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RESUMEN: Este art́ıculo muestra una demostración de la fórmula de Stirling a partir de la distribución
chi-cuadrado y del teorema central del ĺımite. El propósito de este trabajo es presentar una demostración

sencilla y asequible de dicha fórmula a partir de conceptos estad́ısticos ampliamente conocidos, sin necesi-

dad de alargar dicha demostración de forma innecesaria.

Palabras Clave: Teorema central del ĺımite, aproximación factorial, función Gamma, distribución normal.

ABSTRACT: In this article Stirling’s formula is proved using the chi-square distribution and the central

limit theorem. The purpose of this text is to present a short and simple demonstration of Stirling’s formula
from well-known probabilistic facts avoiding a long and tedious demonstration from purely mathematical

arguments.
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1. Introduction

Stirling (1730)1 was one of the first to demonstrate the famous formula that takes his name given

in (1), although its demonstration is somewhat technical (using the formula of Euler-MacLaurin).

Subsequently, many easier and more intuitive demonstrations were given by several authors. Moritz

(1928)2 used the Wallis’ formula to obtain this result. Diaconis and Freedman (1986)3 proof it with

basic results about gamma function and a little of real analysis. Hu (1988)4 used a sequence of

iid random variables Poisson with parameter 1 and the Central Limit Theorem to proof Stirling’s

formula. Recently Pinsky (2007)5 presented a demonstration of the Stirling’s formula from the

characteristic function of the Poisson distribution and properties of complex functions.

lim
n→∞

√
2πnn+

1
2 exp (−n) = lim

n→∞
n! (1)

The rationale for yet another demonstration of Stirling’s formula is that the demonstrations

presented so far still require good mathematical knowledge. Therefore, we will present a demon-

stration accessible to students who are new entrants to statistics courses that only require basic

knowledge of probability and statistics. More specifically, knowledge about the mean and variance

of the chi-square and normal distributions and the central limit theorem.

The purpose of Stirling’s formula is to replace a “complicated” function, the factorial, with

some expression which is “simpler”. So you might object that
√

2πnn+
1
2 exp (−n) is simpler than

n!. But if I ask you the question whether en or n! grows faster when n→∞ you might appreciate

Stirling’s result. Or try to answer the question, how many digits n! has when n is large. Also

Stirling’s formula happens to work just as well in the case when n is not integer, i.e. for computing

the gamma function.

The Table 1 compares some factorials with values calculated using Stirling’s Approximation.

From the Table we can notice that as the value of n increases, the relative error decreases. For n

greater than 10 the relative error is smaller than 1%. We have stated that as n tends to infinity,

the formula tends to n! However, even with small values of n, the approximations are quite close.

Table 1. Comparing Stirling’s formula with the factorials.

n Factorial Stirling’s formula Relative Error

1 1 9.2213 · 10−1 0.0778

5 120 1.1801 · 102 0.0165

10 3.6288 · 106 3.5986 · 106 0.0082

20 2.4329 · 1018 2.4227 · 1018 0.0041

30 2.6525 · 1032 2.6451 · 1032 0.0027

40 8.1591 · 1047 8.1421 · 1047 0.0020

50 3.0414 · 1064 3.0363 · 1064 0.0016

100 9.3326 · 10157 9.3248 · 10157 0.0008

2. Proof of Stirling’s Formula

The proof was essentially based on Hu (1988)4 and Diaconis and Freedman (1986)3. The chi-square

and the normal density functions are given, respectively, by 2 and 3.

f(x) = x
n
2−1 exp

(
−x

2

)
, x, n > 0. (2)
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f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x, µ ∈ R and σ2 ∈ R+. (3)

Let X1, X2, . . ., be a sequence of iid random variables with distribution χ2
1, then defining

X2n =

2n∑
i=1

Xi (4)

and using the fact that sum of iid χ2 has χ2 distribution, X2n ∼ χ2
2n and

E[X2n] = 2n and Var (X2n) = 4n. (5)

Now using the Central Limit Theorem, see Inlow (2010)6 for a accessible proof, for large n,

X2n ≈ N(2n, 4n), so

f(x) =
x

2n
2 −1 exp

(
−x

2

)
Γ(n)2

2n
2

≈ 1√
2π
√

4n
exp

(
− (x− 2n)2

2 ∗ 4n

)
, (6)

when n is large.

Substituing x = 2n in (6) and simplifying,

(2n)
2n
2 −1 exp

(
− 2n

2

)
Γ(n)2

2n
2

≈ 1√
2π
√

4n
exp

(
− (2n− 2n)2

2 ∗ 4n

)
(7)

(2n)
n−1

exp (−n)

Γ(n)2n
≈ 1√

2π
√

4n
. (8)

Isolating Γ(n),

Γ(n) ≈
√

2π
√

4n
(2n)

n−1
exp (−n)

2n
=
√

2π
√
nnn−1 exp (−n). (9)

Using the fact that Γ(n+ 1) = nΓ(n) we have Γ(n) = Γ(n+ 1)/n, then

Γ(n+ 1) ≈ n
√

2πnn−
1
2 exp (−n) =

√
2πnn+

1
2 exp (−n) (10)

n! ≈
√

2πnn+
1
2 exp (−n), (11)

finally we have

lim
n→+∞

√
2πnn+

1
2 exp (−n)

n!
= 1 (12)

by central limit theorem and Stirling’s formula is proved because the expression obtained is equiv-

alent to (1).
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3. Concluding remark

The probabilistic proof presented is just one example of how statistics and pure mathematics are

strongly connected. Then in the future real problems from pure mathematics can be solved by

rigorous probabilistic proofs, this point of view is very important because a problem can often be

seen in several different ways and some ways are easier than others. Moreover, theoretical problems

(such as the demonstration of Stirling’s formula) favor the development of statistical reasoning,

since it requires the application of statistical results in unusual situations.
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