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abstract 
Aim of the study: Quantify potential economic benefits of implementing computer-generated skid-trail networks over the tradi­

tional operator-designed skid-trail networks on steep terrain ground-based forest operations. 
Area of study: A 132-ha harvest operation conducted at the University of Kentucky’s Robinson Forest in eastern Kentucky, USA. 
Materials and methods: We compared computer-generated skid-trail network with an operator-designed network for a 132-ha har­

vest. Using equipment mounted GPS data and a digital elevation model (DEM), we identified the original operator-designed skid-trail 
network. Pre-harvest conditions were replicated by re-contouring terrain slopes over skid-trails to simulate the natural topography and 
by spatially distributing the harvestable volume based on pre-harvest inventories and timber harvest records. An optimized skid-trail 
network was designed using these pre-harvest conditions and compared to the original, operator-designed network. 

Main results: The computer-generated network length was slightly longer than the operator-designed network (53.7 km vs. 
51.7 km). This also resulted in a slightly longer average skidding distance (0.71 km vs. 0.66 km) and higher total harvesting costs 
(5.1 $ ton-1 vs. 4.8 $ ton-1). However, skidding costs of the computer-generated network were slightly lower (4.2 $ ton-1 vs. 4.3 $ ton-1). 
When comparing only major skid-trails, those with ≥ 20 machine passes, the computer-generated skid-trail network was 28% 
shorter than the operator network (9.4 km vs. 13.1 km). 

Research highlights: This assessment offers evidence that computer-generated networks could be used to generate efficient skid­
trails, help determine skidding costs, and assess further potential economic and environmental benefits. 
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introduction 

Timber harvesting operations on gentle terrain are 
performed with ground-based systems using skidders 
or forwarders, while cable systems are recommended 
on steeper terrain (Kellogg et al., 1992). However, in 
many parts of the eastern US such as the Cumberland 
Plateau region of Kentucky typified by relatively 
steep, highly dissected terrain with short distances, 
the effective use of cable systems has been difficult 
to establish, and ground-based operations are com­

mon. As opposed to gentle terrain areas where skid­
ders can travel relatively unrestricted, steeper areas 
require constructed skid-trails to facilitate cost-effec­
tive and safe operations. Consequently, efficiently 
locating skid-trails becomes crucial as they directly 
impact skidding and skid-trail construction costs. 
Typically, skid-trail networks are designed manually 
by managers using vegetation and terrain character­
istics but more often are constructed on-the-fly by a 
bulldozer operator without careful planning. Typi­
cally, bulldozer operators start building skid-trails 
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either along ridge lines or near stream corridors and 
subsequently along contour lines. This results in 
relatively parallel skid-trials, spaced between 45 m 
and 75 m depending on harvest machinery and crew 
resources to facilitate reaching all harvestable volume 
between skid trails. 

The heavy traffic of harvesting equipment along 
skid-trails has also been reported to cause significant 
soil disturbances that can lead to erosion and com­
paction (Croke et al., 2001; Williamson & Neilsen, 
2000), a shift in vegetation composition (Avon et al., 
2013; Buckley et al., 2003), and loss of vegetation 
productivity (Lockaby & Vidrine, 1984). Best man­
agement practices including disking and seeding, 
subsoiling, re-contouring, and installing water bars 
are often recommended to ameliorate soil distur­
bances (Conrad et al., 2012). However, these prac­
tices carry additional costs ranging from 500 $ to 
8,000 $ ha-1 that might cause significant economic 
impacts on timber harvesting operations (Soman 
et al., 2019; Sawyer et al., 2012). The effort and 
costs used to ameliorate soil disturbance is partially 
governed by, and positively related to the traffic­
level. Reducing the length of high-traffic skid-trails 
can help alleviate administrative costs and thus des­
ignated skid-trails is typically recommended to also 
reduce these soil disturbance (Garland, 1983; Han 
et al., 2006). 

There are only a few models to automate the design 
of optimized skid-trail networks. Halleux and Greene 
(2003) developed an automated approach to evaluate 
alternative networks but assumes flat terrain and 
evenly distributed volume. Gumus & Turk (2016) 
developed an approach to optimize the design but is 
also applicable only for flat terrain. Contreras et al. 
(2016) developed a computerized model to generate 
an optimized skid-trail network that minimizes skid­
ding and skid-trail construction costs based on terrain, 
volume distribution, and extraction locations. Despite 
these developed models, there has been no formal 
comparison between field implementation of comput­
er-generated and operator-designed skid-trail networks 
to quantify potential economic benefits. One of the 
main reasons for the lack of these studies is the re­
quired coordination and collaboration with forest 
companies and logging contractors. Other reasons are 
the logging contractors’ unwillingness to change tra­
dition, perceived costs associated with tasks such as 
flagging skid-trails before construction, and an in­
herit distrust and misunderstanding of computer­
generated resources. 

In this study, we retroactively compared an oper­
ator-designed skid-trail network for a harvest op­
eration conducted in eastern KY, USA in 2008 with 

the optimized computer-generated skid-trail network 
using the Contreras et al. (2016) model. This work 
presents a novel attempt to quantify potential eco­
nomic benefits of computer-generated skid-trail 
networks, which can facilitate future more compre­
hensive ground comparisons and evaluation of model 
applicability. 

methodology 

Study area 

The study site was in the University of Kentucky’s 
Robinson Forest (lat. 37.47° N, long. -84.24° W), lo­
cated within the Northern Cumberland Plateau region 
in eastern Kentucky. The landscape is deeply dissected 
with steep slopes, and the forest overstory is primarily 
composed of oak (Quercus spp.), yellow-poplar (Liri-
odendron tulipifera L.), and hickory (Carya spp.). For 
the study, we focused on three watersheds, totaling 132 
ha, harvested in May 2008 to August 2009. A deferment 
harvest with a target residual basal area of 3.4 m2 ha-1 

was performed resulting in the removal of 16,164 tons 
of merchantable products. Full-benched skid-trails were 
constructed mostly along contours by the operators of 
three bulldozers: John Deere 650, John Deere 700, and 
John Deere 850. On accessible slopes below 30%, a 
Timbco 445 EXL feller-buncher was used to fell, top, 
and delimb trees. On steeper slopes the feller-buncher 
was restricted to the skid-trail and operated within 
reach of the boom. Trees beyond the reach of the boom 
were manually processed and merchantable length 
stems were winched to skid-trails by a bulldozer. Log­
piles created by the feller-buncher and the bulldozer 
were skidded to three landings by Caterpillar 545 grap­
ple skidders. Landings were located on ridgetops result­
ing in uphill skidding throughout much of the har­
vested area. 

Simulating pre-harvest conditions 

A high-density (~25 pt m-2) LiDAR dataset acquired 
in the summer of 2013 was used to create a high­
resolution digital elevation model (DEM) of the study 
area. While the DEM was created from data collected 
5 years after the harvest, the remnant skid-trail net­
work was clearly visible. To ensure a fair comparison 
with the computerized skid-trail model, we removed 
these terrain disturbances and created a DEM that 
mimicked the terrain prior to the harvest for input into 
the computerized skid-trail model program. Using the 
high-resolution DEM, aerial photos, and GPS data 
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collected from units mounted on the harvesting equip­
ment, the operator-designed skid-trail network was 
identified, and each skid-trail segment was digitized 
as a line through the center of each skid-trail (Fig. 1a). 
A 6-m buffer centered on the digitized skid-trail net­
work was applied to encompass the entire area dis­
turbed by skid-trail construction. Elevation data from 
the DEM cells within the buffer were removed and a 
routine was developed to fill the vacant elevation data. 
The elevation of a given DEM cell within the buffer 
was calculated as the inverse distance weighted aver­
age of the elevation of the closest DEM cell along 
eight transects starting from north and generated every 
45 degrees. 

Harvested volume was spatially distributed across 
the study area using pre-harvest inventory data con­
sisting of a systematic grid of 186 points. The inven­
tory used a nested variable point sampling for trees 
with diameter at breast height larger than 33 cm, and 
the variable point sampling with diameter obviation 
method described in Beers (1964) for smaller trees. 
The inventory only recorded trees that were marked 
for harvest. It was assumed that harvested volume 
estimates per sample point were representative of the 
volume distribution across the study area. Then, har­
vested volume per ha across the watersheds was esti­
mated by interpolating the volume estimates from the 
sample points. The interpolation procedure used the 
inverse distance weighted method to create a 1-m 
distribution raster with the percentage of the total 
extrapolated volume for each cell covering study area. 
To ensure that the recreated pre-harvest volume was 
equivalent to the actual harvested volume, sale tickets 
from the harvest were used to calculate the exact 
volume extracted from each watershed. This total 
volume was then distributed according to the distribu­
tion raster. 

computerized skid-trail network model 

The model presented in Contreras et al. (2016) was 
used to develop the computer-generated skid-trail 
network. The model creates an optimized skid-trail 
network based on a DEM, volume distribution, skid­
der maximum loading capacity (MLC), obstacles 
within the harvesting area, and costs of skid-trail 
construction and skidding. Based on the volume dis­
tribution by cell and the skidder’s MLC, the model 
uses a log-bunching routine to identify the location 
of log-piles. In the volume raster, the routine identi­
fies the first accessible cell with volume and adds the 
volume to the first log-pile. If the volume is less than 
the MLC, the routine searches the neighboring cells 

for additional volume. If present, the volume is 
added, and the cell is assigned to the log-pile. The 
search window continues to expand to add addi­
tional volume and assign the associated cells to the 
log-pile until the pile volume equals the MLC. Once 
this target volume is achieved, the log-pile location 
is established in the center of the search window area. 
The model then identifies the next unassigned cell 
with available volume, adds additional volume from 
an expanding search window, assigns the cells to the 
next log-piles, and when the volume meets the target 
MLC the center of the search window area is assigned 
as the location of this next-log pile. The process con­
tinues until all cells with volume are assigned to a 
log-pile. 

The model creates a network of feasible skid-trail 
segments formed by a set of vertices regularly spaced 
throughout the study area and links connecting adjacent 
vertices. Vertices represent the center of DEM cells, 
log-pile locations, and landing locations. Links repre­
sent skid-trail segments between adjacent vertices. In 
the model, each vertex was connected to eight adjacent 
vertices spaced every 6.4 m (20 ft) over trafficable 
areas with gradient and side slopes below user-defined 
limits for skidding. Skidding costs for skid-trail seg­
ments were calculated based on skidder rental rate and 
cycle time where the cycle time for uphill and downhill 
links were determined using the following equations 
from Contreras and Chung (2007): 

 CTds = 3.9537 + (0.0215 × D) [1] 

 CTus = 3.9537 + 0.0258 × D [2] ( ) 
where CTds is the cycle time (min) for downhill skid­
ding, CTus the cycle time (min) for uphill skidding, and 
D the slope distance (m) along the network connecting 
a log-pile and the landing. Cycle time was used to 
calculate skidding cost as follows: 

 
⎛ CTi ⎞PSCi = 

⎠⎟ 
× RR [3] 

⎝⎜ 60 
where PSCi is the skidding cost ($) for the ith log­
pile, CTi round trip skidder cycle time (min) for the 
ith log-pile, and RR the hourly rental rate for the 
skidder ($). 

As model inputs, slope limitations for feasible skid­
trail segments (links) were set to not surpass 45% 
gradient slope and 100% side slope. Skidder rental 
rate was set at 120 $ SMH-1 (US Forest Service, 2011) 
and MLC was set as 10 ton based on cycle volume 
observations for similar harvest operations near the 
study site (Bowker, 2013). To estimate skid-trail con­
struction cost, the same rental rate associated with 
skidding was used, 120 $ hr-1 (US Forest Service, 



Marco A. Contreras, David L. Parrott, Jeffrey W. Stringer

Forest Systems� April 2020 • Volume 29 • Issue 1 • eSC01

 

 

 
 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
 

       
       

       
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

   

 
 
 
 
 

 
 
 

   

  

 
 
 

 
   

 
 
 

 

 
     
 

 
 

   
 

    
 

 
 

4 

2011). Construction time was obtained from the GPS 
positional data with timestamps mounted on the three 
bulldozers and collected during the original harvest 
(Bowker, 2013). Using construction time and average 
terrain side slope along each skid-trail section, we 
found a 30% decrease in construction time within each 
10% increase in terrain slope. Applying this relation­
ship to the average slope and average time of the 
original harvest, we estimated construction time for 
each skid-trail segment based on slope distance and 
terrain side slope. Streamside management zones in 
the original harvest were identified and considered 
inaccessible in the model (Fig. 1b). Lastly, NET­
WORK 2000 (Chung and Sessions, 2003) was used 
to find the optimal skid-trail network considering 
variable (skidding) and fixed (skid-trail construction) 
costs and connecting each log-pile to the three land­
ings at minimum total costs. 

comparison of skid-trail networks 

Although constructed skid-trails of the operator­
designed network could be easily identified, the 
location of skid-trails that were not constructed and 
used to access and pick up individual log-piles were 
unknown. Thus, to be consistent with the computer­
ized model inputs, the same log-pile locations gener­
ated by the log-bunching routine were assumed to 
represent the locations of the log-piles in the original 
harvest. These log-piles were then linked to the iden­
tified operator-designed skid-trails with Euclidean 
distance lines with no restrictions on terrain slope. 
The operator-designed skid-trails were divided into 
3.05 m segments, for which skidding and construc­
tion costs were calculated following the same pro­
cedures as in the computerized model. Routes and 
skidding cycle times for each log-pile were deter­
mined assuming the shortest distance along the op­
erator-designed skid-trail network to the nearest 
landing. Then, information per log-pile (i.e., skidding 
distance and costs) was determined, as was informa­
tion for the entire study area (i.e., skidding cost, 
skid-trail construction cost, total harvesting cost and 
skid-trail length). These were calculated and com­
pared with the information from the computer-gen­
erated skid-trail network. 

The potential economic benefit of optimizing the 
location of skid-trails is proportional to traffic level. 
Thus, we compared the total length of both skid-trail 
network for segments with increasing levels of ma­
chine passes. Typically, in moderately steep areas such 
as our study area, skid-trails need to be constructed 
even across low-volume areas to be able to reach log­

piles. Therefore, we also focused comparisons on 
major skid-trails. 

results and discussion 

The total harvest volume represented by the vol­
ume distribution data in the harvest area (Fig. 1c) 
was 16,021 tons, from which the log-bunching rou­
tine identified 1,667 log-piles (Fig. 1d). The average 
log-pile volume was 9.6 ton, which was near the 
skidder maximum capacity set at 10 ton. The oper­
ator-designed network presented the typical parallel 
pattern with an average spacing of 56 m (Fig. 1a). 
Figure 2a shows the complete operator-designed 
skid-trail network after connecting all log-piles to 
the closest constructed skid-trails. The number of 
loaded machine passes ranged from one, for seg­
ments connecting log-piles to constructed skid-trails, 
to 550 for skid-trail segments approaching log­
landings. 

The computer model successfully generated an 
optimized skid-trail network (Fig. 2b) connecting all 
but six log-piles to the three log-landings. These six 
log-piles were in areas with terrain slope around 
75%, which was above gradient allowed for feasible 
skid-trails. However, as done with the operator-de­
signed skid-trail network, these log-piles were con­
nected to the closest optimized skid-trails and their 
associated skidding costs were also calculated. The 
number of loaded machine passes ranged from one 
to 619 indicating that more traffic was concentrated 
along fewer skid-trails arriving at the landings. Total 
skidding cost for the computer-generated network 
was slightly lower than the operator-designed net­
work ($67,563 vs $69,520, Table 1). The average 
skidding cost and average skidding distance per log­
pile was also slightly lower for the computer-gener­
ated network. However, skid-trail construction cost 
for the computer-generated network was higher 
($13,447 vs $8,178) than the operator-designed net­
work. This was because numerous skid-trail seg­
ments were located across steeper terrain slope, 
which increased construction costs. On average in 
the operator-designed network, skid-trails with fewer 
than 20 loaded machine passes were placed on areas 
with terrain slopes of about 29% and skid-trails with 
more than 20 machines passes were located on areas 
with terrain slope of about 10%. On the other hand, 
same traffic level skid-trails, in the computer-gen­
erated network, were located on areas with terrain 
slopes of 43% and 19%. Thus, the resulting total 
harvesting cost for the operator-designed network 
was lower than the computer-generated network, 
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Figure 1. Study area showing the location of constructed skid-trails (a) areas with no traffic allowed on stream management zones 
and near existing intermittent streams (b) volume distribution derived from 186 pre-harvest inventory plots (c), and the resulted 
simulated location of 10-ton log-piles (d). 
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Figure 2. Operator-designed (a) and computer-generated (b) skid-trail networks showing traffic level in terms of loaded machine 
passes, and location of operator-designed (c) and computer-generated (d) major skid-trails defined as those with 20 or more loaded 
machine passes. 
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table 1. Summary harvesting results from the operator-designed and the computer-generated 
skid-trail networks. 

Summary information operator-designed computer-generated 

Entire harvest unit 
Harvesting cost ($) 77,698 81,011 
Skidding cost ($) 69,520 67,563 
Skid-trail construction cost ($) 8,178 13,447 
Skid-trail network length (km) 51.7 53.7 

Per log-pile 
Minimum skidding cost ($) 8.6 8.2 
Average skidding cost ($) 41.7 40.6 
Maximum skidding cost ($) 92.6 94.9 
Minimum skidding distance (m) 7.6 7.1 
Average skidding distance (m) 664.8 703.8 
Maximum skidding distance (m) 1,667.0 1,872.1 

approximately $77,700 and $81,000 or 4.8 $ ton-1 

and 5.1 $ ton-1 . 
The total length of skid-trails in the computer­

generated network was 53.7 km, which is 2.0 km 
higher than the length of the operator-designed net­
work. This is likely because log-piles in the operator­
designed network were connected directly to the 
constructed skid-trails without terrain slope con­
straints and feasible skid-trails in the computer-gen­
erated network were allowed only when gradient was 
below 45%. As most of the skidding costs will be 
accrued while travelling along the high-traffic skid­
ding routes, the correct location of these paths is 
crucial because of their large impact on total costs. 
While the computer-generated results provide infor­
mation for the entire skid-trail network, the ground 
implementation of correctly identifying skid-trails 
connecting individual log-pile locations would be 
relatively difficult. A more practical application of the 
computerized model can focus on high-traffic or major 
skid-trails, which can be flagged on the ground to 
guide operator before construction. In this context, 
when comparing the length of skid-trails with more 
than 20 loaded machine passes, the computer-gener­
ated skid-trail network was about 28% shorter (9.4 
km vs 13.1 km). This indicates that the computer­
generated network has a lower density of high-traffic 
skid-trails throughout the harvest unit concentrating 
skidding along fewer skid-trails. This becomes evident 
when comparing major skid-trails, those with more 
than 20 loaded machine passes (Fig.2c and 2d). For 
example, the operator-design network has several 
major skid-trails arriving at the southern and northern 
landing following a parallel pattern, while the com­
puter-generated presents fewer major skid-trails fol­
lowing a branching pattern. 

Several of these major skid-trails in the comput­
er-generated network also follow ridge lines and 

branch downslope to follow routes along contour 
lines. The branching pattern of the major skid-trails 
and of the entire skid-trail network is typical of 
studies using a network approach to determine 
routes that minimize skidding and construction 
costs (Stückelberger, 2008; Ezzati et al., 2015). The 
computerized model should also incorporate a two­
dimensional smoothing routine to help ensure a path 
that a loaded skidder can efficiently navigate. This 
would also reduce skid-trail length, which would 
also reduce skidding and skid-trails construction 
cost. 

Lastly, there was a dramatic difference in procure­
ment area and volume received among log-landings. 
About 60% of the total volume was skidded to the 
northern log-landing, only 15% skidded to the middle 
log-landing, and the remaining 35% to the southern 
log-landing (Fig. 2b). The uneven volume distribution 
among log-landings and the relatively long average 
and maximum skidding distances (Table 1) suggest 
that overall skidding productivity and cost could have 
been improved by relocating both northern and middle 
log-landings farther north to reduce skidding dis ­
tances. 
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