, q2} versus two momenta coordinates {p1, 
p2} is such a way that the two above sets generates the following four elements set {q1 p1, q1 p2, q2 p1, q2 p2 } ≡ 
{x11, x12, x21, x22} defining the discrete phase-space of Eq. (1). An example of a one possible phase-space is the 
following {-17.21, 8.3, -2.1, -0.17}.  

The striations of Eq. (3) can be generalized for a prime d–dimensional phase-space. In particular, we have con-
sidered a one-qubit state where d = 2.  Let us note that for the one-qutrit state one must have d = 3 Eq. (10) defines 
uniquely a one-qubit state in terms of the Wigner discrete transform W.  Such a definition is equivalent to the con-
ventional definition of a one-qubit state if one observe from Eq. (10) that *

1
*
0 ρ = (a0|0� + a1|1�) (a   Œ0| + a   Œ1|) = 

*
0

*
1

*
0

*
1

a0a     a0 a
a1a     a1 a







 where Tr ρ =  |a0|2 + |a1|2 = 1. On the other hand, the main achievement of the present work is 

the formulation of the purity of a one-qubit state in terms of the Wigner discrete transform W through Eq. (14). 
It is worth to mention that such a formulation is absent in the literature. With Eqs. (14) and (17) we can state a 
criteria for concluding when a one-qubit is in a pure state.

Prospective analysis 

The formulation of a one-qubit state in terms of  W is elegant and allows to geometrize the probabilities p(i, j) of Eq. 
(11). Indeed, the constrain of  Eq. (12) on the probabilities pi, j implies that they can be represented in a Bloch sphere. 

On the other hand, the understanding of the formulation of the purity of a one-qubit state in terms of the 
discrete Wigner transform as stated from Eqs. (15)-(17) could help in the future to understand intriguing prop-
erties of qubits such as the relation between W and the speed of quantum information processing. 
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