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 Abstract
Aim of study: To evaluate artificial neural networks (ANN), and k-Nearest Neighbor (k-NN) to support vector regression (SVR) models 

for estimation of available soil nitrogen (N), phosphorous (P) and available potassium (K).
Area of study: Two separate agricultural sites in Semnan and Gorgan, in Semnan and Golestan provinces of Iran, respectively.
Material and methods: Complete data set of soil properties was used to evaluate the models’ performance using a k-fold test data set 

scanning procedures. Soil property measures including clay, sand and silt content, soil organic carbon (SOC), electrical conductivity (EC), 
lime content as well as fractal dimension (D) were used for the prediction of soil macronutrients. A Gamma test was utilized for defining the 
optimum combination of the input variables.

Main results: The sensitivity analysis showed that OC, EC, and clay were the most significant variables in the prediction of soil macro-
nutrients. The SVR model was more accurate compared to the ANN and k-NN models. N values were estimated more accurately than K 
and P nutrients, in all the applied models. 

Research highlights: The accuracy of models among the test stages illustrated that using a single data set for investigation of model 
performance could be misleading. Therefore, the complete data set would be necessary for suitable evaluation of the model. 

Additional keywords: artificial neural networks; Gamma test; k-Nearest Neighbor; support vector regression
Abbreviations used: ANN (artificial neural networks); CEC (cation exchange capacity); D (fractal dimension); EC (electrical conduc-

tivity); k-NN (k-Nearest Neighbor); MR (mean error); PSD (soil particle size distribution); R (correlation coefficient); RMSE (root mean 
square error); r-RMSE (relative root mean square error); SE (standard error); SOM (soil organic matter); SVR (support vector regression); 
ω (composite scaling constant)
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Introduction
Soil nutrients play a considerable role in regulating 

plant growth. In soils with low nutrient content, limited 

productivity is expected from plants. On the other hand, 
excessive use of fertilizers may have detrimental con-
sequences on environmental pollution, in the case they 
enter into the surface or the groundwater bodies (Wang 
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et al., 2009; Fu et al., 2010). The yield of agricultural 
crops is completely dependent on the application of soil 
fertilizers, especially nitrogen (N), phosphorus (P), and 
potassium (K) (Foth, 1982). Ayoubi & Sahrawat (2011) 
illustrated that the soil total N and available P are the most 
important factors in predicting barley yield. Soil proper-
ties, including clay content, lime content as well as pH are 
negatively correlated with the mineral nutrients and may 
decrease the availability of plant nutrients by fixing them 
or by forming insoluble compounds (Chaudhari et al., 
2012). Additionally, electrical conductivity (EC) has sig-
nificant influence on crop yield, crop suitability, activity 
of soil microorganisms, and availability of plant nutrients, 
which can consequently influence the key soil processes 
(Adviento-Borbe et al., 2006).

The most accurate way for direct measurement of 
soil macronutrients is laboratory analysis. However, this 
analysis is difficult in arid and semi-arid regions of Iran, 
which have with calcareous soils. Alternatively, during 
the past three decades, data-driven models (e.g. artifi-
cial neural networks (ANN), support vector regression 
(SVR) and k-Nearest Neighbor (k-NN)) have emerged as 
rapid mathematical methods, which correlate the role of 
independent variables to dependent ones (Simon, 1995; 
Moosavi & Sepaskhah, 2012; Shiri et al., 2017). A limited 
number of approaches have been proposed for the predic-
tion of soil macronutrients and soil chemical properties 
utilizing data driven models (Li et al., 2013; Keshavarzi 
et al., 2015; Jeong et al., 2017). For instance, Jeong et al. 
(2017) combined different vegetation indices with some 
attributes derived from digital elevation map in order to 
predict the spatial soil nutrients. Their results indicated 
that SVR is an efficient method for prediction of N and 
P nutrients. Li et al. (2016) investigated the capability of 
ANN model merged with kriging, in order to predict re-
lationships among soil properties and environmental fac-
tors. Keshavarzi et al. (2015) found that the values of soil 
P could be predicted more accurately by the ANN-based 
pedotransfer function and by including topographic va-
riables in the model. Safaa & Maxwell (2015) predicted 
pasture N content using ANN models and thermal images. 
Their results indicated that ANN models could be well fit-
ted for pasture N content. Zolfaghari et al. (2016) applied 
the k-NN approach to obtain cation exchange capacity 
(CEC) using soil particle size distribution (PSD) and soil 
organic matter (SOM). Their results illustrated that the 
ANN and k-NN approaches have similar accuracies in es-
timating soil CEC. 

In most reported literature on developing and testing 
data mining models, a single random data set has been 
utilized, and subsequently, using a portion of the whole 
data, models have been trained and been tested using the 
remained data pattern. In some cases, the efficiency of 

the models with suitable results, drastically decreases by 
substitution of the test data. Hence, it is more suitable to 
determine the efficiency of the models based on the k-fold 
testing method (Shiri et al., 2017). In this study, we have 
investigated the capability of the ANN, SVR, and k-NN 
models in predicting the availability of soil macronu-
trients, using the k-fold procedure. In addition, the sensi-
tivity analysis of the input variables has been determined 
using Gamma-test technique. To predict the availability 
of soil macronutrients, fractal parameters derived from 
the PSD were also used as the model input variables.

Material and methods
Study area and soil analysis

This study was conducted in two separate agricultural 
sites in Semnan and Gorgan, respectively from Semnan 
and Golestan provinces of Iran. Semnan region, in the 
Semnan province, is located in the central part of Iran. 
Semnan region has an arid climate with high evapotranspi-
ration and very little precipitation. Soil samples in this 
area were selected from rangelands and agricultural lands. 
Rangelands contain poor vegetation cover, while 90% of 
agricultural lands are used for the production of wheat, 
barley and corn (Babaei et al., 2018). The mean annual 
temperature, precipitation and potential evapotranspira-
tion in the Semnan region are 18.5 ºC, 138 mm and 2500 
mm yr-1, respectively. Based on the FAO World Reference 
Base for Soil Resources (WRB) most soils of Semnan are 
classified as Regosols, Calcisols and Cambisols. 

Gorgan, in the Golestan province, is located in the 
northern part of Iran. The Gorgan region has a humid cli-
mate. Soil samples on this area were selected from agricul-
tural lands which were used for the production of wheat, 
barley, rapeseed and watermelon. The mean annual tem-
perature, precipitation and potential evapotranspiration in 
the Gorgan region are 17.5 ºC, 550 mm and 985 mm yr-1, 
respectively. Based on the WRB, most soils of this area 
are classified as Luvisols, Leptosols and Cambisols.

This work was conducted at five steps (Fig. 1): i) soil 
properties including pH, EC, OC, CaCO3, clay, silt and 
sand were measured; ii) step fractal parameters including 
D and ω from PSD were determined; iii) the Gamma 
test was utilized for identifying the relevant variables for 
modeling of soil macronutrients; iv) soil macronutrients 
were predicted using ANN, SVR and k-NN models; v) 
the best model was selected based on the cross validation. 

For determining the relation of soil macronutrients (i.e. 
soil N, available P and available K) with easily measura-
ble soil properties, 130 soil samples from the top 30 cm of 
soil profile were collected from two separate agricultural 
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sites in Semnan and Gorgan, respectively from Semnan 
and Golestan provinces of Iran. The sampling points were 
determined using a random sampling scheme. 

Clay (<0.002 mm), silt (0.002–0.05 mm), and sand 
(0.05–2 mm) particles were measured using sieving and 
sedimentation technique (Gee & Bauder, 1986). Soil or-
ganic carbon was defined by Walkley–Black approach 
(Walkley & Black, 1934), and soil reaction (pH) and elec-
trical conductivity (EC25 ◦C) were obtained from extract 
paste (Jackson, 2005). N, P and K nutrients were respec-
tively measured by a modified Kjeldahl wet digestion 
procedure and a Tector Kjeltec System, the Olsen method 
(Olsen & Khasawneh, 1980) and the flame photometry 
(Jackson, 2005). 

.
Fractal parameters
 

Fractal parameters, estimated from the PSD, were 
also used as the model input variables for prediction 
of the desired studied macronutrients. For calculating 
fractal parameters, first, the PSD curve was developed 
from limited soil texture data using Skaggs et al. (2001) 
method. At the second step, Bird et al. (2000) fractal model 

(equation 1) was fitted on the PSD curve data and fractal 
parameters were determined. The PSD for the 20 size clas-
ses (0-2, 2-3, 3-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 
60-100, 100-150, 150-200, 200-300, 300-400, 400-600, 
600-800, 800-1000, 1000-1300, 1300-1600 and 1600-2000 
µm) were calculated from sand, silt and clay, applying the 
model described by Skaggs et al. (2001) as follows:

(1)

where Pᵣ(r) is the mass fraction of soil particles with a 
radius < r, r0 is the lower limit on radius for which the mo-
del applies, and σ and u are the model parameters which 
can be estimated as follows:

(2)

(3)

(4)

(5)

𝑃𝑃𝑟𝑟(𝑟𝑟) =
1

(1 + 1
𝑃𝑃𝑟𝑟(𝑟𝑟0) − 1) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑢𝑢𝑟𝑟𝜎𝜎)

 

 
Figure 1. Flowchart of the procedure summarizing the sequence of methodologies applied 
for prediction of macronutrients. EC: electrical conductivity; OC: organic carbon; D: frac-
tal dimension of the particle size distribution (PSD); ω: composite scaling constant; SVR: 
support vector regression; ANN: artificial neural network; k-NN: k-nearest neighbors.
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To predict PSD, the values of r0, r1, and r2 must be 
predefined. In this study, the values of r0, r1, and r2 were 
selected to be equal to 1, 25, and 999 µm, respectively 
(according to Skaggs et al., 2001). Considering the USDA 
particle-size classification system, these radii indicate that 
Pᵣ (r0) is the clay mass fraction, Pᵣ (r1) is clay plus silt 
mass fraction and Pᵣ (r2 ) is the clay plus silt plus fine sand 
plus very fine sand mass fraction (Skaggs et al., 2001; 
Bayat et al., 2014). 

In the second step the Pore-Solid Fractal model was 
fitted on PSD data (Bird et al., 2000):

(6)

where Ms(r<rᵢ ) is the cumulative mass of particles smaller 
than rᵢ, D is the fractal dimension of the PSD, and ω is the 
composite scaling constant.

Defining the optimal combination 
with the Gamma test

The Gamma test is an appropriate tool for identifying 
the optimum combination of the input variables (Yazdani 
& Zolfaghari, 2017). In this research, the Gamma test was 
applied in order to find the most effective parameters. 
Then the least sensitive parameters were excluded from 
the models. We considered the following set:

(7)

where xiWRᵐ are considered as m dimensional input vec-
tors (with a record length of M) with real numbers (R) 
and, accordingly, YiϵR are output scalper. In addition, it is 
assumed that x vectors have the capability of predicting 
factors affecting the output Y.

The following equation explains the relationship 
between x and Y vectors.

(8)

where ƒ refers to a smooth function and e shows a random 
noise with zero mean.

The Gamma statistic (Γ) refers to an estimate of 
output variance in the model. The Gamma test is defined 
by NE[i,k], that are the kth (1≤ k ≤n) nearest neighbors. 
Specifically, the Gamma test is derived from the Delta 
function of the input vectors:

(9)

where | ... | refers to the Euclidean distance. Subsequently, 
the corresponding Gamma function of the output values 
obtains as:

(10)

where YNE[i,k] is the corresponding Y-value for the kth 

nearest neighbor of xi in Eq. (9). For calculating Γ, a 

least-square regression line is determined for the n points 
(δᴍ (k), γᴍ (k)) (11)

where A indicates the slope of linear regression. Intercept 
of the above regression line is equal to Γ. A higher slope 
indicates a higher level of complexity in the model.

The Γ statistics can be standardized for the creation of 
the V ratio. The V ratio was computed as follows:

(12)

where σ2 (Y)  refers to variance of the output variable. 
Lower V ratio indicates a better prediction of the output va-
riable, while higher V represents a greater prediction error 
(Moghaddamnia et al., 2009; Yazdani & Zolfaghari, 2017).

Standard error (SE) of the regression give us an indica-
tion of how much the point estimate is likely to vary from 
the corresponding data. It can be calculated as square root 
of the estimated error variance on the sum of square of the 
independent variable. Therefore, if the SE value of linear 
regression in Eq. (9) is close to zero, we have more con-
fidence in the value of the Gamma statistic as an estimate 
for the noise variance on the given output.

Prediction models

Artificial neural network (ANN)

ANN include the input, output and the hidden layers 
we used. Mathematically, it is expressed by:

(13)

where Ok and Xi are the output and input variables of the 
neural network, Wij and Wjk are the weights between the 
input and hidden layers, and the weights between the hid-
den and output layers, respectively. S refers to a transfer 
function, m and n, the numbers of input and hidden neu-
rons, respectively (Haykin, 1994). The number of hidden 
layers represents the complexity of the ANN. It is cer-
tified that various soil properties could be successfully 
predicted using one hidden layer in ANN (Were et al., 
2015; Taghizadeh-Mehrjardi et al., 2016). Therefore, in 
the current study a topology with one hidden layer was 
utilized. There are various methods for optimizing the 
number of neurons inside the hidden layer. For obtaining 
the best neuron number in the hidden layer, ANNs with 2 
to 20 neurons in the hidden layer were compared. The best 
estimated neuron number in the hidden layer was cho-
sen by a cross-validation using a 5-fold process over the 
training set. In this study, we applied the sigmoid function 
as the transfer function for prediction of soil properties. 
ANN can be trained by a back propagation algorithm. 
Among various back-propagation training algorithms, we 

𝑀𝑀𝑠𝑠(𝑟𝑟 ≤ 𝑟𝑟𝑖𝑖) = 𝜔𝜔𝑟𝑟𝑖𝑖3−𝐷𝐷  

{(𝑥𝑥𝑖𝑖, 𝑌𝑌𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀}   

𝑌𝑌 = 𝑓𝑓(𝑥𝑥1 …𝑥𝑥𝑚𝑚) + 𝑒𝑒 

𝛾𝛾 = 𝐴𝐴𝐴𝐴 + 𝛤𝛤 

𝑉𝑉 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛤𝛤
𝜎𝜎2(𝑌𝑌) 

𝑂𝑂𝑘𝑘 = 𝑆𝑆 (∑ 𝑊𝑊𝑗𝑗𝑗𝑗
𝑚𝑚
𝑗𝑗=1 × 𝑆𝑆(∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 ))            
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selected the Levenberg–Marquardt due to its efficiency 
and simplicity. Neural Network Toolbox of MATLAB 
was utilized for performing ANN modeling (Mathworks, 
2010).

k-nearest neighbors (k-NN)

The k-NN algorithm proposed by Nemes et al. (2006), 
Botula et al. (2013) and Zolfaghari et al. (2016) was used 
to predict soil macronutrients. MATLAB environment was 
utilized for implementing the k-NN algorithm (Mathworks, 
2011). This approach does not need any predefined ma-
thematical function for estimating the target variable. In 
the k-NN technique, soils which have the most similarity 
to the target soil (test sample) are chosen from a reference 
data set. The efficiency of the k-NN technique is greatly 
dependent on the correct selection of the ‘most similar’ 
soils. The details of the k-NN algorithm are: 
― Step 1: Defining the test (target) and the reference 
data set. 
― Step 2: Calculating the Euclidean distance between 
test and training samples. The similarity between the tar-
get (test data set) and the reference soils obtains using the 
Euclidean distance was calculated:

(14)

where di refers to the “Euclidean distance” of the ith soil 
from the target soil and ∆aij indicates the difference among 
the ith soil and the target soil in the jth soil attribute and np 
shows the number of soil properties considered for the 
model. The term ‘distance’ determines the similarity; the 
distance will be smaller for soils which have higher simi-
larity with the target soil regarding the input attributes.
― Step 3: Determining k nearest neighbors by sorting the 
distances in ascending order, and then choosing k samples 
with relative minimum distances.

The normalization procedure is necessary because of 
significant differences among soil variables. For this rea-
son, the input variables are first transformed to temporary 
attributes with a distribution having zero mean and one 
standard deviation. 

Finally, the reference soils data set are sorted in 
ascending order and according to their distance from the 
target soil. The distances of the selected k neighbors from 
the reference soil can be obtained using a weighting pro-
cedure as below:

(15)

where k refers to the number of selected neighbors, wi 
shows the weight associated with the ith nearest neighbor, 
and di(rel) defines the relative distance of the ith selected 
neighbor, calculated as:

(16)

where p is a power term which considers different possi-
ble weight–distance relationships.

After calculation of wi, soil macronutrients would be 
predicted as: 

(17)

where Yi,      are the observed and the predicted soil macro-
nutrients for ith soil sample. 

Support vector regression (SVR) 

SVR is a strong data mining approach that can be 
generalized to non-linear models applying a kernel func-
tion (Vapnik, 1995). The kernel function is a set of mathe-
matical functions, which is used to transform the input 
data space into a higher dimensional space. In this study 
ε-SVR was used for the prediction of soil macronutrient 
(Smola & Schölkopf, 2004). In ε-SVR a threshold (ε) set is 
given by the user. Data points with an absolute difference 
greater than the threshold, contribute to the regression fit. 
Since the squared residuals are not used in ε-SVR, large 
outliers have limited effects on the regression equation. 
Also samples which fit suitably on the model (i.e., with 
small residuals) have no effect on the regression equa-
tion. The best SVR fit in the features space utilizes a loss 
function in order to find the regression line that minimizes 
the model residual. The loss function in ε-SVR applies 
absolute residuals over the threshold ε; however it ignores 
all errors within ± ε. This approach shows robust effects 
that are not sensitive to outliers on the prediction (Cher-
kassky & Mulier, 2007). With ε, the loss function can add 
a penalty (cost) for large residuals. There is a relationship 
between the ε and the cost parameter (Kuhn & Johnson, 
2013). At the initial step, 0.1 (default value) was chosen for 
ε, and kept fixed while tuning the value of cost via 10-fold 
cross validation. In this study, the radial basis kernel func-
tion (Eq 18) performed the greatest efficiency because its 
parameters were easier to adjust compared to those of other 
kernels (Ballabio, 2009; Kuhn & Johnson, 2013).  
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where G represents the kernel function, x indicates the 
input vectors, σ refers the scaling parameter, and  
shows the Euclidean norm. The radial basis function needs 
to adjust the sigma (σ) parameter that controls its width. In 
this research, σ was automatically optimized in MATLAB 
software by minimizing k-fold cross-validation.

Data splitting and model assessment

A k-fold testing data assignment approach was applied 
for the analysis of efficiency of the studied models, 
namely k-NN, ANN and SVR, which were used for the 
prediction of soil macronutrients. In this step, the varia-
bles significant for prediction of each nutrient (e.g. N, 
K, and P), determined using the Gamma test, were used. 
The complete data was partitioned into 10 subsets. Each 
time, the models were trained and were tested utilizing 
a part of the available patterns. Using this approach, all 
the available input-target patterns were considered by 
the models to construct the final estimation model (Marti 
et al., 2013; Shiri et al., 2014, 2017). Accordingly, the 
k-NN, ANN and SVR models were trained and tested 30 
times (3 approaches 10-folds). Assessing the accuracy of 
the models’ performance using the k-fold testing would 
circumvent from acquiring relatively rational conclusions 
that might be drawn using traditional data management 
scenarios (Marti et al., 2013; Shiri et al., 2014). This was 
possible because no invisible input patterns would remain 
in the development of the models. The performance accu-
racy of the applied models was evaluated based on four 
statistical metrics: correlation coefficient (R), root mean 
square error (RMSE), mean error (MR) and relative root 
mean square error (r-RMSE). MR illustrates systematic 
errors in the applied approach, RMSE represents the ac-
curacy of the approach; r-RMSE is a dimensionless in-
dicator that can provide a proper and consistent contrast 
among the models when they depend on different targets. 
This is extremely decisive as the influence of the targets’ 

magnitude is neglected because in calculation of r-RM-
SE, only their mean values are taken into account. These 
metrics can be obtained by:

(19)

(20)

(21)

(22)

where n represents the number of data; Yi  and 
^

iY  refer to 
the observed and the predicted soil macronutrients for the 
ith soil sample, respectively; and the 𝑌̅𝑌 and 𝑌̅̂𝑌 are the mean 
observed and predicted soil macronutrients, respectively.

Results and discussion
Data summary statistics

Relevant statistics of input and output soil properties 
of the existing and the newly evolved models are repre-
sented in Table 1. The data sets embed a wide range of 
soil factors. Among the input variables, soil PSD covers a 
good range and can be expandable to many regions with 
different climatic conditions. Soil pH changed from 5.95 
to 8, with an average of 7.5. Soil EC varied from 0.34 to 
60 dS/m in the studied regions, which indicates a wide and 
expandable range (Table 1). Moreover, organic carbon 
had acceptable fluctuation ranging from 0.01 to 7%. The 
values of macronutrients showed considerable fluctua-
tion. Nitrogen content had negligible values in poor and 
infertile soils but showed noticeable values in fertile soils. 
Variation of soil P was higher than the other macronu-
trients but its average indicated P deficiency in most soils. 
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Table 1. Basic statistics of input and output soil variables
Input variables Output variables

Clay  Silt Sand 
pH EC

(dS/m)
OC CaCO3

D ω
N P K

(%) (%) (mg/kg)

Minimum 1.32 2 10.56 5.95 0.34 0.01 1 2.28 0.003 0. 06 0.03 110.44

Maximum 51 85 93 8 60 7 52 2.98 0.84 9.6 29.50 1452

Average 19.4 37.1 43.5 7.5 3.2 1.5 18.7 2.88 0.44 2.0 6.7 605.8

Std. deviation 12.56 22.7 20.08 0.53 7.48 1.59 13.34 0.10 0.21 1.90 8.11 287.58

Median 17.24 30 41.38 7.67 1.16 1.10 16.75 2.91 0.44 1.0 3.51 609.85

Skewness 0.41 0.78 0.45 -1.20 6.42 2.02 0.61 -2.74 -0.03 1.78 2.14 0.55

Kurtosis -1.12 -0.4 -0.09 0.6 45.34 4.29 -0.32 9.54 -0.44 6.30 5.91 0.11

EC: electrical conductivity; OC: organic carbon; D: fractal dimension of the particle size distribution (PSD); ω: composite scaling 
constant; N: nitrogen; P: phosphorus; K: potassium
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The texture of the parent material showed high K content. 
Large variation in soils macronutrients was largely due to 
the use of chemical, manures, and mismanagement. 

Sensitivity analysis

The Gamma value was calculated for a combination of 
nine input variables listed in Table 1. Recognizing their 
role, the input variables were omitted one by one from the 
initial combination (Table 2). In addition to the Gamma 
values, V ratio and the SE were also calculated. Increase 
of the Gamma value after omitting a variable means that 
the omitted variable has a profound positive effect on the 
model, and therefore it should be included in the initial 
combination. Conversely, decrease of the Gamma value 
after omitting a variable, means that the omitted variable 
has a weak influence on the model and should be excluded 
from the initial combination.

Based on the results, Gamma values for N, P and K in 
the first combination were 0.0002, 0.081 and 0.084, res-
pectively. Calculated Gamma values from other combi-
nations were compared with the preceded numbers and 
subsequently the effective parameters of the model were 
defined. The results showed that for N, five variables 
have positive effects on Gamma value. The highest effect 
was observed from the OC, EC, silt content, lime content 
and ω (Table 2). Kovačević et al. (2010) and Jeong et al. 
(2017) reported a strong positive correlation between C 
and N. For P, four variables (pH, OC, clay and fractal di-
mension (D)), had significant influence on Gamma value. 
The most important variables for predicting K were pH, 
EC, OC, clay and lime content. On the other hand, the re-
sults indicated that D had the lowest effect for the predic-
tion of N (Gamma value = 0.0005) while for P and K the 

lowest effects were related to sand and silt, respectively. 
The results illustrated the importance of clay content as 
an effective variable for the prediction of K and P. These 
findings are reasonable because clay minerals transforma-
tion is strongly dependent on K amounts of soil and also 
the dynamics causing either release or removal of K to or 
from the soil (Raheb & Heidari, 2012). Raheb & Heidari 
(2012) reported a strong correlation between K and clay 
content in the soil. Moreover, EC and OC were evaluated 
as the most important factors in predicting soil macronu-
trients. In addition, Gamma values between CaCo3 and 
N and K values were noticeable. Decomposition of SOM 
increases ions in soil liquid phase. Such modifications 
have negative impact on soil EC, which itself is tuned by 
several soil fertility variables like K, Ca, Mg, pH, N, P, 
CaCO3, CEC, and OC (Bronson et al., 2005; Aimrun et 
al., 2009; Peralta & Costa, 2013). 

Sensitivity analysis showed that the soil pH was an im-
portant variable in the prediction of K since most of the 
studied soils were slightly alkaline (mean and median of 
pH in the studied areas were 7.5 and 7.6, respectively). 
By increasing pH in soils, K enters the hexagonal cavi-
ties. Consequently, K fixation increases and it becomes 
inaccessible. The negative relation between pH and K ob-
tained by the regression analysis proves this hypothesis.

A higher V-ratio also suggests the importance of com-
bination for modeling. This V-ratio corresponds well to 
the resulting Gamma value (Fig. 2). Therefore, a higher 
Gamma value corresponds to a higher V-ratio. The 
greatest and the least V-ratios in the prediction of N were 
related to OC (0.376) and D, respectively. The highest 
V-ratio in the prediction of P and K was related to sand 
(0.251) and silt (0.317), respectively. On the other hand, 
the lowest V-ratio in the prediction of P and K was related 
to soil pH (0.50, 0.42). These results explain that soil pH 

Table 2. Comparison of the Gamma values in different soils macronutrients 

Combination Omitted 
variable

N P K

Gamma 
value (Γ)

Standard 
error

Gamma 
value (Γ

Standard 
error

Gamma 
value (Γ)

Standard 
error

1 - 0.0002 0.009 0.081 0.031 0.084 0.017

2 EC 0.008 0.009 0.104 0.032 0.103 0.016

3 pH 0.004 0.009 0.125 0.021 0.105 0.015

4 OC 0.094 0.020 0.102 0.040 0.089 0.014

5 Silt 0.007 0.008 0.091 0.050 0.079 0.146

6 Sand 0.006 0.008 0.062 0.024 0.083 0.013

7 Clay 0.002 0.011 0.099 0.029 0.085 0.014

8 CaCo3 0.015 0.010 0.089 0.039 0.099 0.011

9 ω 0.008 0.008 0.077 0.031 0.083 0.014

10 D 0.0005 0.009 0.092 0.037 0.079 0.011

EC: electrical conductivity; OC: organic carbon; ω: composite scaling constant; D: fractal 
dimension of the particle size distribution (PSD). Bold values indicate the more effective 
variables for prediction of N, P and K
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is the most important variable for the prediction of K and 
P, while SOM is the most important variable for the pre-
diction of N.

Comparison of models

ANN, k-NN and SVR models ran using the best input 
attributes which were selected from the Gamma sen-
sitivity analyses. Three-layer ANN including input layer, 
hidden layer, and output layer were trained for prediction 
of soil macronutrients. In the input layer, the number of 
neurons were defined as the number of independent va-
riables (i.e. five variables). In the output layer, the number 
of neurons were determined considering the number of 
dependent variables (i.e. soil macronutrients). Amini et 
al. (2005) reported that enormous neurons can lead over 
fitting, whilst too few hidden neurons can cause under fit-
ting. In this study, for finding the most equitable number 

of neurons in the hidden layer, neural networks with va-
rious combinations of the neuron numbers (ranging from 
2 to 20) were investigated. The most suitable number of 
hidden neurons to predict N and K varied from 6 to 9, 
while the best number of hidden neurons for that of P va-
ried between 6 and 10. 

Table 3 shows the statistical summary of the studied 
ANN, k-NN and SVR models. The results indicated that 
the SVR was the best model in prediction of all the studied 
nutrients with the lowest median of RMSE. Also com-
parison of median of RMSE among 10 studied subsets 
showed that the SVR (median RMSE=3.63) and the k-NN 
(median RMSE=3.66) models had similar accuracies in 
the prediction of P nutrient. The k-NN model had smaller 
RMSE than the ANN for the prediction of P. But the 
RMSE of ANN in predicting N and K was smaller than 
that of the k-NN. Comparison of the models’ performance 
among the studied soil nutrients displayed that the most 
accurate result was obtained for the N prediction models, 

 
Figure 2. Sensitivity analysis of the output variables (nitrogen, phosphorus and potassium nutrients) to the input attributes 
of the models. EC: electrical conductivity; OC: organic carbon; D: fractal dimension of the particle size distribution (PSD); 
ω: composite scaling constant. 

Table 3. Statistical summary of supervised model performances for 10 subsets 

Median of statistical 
metrics N P K 

ANN R 0.89 0.83 0.65
RMSE 0.79 4.36 198

r-RMSE 0.41 0.67 0.33
k-NN R 0.92 0.86 0.71

RMSE 0.93 3.66 199
r-RMSE 0.43 0.65 0.33

SVR R 0.95 0.83 0.79
RMSE 0.61 3.63 170

r-RMSE 0.29 0.64 0.29
ANN: artificial neural network; k-NN: k-nearest neighbors; SVR: support vector 
regression; R: correlation coefficient; RMSE: root mean square error; r-RMSE: 
relative root mean square error.
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which might be linked to the relationship among the input 
and the output variables.

Measured and estimated values of the studied nutrients 
(N, P, and K) are compared in Fig. 3. As it can be illus-
trated from the scatterplots, the SVR has the nearest es-
timates to the measured values of all the three nutrients. 
Fig. 3 shows that, for N nutrient, all the applied models 
illustrated the least scattered estimates and their estimates 

were close to the measured N values compared to those 
of K and P nutrients. For the prediction of N, the k-NN 
method gave the worst estimates. In this case, RMSE of 
the SVR model was 0.63 mg g-1, which was lower than 
that of the ANN (0.91 mg g-1) and the k-NN (0.97 mg g-1) 
models (Table 4). This means that the SVR model had 
31% and 35% less RMSE than the ANN and the k-NN 
models, respectively. According to Table 4, the values of 

 
Figure 3. Scatter plots of the observed and simulated macronutrients (nitrogen, phosphorus and potassium). k-NN: k-nearest 
neighbors; ANN: artificial neural network; SVR: support vector regression; RMSE: root mean square error; R: correlation 
coefficient. 
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RMSE for ANN, k-NN, and SVR for K were 212, 204.4 
and 186 (mg kg-1), respectively. These results demonstrate 
that the k-NN model had lower RMSE compared to the 
ANN model. For K, the SVR model had 12% and 8% less 
RMSE than ANN and k-NN models, respectively. For P, 
SVR also revealed a lower RMSE compared to k-NN and 
ANN models but both ANN and k-NN models had similar 
RMSE. In this case, the SVR model had 8% less RMSE 
than both ANN and k-NN models. MR for estimating N 
and P values using the three models was negative (Ta-
ble 4). These findings indicate that the studied models 
overestimated the values of P and N. For K, the ANN and 
k-NN models had negative MR but SVR had a positive 
MR, showing that both ANN and k-NN models overesti-
mate the K values but SVR underestimates the K values. 
Zolfaghari et al. (2016) reported that the bias in k-NN in 
the prediction of CEC was positive. Nemes et al. (2006) 
also reported a positive MR for estimation of soil moisture 
content using k-NN. 

Fig. 4 illustrates r-RMSE values split up per test stage 
for all three nutrients and models. For N, the individual ac-
curacy of the ANN model per test stages fluctuated more 
than k-NN and SVR models. But the k-NN model approach 
illustrated the maximum r-RMSE (0.76) value (minimum 
degree of accuracy). For K, the values from the ANN 
models fluctuated more than k-NN and SVR models. For 
this nutrient, the maximum r-RMSE (0.46) was obtained 
by both k-NN and ANN models. For P, r-RMSE fluctuation 
of all the studied models was the same. Our results indi-
cate that the SVR tends to be a more accurate model for 
prediction of macronutrients. These results were different 
from Shiri et al. (2017), who reported that support vector 
machine (SVM) gives the worst estimates of soil CEC. 
The performance fluctuations among test stages indicate 
the need for evaluation of the models’ performances using 
k-fold testing data set assignment approach and not only 
considering a single data set assignment. 

 Figure 4. Relative root mean square error (r-RMSE) values for the three soil nutrients (nitrogen, phosphorus and potassium) 
estimates split up per test stage. SVR: support vector regression; ANN: artificial neural network; k-NN: k-nearest neighbors. 

Table 4. Statistical summary of supervised model performances for the whole data set  

Model estimate N P K 

ANN R 0.88 0.80 0.72
RMSE 0.91 4.29 212

MR -0.13 -0.49 -13.91
k-NN R 0.89 0.80 0.71

RMSE 0.97 4.31 204.4
MR -0.002 0.062 -39.95

SVR R 0.94 0.84 0.78
RMSE 0.63 3.94 186

MR -0.008 -0.37 23.44
ANN: artificial neural network; k-NN: k-nearest neighbors; SVR: support vector 
regression; R: correlation coefficient; RMSE: root mean square error; MR: mean 
error.
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In summary, easily measurable soil properties, 
including soil PSD, pH, EC, CaCO3, OC and fractal 
parameters (D and ω) were used to predict soil macro-
nutrients (i.e. N, P, and K) using nonparametric methods 
like ANN, k-NN and SVR. Sensitivity analysis obtained 
by Gamma test showed that OC, CaCO3, EC, ω, and silt 
for N; pH, EC, OC, clay and D for P; pH, EC, CaCO3, 
OC and clay for K increased the Gamma value and subse-
quently had profound positive effects on the performance 
of the studied models. Results demonstrated that SVR has 
the best performance for the prediction of all studied nu-
trients. Also, there was no significant difference in accu-
racy of SVR and k-NN in prediction of P. In k-NN method 
the user can incorporate additional data by appending to 
or replacing the reference database without the need for 
developing new equations. In addition, the user is able 
to improve a specific local data by inserting available 
local data to a reference database without any signifi-
cant influence on other available parts of the data, in the 
reference database. Therefore, we suggest to use the k-NN 
approach for prediction of P nutrient. There was no sig-
nificant difference in the performance of k-NN and ANN 
models in prediction of N and K nutrients. Thus, we con-
clude that the k-NN approach could well compete with 
many other methods of pedotransfer functions, like ANN 
models. The lowest and the highest uncertainties were 
found in the prediction of N and K nutrients, respectively.
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