
© The author; licensee Universidad Nacional de Colombia.
Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018, ISSN 0012-7353

DOI: http://doi.org/10.15446/dyna.v85n207.71908

Fragment-oriented programming: a framework to design and
implement software product line domain components •

Daniel Correa a, Raúl Mazo bc & Gloria Lucia Giraldo-Goméz a
a Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia. dcorreab@unal.edu.co, glgiraldog@unal.edu.co

b CRI, Université Panthéon Sorbonne, Paris, France. raul.mazo@univ-paris1.fr
c GiDITIC, Universidad Eafit, Medellín, Colombia. rimazop@eafit.edu.co

Received: April 26th, de 2018. Received in revised form: September 11th, 2018. Accepted: September 24th, 2018

Abstract
Software product lines facilitate the industrialization of software development. The main goal is to create a set of reusable software
components for the rapid production of a software systems family. Many authors have proposed different approaches to design and
implement the components of a product line. However, the construction and integration of these components continue to be a complex and
time-consuming process. This paper introduces Fragment-oriented programming (FragOP), a framework to design and implement software
product line domain components, and derive software products. FragOP is based on: (i) domain components, (ii) fragmentations points and
(iii) fragments. FragOP was implemented in the VariaMos tool and using it we created a clothing stores software product line. We derived
five different products, integrating automatically thousands of lines of code. On average, only three lines of code were manually modified;
which provided preliminary evidence that using FragOP reduces manual intervention when integrating domain components.

Keywords: software product lines; fragment-oriented programming; component development; component composition.

Programación orientada a fragmentos: un marco para diseñar e
implementar componentes de dominio de líneas de productos de

software
Resumen
Las líneas de productos de software promueven la industrialización del desarrollo de software mediante la definición y ensamblaje de
componentes de software. Actualmente existen diferentes propuestas para implementar estos componentes. Sin embargo, su construcción
y ensamblaje continúa siendo un proceso complejo y que requiere mucho tiempo. Este artículo introduce la programación orientada a
fragmentos (FragOP), la cual define un marco para implementar y ensamblar componentes de software. FragOP se basa en: (i) componentes
de dominio, (ii) puntos de fragmentación y (iii) fragmentos. Utilizamos VariaMos y FragOP para crear una línea de productos de software,
la cual contiene 20 componentes y miles de líneas de código. Se derivaron 5 productos y en promedio solo 3 líneas de código se modificaron
manualmente para completar cada derivación; lo cual provee una evidencia preliminar de que la utilización de FragOP reduce la
intervención manual en el proceso de integración de componentes de dominio.

Palabras clave: líneas de productos de software; programación orientada a fragmentos; desarrollo de componentes: ensamblaje de
componentes.

1. Introduction

Software reuse has been practiced since programming began;
its purpose is to improve software quality and productivity [1].
Software product lines (SPL) have become a successful, but
challenging approach to software reuse [2]. A SPL is a collection

How to cite: Correa, D., Mazo, R. and Giraldo-Goméz, G.L., Fragment-oriented programming: a framework to design and implement software product line domain components.
DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

of software-intensive systems sharing a common, managed set of
characteristics that satisfy the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way.

Software product line engineering (SPLE) has gained
significant attention over the recent years. It is claimed that

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

75

SPLE provides a promising way to develop a large range of
software intensive systems faster, better, and cheaper. SPLE
considers two processes: (i) the domain engineering, which
defines the commonalities and the variability of the SPL, and
realizes the domain components; and (ii) the application
engineering process, which derives the SPL applications
from the domain artefacts [3].

A proper domain component development and
management is crucial to take advantage of SPLE benefits.
Currently, the domain component implementation and its
subsequent integration (product derivation) continue to be a
complex, time-consuming and expensive process [4].

1.1. Design and implementation of domain components

The design and implementation of domain components

stage realizes the requirements identified during the domain
analysis stage by constructing concrete domain reusable
artefacts. These domain-specific artefacts are subsequently
used throughout the product line (PL) to implement and
improve the products. Domain components are thus critical
to the successful implementation of the entire PL; and despite
all the progress on this topic, there are still some research
questions to study, for instance:
• How should domain reusable components be designed

and implemented to guarantee their reuse at the
application level?

• How to couple the components, so that the common and
variable elements and their dependencies can be
preserved during the implementation phase?

• How to reduce manual intervention when coupling
components?

• How to deal with maintenance, evolution, and coupling
of components developed in different software
languages?
There are several approaches to design and implement

components [5], such as: feature-oriented programming
(FOP) [6], delta-oriented programming (DOP) [7], context-
oriented programming (COP) [8], aspect-oriented
programming (AOP) [9], service-oriented architecture
(SOA) [10], CIDE [11], pure::variants [5], GenArch-P [12],
and agents [13]; which are commonly grouped into two main
approaches: annotative and compositional [5].

In annotative approaches such as pure::variants, CIDE
and GenArch-P [5,11,12], developers simply introduce
markers at the exact positions where a component should be
extended [11]. Annotative approaches implement
components with some form of explicit or implicit
annotations in the components source code. The prototypical
example is the use of #ifdef and #endif statements to
surround the component code. In this approach, the code of
all requirements is merged in a single code base, and
annotations mark which code belongs to which requirement
[5]. The use of annotations presents important advantages: (i)
is easy to use, (ii) is already natively supported by many
programming environments, and (iii) introduces markers at
the exact positions where a component should be extended.
However, it also presents some limitations: (i) the domain
component files contain all source code variants, which
increases the number of lines of codes; (ii) increases the

number of relationships between the domain component file
and other domain component files; and (iii) tends to make
source code complex and therefore difficult to maintain and
evolve [14].

In compositional approaches such as FOP and AOP [5],
components are implemented in the form of composable
units. In FOP, the software assets are developed in terms of
“feature modules”, which can be seen as increments of
product functionality. For example, in the context of object-
oriented programming (OOP), a feature module can
introduce new classes, or refine existing classes by adding
fields and methods, or by overriding existing methods. The
use of compositional approaches has important advantages:
(i) locates code implementing one or several requirements in
a dedicated file, container, or module [5], and (ii) there is no
need to specify (annotate in advance) the location in which a
component should be extended. However, it also presents
important limitations: (i) According to Kästner et al. [11]
“compositional approaches only introduce new code
fragments in positions in which the order does not matter.
Thus, it is possible to introduce new classes into the program
or new methods into a class, but not new statements at a fixed
position inside a method”. (ii) Commonly, compositional
approaches are attached to a particular host language. For
example: AspectJ and DeltaJ are attached to Java, and
FeatureC++ is attached to C++. However, software products
are not only made up by one type of software language, but
by several kinds of files, such as HTML, CSS, JSP, MySQL,
and configuration files; which lead the developers to
manually inject glue code in order to connect and modify
those files during the derivation activity. Consequently,
developing modules that can be applied to multiple languages
appears as an important concern [15].

1.2. Contribution

The main contribution of this paper is a framework that

we call fragment-oriented programming (FragOP). FragOP
integrates in a new proposal, some advantages of the
compositional and annotative approaches, and dismisses
some negative effects of these approaches. The second
contribution of this paper is the improvement of a modeling
tool called VariaMos, which enables to carry out a SPL
domain implementation and product derivation (supporting
FragOP). The third contribution is the design and
development of a preliminary evaluation in which a SPL is
developed with the use of FragOP and VariaMos; thus, we
developed a video following the complete process [16].

The remainder of this paper is structured as follows.
Section 2 introduces FragOP and its implementation. Section
3 describes the first four activities of FragOP related to the
domain engineering process. Section 4 describes the last two
activities related to the application engineering process.
Section 5 shows a preliminary evaluation of FragOP, which
contains an example of a SPL and presents the preliminary
evaluation results. Section 6 presents related work and a
comparison among AOP, FOP, DOP, annotative approaches
and FragOP. Finally, Section 7 summarizes the contributions
and presents future research directions.

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

76

Figure 1. FragOP process (UML activity diagram).
Source: The authors.

2. Fragment-Oriented Programming (FragOP)

FragOP is a framework used to design and implement

SPL domain components. It is a mix between compositional
and annotative approaches, and is based on the definition of:
(i) domain components, (ii) fragmentations points, which are
annotations over the domain components code; and (iii)
fragments, a new type of file which alters the domain
components code. These three concepts are related to six
activities that constitute the FragOP process (cf. Fig. 1): (1)
Modelling PL requirements, (2) Modelling domain
components, (3) Implementing domain components, (4)
Binding domain requirements and domain components, (5)
Configuring products, and (6) Deriving products.

To fully support the FragOP process we enhanced
VariaMos [17]. VariaMos has been used in several SPL
projects and approaches during recent years; this tool
incorporates a language to represent and simulate families of
systems and (self) adaptive systems [18]. We took advantage
of some VariaMos capabilities such as: product line
requirements modelling and product simulation; and we
improved VariaMos with new capabilities to support the
FragOP process: (1) domain components modelling, (2) the
bind (or weave) the product line requirements model and the
domain component model, (3) configure new products from
the domain models, (4) derive the configured products, and
(5) verify the domain models and the derived products. The
activities of the FragOP process are explained and
exemplified, within a simplified ClothingStores PL, in the
next two sections.

3. Domain engineering process

3.1. Modelling product line requirements

In the first activity of the FragOP process, PL engineers

should create the requirements model of the PL through, for
instance, Feature Models (FMs) [19]. In a FM, a feature can
be defined as a quality or a characteristic of a (software)
system [5]. This activity is usually supported by a software
tool which allows modelling product lines as presented in
Fig. 2. This model corresponds to a clothing store PL called
“ClothingStores”; which was designed as a very simple
model. The main idea was to use this simple model as the
base to explain in detail the FragOP process. A more complex
model with more features and more complex relationships is

Figure 2. ClothingStores feature model (using VariaMos).
Source: The authors.

Figure 3. ClothingStores domain component model (using VariaMos).
Source: The authors.

presented later at Section 5 and used to preliminarily validate
our approach. ClothingStores feature model contains the
following features: ClothingStores refers to the root or name
of the PL; Basic views refers to the basic views that any
ClothingStores product must contain (e.g., headers, footers,
sections and CSS styles); Product is a software service that
stores product information and its operations; List of
products represents a display service of all products of the
store; Login represents a login service, and Product manager
represents a product management service.

3.2. Modelling domain components

For the second activity, PL engineers should create a domain

component model. This model provides an abstract view about
how domain components are organized. The abstract view of
each domain component can be operationalized with
implementation files written in languages such as PHP, HTML
and CSS as we did with the domain components of the
ClothingStores PL. Fig. 3 shows an excerpt of the ClothingStores
domain component model and its operationalization. Thus, the
domain component model represents: (i) the domain
components, (ii) their operationalization files, and (iii)
information about the files (their identifiers, filenames and
destinations in which will be derived).

3.3. Implementing domain components

In this activity, PL developers must create a domain

component pool directory to store the corresponding files.
The domain-independent structure presented in Fig. 4a.1 can

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

77

Figure 4. Component pool folders and files structure; and FragOP
metamodel (UML class diagram).
Source: The authors.

<html><head><title><?php echo($title); ?>
</title></head><body>

<ul class="nav navbar-nav"><a href="<?php
echo base_url(); ?>index.php/Home/">
Home

<?php class ProductManager extends CI_controller
{
 public function __construct()
 {
 parent::__construct();
 }
}

Listing 1. BasicViewsHtml-Header (header.php) and ProductManager-
Controller (ProductManager.php) component files.

be used as a template to create the domain-dependent folder
structure (e.g., for a PL of Web applications), as presented in
Fig. 4a.2. Fig. 4b shows the FragOP meta-model, which
describes how domain component files and fragments are
made up in detail, and how they are related to each other. The
rest of this sub-section presents these concepts and shows
how to implement each concept.

3.3.1. Implementation of files

Components are made up of files that represent, for

instance, HTML, CSS, JavaScript, Java, and JSP files.
Listing 1 shows an example of: (i) header.php file which is
written in HTML and PHP and represents the header of an
application. This code contains a menu, which corresponds
to an unordered list with only one element (i.e., “Home”) that
is linked to the home section of the application. (ii) The
ProductManager.php file which is written in PHP and

represents a controller to manage the product information. In
this case, it only contains a construct function.

3.3.2. Implementation of fragmentation points

The previous files could be refined with the addition of

fragmentation points. A fragmentation point is an
annotation (a very simple mark) that specifies a “point” in
which a file can be modified. For example: other components
such as Login or List of Products could require the
modification of the BasicViewsHtml-Header file,
specifically to add new elements to the previous menu. The
Login component could also require the modification of the
ProductManager-Controller replacing the construct function,
with a new one that includes a call to the login class, to verify
that only allowed users are using the ProductManager class.
Listing 2 shows the fragmentation point shape.

LanguageCommentBlock<B|E>-

<PointID>LanguageCommentBlock
Listing 2. Fragmentation point shape.

FragOP suggests creating fragmentation points by

starting with a comment block (LanguageCommentBlock)
based on the current file language type. For example, for a
file written in PHP, the fragmentation point should start with
/* and should end with */. For a file written in HTML, the
fragmentation point should start with <!-- and should end
with -->. This way, the source code of a file is not altered by
the addition of the fragmentation points, ensuring the code
consistency and code maintainability. If a specific file code
does not provide a comment block (like: txt files), then, we
suggest creating a regular expression, like:
[FragAnnot][/FragAnnot].

After the LanguageCommentBlock opening section, the
fragmentation point continues with <B|E>-<PointID>.
<B|E> corresponds to a fragmentation point begin section (B)
or end section (E). At the first occurrence of a fragmentation
point, it should contain the letter B. The end section is
optional because it is used to delimitate where a
fragmentation point ends, which is only required to replace
and hide actions that we will describe later. The
fragmentation point continues with a minus (-) symbol and a
PointID, which is a custom text that is used to identify the
fragmentation point. Finally, the LanguageCommentBlock
closing section should be added. Listing 3 shows a
fragmentation point example.

<!--B-menu-modificator-->

Listing 3. Fragmentation point shape example.

Based on the previous concepts and elements, the

BasicViewsHtml-Header (header.php) and the
ProductManager-Controller (ProductManager.php) files are
refined as shown in Listing 4. As aforementioned, these two
fragmentation points allow including, in the future, new
header menu elements and replacing the construct function.

<html><head><title><?php echo($title); ?>
</title></head><body>

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

78

<ul class="nav navbar-nav"><a href="<?php
echo base_url(); ?>index.php/Home/">
Home
<!--B-menu-modificator-->

<?php class ProductManager extends CI_controller
{
<!--B-construct-modificator-->
 public function __construct()
 {
 parent::__construct();
 }
<!--E-construct-modificator-->
}

Listing 4. Refined BasicViewsHtml-Header (header.php) and
ProductManager-Controller (ProductManager.php) component files.

3.3.3. Implementation of fragments

A fragment is a special type of file which allows

developers to specify code alterations to the components
files. It is worth to note that these alterations are designed
only to be carried out at the application level when
components are being integrated to derive new products
(described in Section 4.2), which guarantees the reusability
of the domain components. In general, a fragment respects
the shape presented in Listing 5 and explained thereafter.

Fragment <ID> {
 Action: <add || replace || hide>
 Priority: <high || medium || low>
 PointBracketsLan: <language>
 FragmentationPoints: <pointID1, pointID2, ...>
 Destinations: <fileID1, fileID2, ... || path1,
path2, ...>
 SourceFile: <filename>
 SourceCode: [ALTERCODE-FRAG]<code>[/ALTERCODE-
FRAG]
}
Listing 5. Fragment shape.

Fragment <ID>. ID serves as an identifier for the

fragment. The ID is used when the components are
integrated, allowing the developers to find what fragment has
been responsible for any alteration, which is useful for code
traceability.

Action: <add || replace || hide>. Specifies the type of the
alteration.
• add (i) allows injecting a piece of code over specific

PointIDs or (ii) allows adding a file over specific
destination paths.

• replace allows replacing a piece of code over specific
PointIDs or (ii) allows replacing a file over specific
destination paths.

• hide allows hiding a piece of code over specific PointIDs
(the pieces of code are placed inside a comment block).
Priority: <high || medium || low>. Priority specifies the

fragment priority (high, medium or low). Fragments with
high priority are integrated before fragments with medium or
low priority. This feature could be useful in the case that two
or more different fragments inject code over the same
fragmentation point. For example: two different fragments
could inject code over the header menu (in order to include
new menu options). Depending on each fragment priority,

one code will be injected first and the another will be injected
second (which allows to define a code integration order).

PointBracketsLan: <language> (Optional). Language
specifies the comment bracket language in which the fragmentation
points are defined. For example: PHP, HTML and Java.

FragmentationPoints: <pointID1, pointID2, …>
(Optional). PointIDs are unique texts which serve to identify
fragmentation points. The user is able to define multiple
fragmentation points and destinations, which means that the
fragment source code will be injected in several places.

Destinations: <fileID1, fileID2, … || path1, path2, …>.
• FileIDs represents the domain component files to be

altered.
• Paths represents the locations to add or replace a file.

SourceFile: <filename> (Optional). Filename
represents the file to be added or replaced.

SourceCode: <code> (Optional). Code contains the
source code that will be injected.

Fragment ListProducts-AlterHeader {
 Action: add
 Priority: high
 PointBracketsLan: html
 FragmentationPoints: menu-modificator
 Destinations: BasicViewsHtml-Header
 SourceCode:[ALTERCODE-FRAG]<a href="<?php
echo base_url();
?>index.php/Prod/">Products
[/ALTERCODE-FRAG]
}

Fragment Login-AlterProductManager {
 Action: replace
 Priority: high
 PointBracketsLan: php
 FragmentationPoints: construct-modificator
 Destinations: ProductManager-Controller
 SourceCode: [ALTERCODE-FRAG]public function
__construct(){ parent::__construct();
 HttpSession session = request.getSession();
 String admin = (String)
session.getAttribute("admin"); if(admin != "1"){
response.sendRedirect("Home");return;}
}[ALTERCODE-FRAG]
}

Listing 6. ListProducts-AlterHeader (alterHeader.frag) and Login-
AlterProductManager (alterProductManager.frag) fragments source code.

For a better understanding about how fragments work, let us

consider the following example. Listing 6 shows (i) the
alterHeader.frag code which specifies that the BasicViewsHtml-
Header file (Destinations) will be altered in the menu-modificator
(FragmentationPoints) with a high priority. In this case, the
fragment will add (Action) a new menu element (SourceCode)
inside the file. And (ii) the alterProductManager.frag code
specifies that the ProductManager-Controller file (Destinations)
will be altered in the construct-modificator
(FragmentationPoints) with a high priority. In this case, the
fragment will replace (Action) the ProductManager construct
function with a new construct function (SourceCode).

3.4. Binding domain requirements and domain components

The last domain engineering activity consists on

developing a binding model between the requirements model

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

79

Figure 5. ClothingStores binding model (using VariaMos).
Source: The authors.

Figure 6. ClothingStores product configuration (using VariaMos).
Source: The authors.

and the implementation model. Fig. 5 shows a binding model
between the FM and the domain component model. In this
example, features are directly linked to components that
operationalize them in a one-to-one relationship. This
relationship goes from each domain component to the domain
requirement (feature) it implements. To enhance this simple
binding relationship, we plan to implement a constraints network
[20] to graphically represent more complex domain
implementation relationships such as “Domain components C1
or C2, but not both, can be used to implement feature F”.

4. Application engineering process

4.1. Configuring products

The product configuration activity consists on selecting the

specific features that a specific product will contain based on the
stakeholder requirements. For example, this process in VariaMos
consists in clicking on the features and marking the option
“SelectedToIntegrate” in the “Elements Properties” panel. Fig. 6
shows an example of a product configuration activity in
VariaMos, where the green mark above the features indicates that
they were selected to be part of the product being configured.

4.2. Deriving products

The production derivation activity consists in following

three steps: (i) setting derivation parameters, (ii) executing

Figure 7. VariaMos (FragOP) derivation activity.
Source: The authors.

derivation and (iii) verifying derivation. Fig. 6 showed a
menu with three options related to those steps. The “Set
Derivation Parameters” option allows defining: (i) the
“global assets folder path” which is the path where
components and files are stored, and (ii) the “global
integration folder path” which is the path where the
integrated components of derived products are stored.

The “Execute Derivation” option allows deriving the
software products based on an automated algorithm that
follows a series of instructions as presented in Fig. 7. At the
beginning, VariaMos takes the information from the
component folder and the developed models. Then, based on
these models, it resolves the binding relationships of the
selected features to have the corresponding components and
files. Following, VariaMos creates a copy of the components’
files (from the domain component pool) and moves the
copied files to the derivation folder. At the end, it applies the
fragments’ alterations over the copied components’ files by
priority order. The output is a derivation folder, which
contains the integrated components and the final software
product. The derivation algorithm also provides different
alerts such as: invalid fragment definition, missing fields,
invalid fragmentation point definition, invalid actions and
invalid filenames and paths.

Continuing with the example, a component integration
process of the components files defined in Listing 4 and the
fragments defined in Listing 6, it generates new integrated
files which are presented in Listing 7.

<html><head><title><?php echo($title); ?>
</title></head><body>

<ul class="nav navbar-nav"><a href="<?php
echo base_url(); ?>index.php/Home/">
Home
<!--B-menu-modificator-->
<!--Code injected by: ListProducts-AlterHeader--
>
<a href="<?php echo
base_url();?>index.php/Prod/">Products

<!--Code injected by: ListProducts-AlterHeader--
>

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

80

<?php class ProductManager extends CI_controller
{
<!--B-construct-modificator-->
<!--Code replaced by: Login-AlterProductManager-
->
 public function __construct()
 {
 parent::__construct();
 HttpSession session = request.getSession();
 String admin = (String)
session.getAttribute("admin");
 if(admin != "1"){
response.sendRedirect("Home");return;}
 }
<!--Code replaced by: Login-AlterProductManager-
->
<!--E-construct-modificator-->
}

Listing 7. Source code of the resulting header.php and ProductManager
integrated components.

Finally, “Verify Derivation” allows finding grammar errors

over the derived files. As we have shown, FragOP permits
managing different component’ files developed in different
software languages; therefore, it allows injecting multiple pieces of
code over the components’ files. Based on that, it is critical to verify
that the pieces of code are properly injected, and the resulting files
contain valid grammar elements. To this aim, VariaMos uses
ANother Tool for Language Recognition (ANTLR) [21] which is
a language tool that provides a framework for constructing
recognizers, compilers, and translators from grammatical
descriptions. VariaMos implemented ANTLR 4.7.1 and uses a
series of parsers and lexers for languages such as: PHP, Java, CSS,
MySQL, among others. Based on the derived component file
extension, VariaMos analyses the grammar of each file and
generates alerts if errors are found.

5. Preliminary evaluation of FragOP

In order to evaluate FragOP in practice, we have

implemented a SPL in VariaMos. Based on the ClothingStores
SPL presented in Section 3.1 we created a more complex SPL
called “cStores” which includes new features such as: shop, cart,
web management, sharing system, login, database management,
offline payment and comments among others. In cStores, the
components were built with Java, JSP, JavaScript, HTML, CSS
and MySQL. A total of 25 features and their relationships were
designed (as shown in Fig. 8.a), 20 components were built which
included 80 files (46 domain component files and 36 fragments)
containing more than 2000 lines of code (as shown in Fig. 8.b).
We developed the corresponding FM, component model and
binding model; these models, including the domain components
code, the derived products, and even a video which shows the
process the derive one product can be found online at a GitHub
repository [16].

At the end of this implementation we derived five products.
The results of our preliminary evaluation are summarized in
Table 1 with the: (i) name of the product, (ii) quantity of the
selected leaf features, (iii) linked files between the selected
features and the corresponding component files, (iv) fragment
lines of code automatically injected, (v) lines of code manually
modified to finalize the product derivation, and (vi) time in
seconds required to carry out the product derivation.

Table 1.
Results of derived products with VariaMos.

Name Leaf
features
selected

Linked
files

Fragment
LOC

injected

Manually
LOC

modified

Time to
derive
(Sec)

P1 5 22 31 3 0.04386
P2 8 35 83 3 0.05396
P3 13 55 193 3 0.08725
P4 15 65 348 3 0.13434
P5 20 80 437 3 0.18426

Source: The authors.

Figure 8. cStores feature model; and cStores domain component model
(using VariaMos).
Source: The authors.

Figure 9. Product section of a derived product (P1); Product section of a
derived product (P5).
Source: The authors.

The results show that only three lines of code were

manually modified (in the database management
configuration file to specify the database URL, name and

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

81

password) to complete each product derivation. Fig. 9 shows
the P1 and P5 products running over a web browser; Fig. 9.a
shows the P1 “product section” which contains a very basic
configuration where the final user is able to read the product
information; and Fig. 9.b shows the P5 “product section”
which contains a complete configuration where the final user
is able to rate, share, comment and add the product to the cart.

The view layer of each one of the product sections was
represented with a file located at
WebContent/views/oneproduct.jsp. This file contained 104
lines of code in the derived product P5 (including marks
which show what component was responsible for each
alteration) [22], and only 31 lines of code in the derived
product P1 [23]. This shows that FragOP only injected the
required code based on the product configuration needs.

The product derivation with FragOP was simple: we
followed the steps defined in Section 4.2 as well as the
following technical steps: we (i) created a “Dynamic web
project” in Eclipse, (ii) added two libraries (JSTL and JDBC),
(iii) created a database and imported a couple of auto-
generated SQL files (which were located over the “derivation
folder” by the “demo data” component), (iv) moved all the
content from the “derivation folder” to the Eclipse project
root folder, (v) modified the database configuration file, and
(vi) executed the web project.

It is worth noting that these results present some
improvements compared to other approaches: (i) versus
compositional approaches, which are commonly attached to
a host language, the P5 included a total of 437 LOC
automatically injected (223 were related to Java files and 214
to other languages). Deriving P5 with a Java compositional
approach allows to automatically inject 223 LOC as a
maximum; the other 214 LOC should be manually injected.
(ii) versus annotative approaches, the results could vary
depending on the annotative approach language support;
however, as mentioned before, annotative approaches inject
code variations inside the domain components, which is not
the case in FragOP.

6. Related work

FOP, DOP, AOP and annotative approaches have been

developed to design and implement domain components.
FOP allows developing software assets in terms of feature
modules [6], which can be seen as increments of product
functionality. For example, in the context of OOP, a feature
module can introduce new classes or refine existing ones by
adding fields and methods, or by overriding existing
methods. DOP allows the assets to be defined in terms of
delta modules, which can also be seen as increments of
product functionality. DOP is an extension of FOP, which is
also a compositional approach. Delta modules generalize
feature modules by allowing the removal of functionality [7].
AOP allows the assets to be defined in terms of aspects. An
aspect encapsulates a cross-cutting feature into a modular
unit. AOP has been used to implement SPLs by the
composition of aspects, through mechanisms such as pointcut
and advice [9] with the aim of making crosscutting features
more modular and evolutionary. Annotative approaches

Table 2.
Comparison of different approaches part A

 AOP DOP FOP
Approach
support

Compositional Compositional Compositional

Granularity Altering the
static structure
of components
by introducing
new attributes
and operations

Introducing,
modifying,
removing or
extending
methods in
existing classes

Introducing or
extending
methods in
existing
classes

Domain
implem.
mechanism

Component
files, and
Aspects

Delta modules Feature
modules

Comp. units’
separation

Physically
separated

Physically
separated

Physically
separated

Language
independence

Usually
depending on a
particular host
language

Depends on a
particular host
language

Depends on a
particular host
language

Source: The authors based on [7,2].

Table 3.
Comparison of different approaches part B

 Annotative FragOP
Approach
support Annotative Compositional and

Annotative

Granularity

Introducing markers at
the exact positions
where a component
should be extended

Introducing fragmentation
points at the exact positions
where a component should
be extended

Domain
implem.
mechanism

Component files with
annotations

Component files with frag.
points, and fragments

Comp. units’
separation

Usually physically
integrated

Physically separated with
frag. points

Language
independence Language-independent Supporting multiple

language
Source: The authors based on [7,2].

allow the developers to add “annotations” to the assets at
arbitrary levels of granularity. In annotative approaches,
developers simply introduce markers at the exact positions
where an asset should be extended [11].

There are other studies in this area; for instance, CaesarJ
[24] proposes a combination of feature modules and aspects
to extend FOP with means to modularize cross-cutting
concerns; Kästner & Apel [25] compare both groups of
approaches and propose an integration of both approaches;
and Apel & Hutchins [26] propose gDeep as a possible
unifying foundation of languages for FOP.

Tables 2 and 3 summarize the comparison of the previous
approaches and FragOP based on five different perspectives:
Approach support refers to the approach classification.
Granularity is closely related to the approach
expressiveness. Very coarse-grained approaches only
assemble files in a directory, while fine-grained approaches
allow modifications on the level of methods, statements,
parameters or even expressions. Annotative approaches are
more fine-grained than compositional ones. Domain
implementation mechanism refers to the way in which each
approach realizes the domain implementation. Component
units’ separation refers to the way in which components are
developed. Compositional approaches implement

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

82

components as distinct (physically separated) code units.
Annotative approaches commonly use #ifdef and #endif
statements to surround the component code; but including the
code variants and relationship inside the domain components
code. FragOP introduces fragmentation points in the
components code, but uses separated fragments that contain
the code to be injected. Language independence refers to
the applicability of each approach to be used independently
from the language. Annotative approaches are line-based or
character-based, and therefore language-independent.
Compositional approaches are usually dependent on a
particular host language. As shown, FragOP could be used
for implementing domain components that contain multiple
languages.

7. Conclusions and future work

This paper presents FragOP, a framework used to design

and implement SPL domain components; which is a mix
between a compositional and an annotative approach.
FragOP takes advantage of the main benefits of each
approach and tries to dismiss the disadvantages of each one.
FragOP is based on the definition of (i) domain components,
(ii) fragmentations points and (iii) fragments. We enhanced
the VariaMos software tool to support the FragOP process
and to carry out a preliminary evaluation of the new
approach. In particular, we (i) designed and implemented
clothing stores SPL and (ii) used FragOP to derive five
products. The results showed that only three LOC were
manually modified in order to complete the product
derivation. We also showed that FragOP could be used to
develop domain components in languages such as Java, PHP,
HTML, SQL, CSS, and JSP.

In the short term we plan to (i) improve FragOP and its
VariaMos implementation to support complex binding
relationships; (ii) include the product customization process
inside the FragOP approach; (iii) increase the number of
programming languages supported by FragOP with the use
of ANTLR; and (iv) support other variability models such as
Orthogonal Variability Model (OVM). In addition, we think
that further studies about how to deal with dynamic
composition and dynamic binding are important research
directions that will make FragOP suitable to be used in the
context of dynamic product lines and domain-derived self-
adaptive systems.

From an experimentation point of view, we find valuable
and therefore we invite our colleagues and we ourselves
account (i) to develop rigorous experiments to validate the
FragOP benefits; (ii) to compare the different approaches to
design and implement the domain components [27,28]; and
(iii) to develop more software product lines (e.g., at industrial
level) with the FragOP approach in order to provide valuable
evidence about the benefits and limitations of FragOP.

Another research topic that is not addressed in this paper
is the downstream of economic benefits behind the use of
FragOP in industry. For example, one could raise the
question how much can software companies really benefit
with the use of FragOP in their projects? How much does it
cost to implement FragOP? These complex issues have yet to
be investigated. Finally, how to improve the fragment quality

and how to detect the errors before the product derivation
activity remains as an important research area.

References

[1] Frakes, W.B. and Kang, K., Software reuse research: Status and

future. IEEE transactions on Software Engineering, 31(7), pp. 529-
536, 2005. DOI: 10.1109/TSE.2005.85

[2] Laguna, M.A. and Marqués, J.M., UML support for designing
software product lines: The package merge mechanism. J. of
Universal Computer Science, 16(17), pp. 2313-2332, 2010. DOI:
10.3217/jucs-016-17-2313

[3] Botterweck, G., Lee, K. and Thiel, S., Automating product derivation
in software product line engineering, In: Software Engineering, pp.
177-182, 2009.

[4] Azanza, M., Díaz, O. and Trujillo, S., Software Factories: Describing
the Assembly Process. In ICSP, pp. 126-137, 2010. DOI:
10.1007/978-3-642-14347-2_12

[5] Apel, S., Batory, D., Kästner, C. and Saake, G., Feature-oriented
software product lines: concepts and implementation. Springer
Science & Business Media, 2013. DOI: 10.1007/978-3-642-37521-7

[6] Prehofer, C., Feature-oriented programming: A fresh look at objects,
Proceedings of the Europ. Conf. Object-Oriented Programming, pp.
419-443, 1997. DOI: 10.1007/BFb0053389

[7] Schaefer, I., Bettini, L., Bono, V., Damiani, F. and Tanzarella, N.,
Delta-oriented programming of software product lines, In: SPLC.
LNCS, 6287, pp. 77-91, 2010. DOI: 10.1007/978-3-642-15579-6_6

[8] Salvaneschi, G., Ghezzi, C. and Pradella, M., Context-oriented
programming: A software engineering perspective. J. of Systems and
Software, 85(8), pp. 1801-1817, 2012. DOI:
10.1016/j.jss.2012.03.024

[9] Tizzei, L.P., Rubira, C.M. and Lee, J., An aspect-based feature model
for architecting component product lines, In: SEAA, pp. 85-92, 2012.
DOI: 10.1109/SEAA.2012.64

[10] Alzahmi, S., Matar, M.A. and Mizouni, R., A practical tool for
automating service oriented software product lines derivation,
Proceedings of the 8th Int. Symposium on Service Oriented System
Engineering (SOSE), pp. 90-97, 2014. DOI: 10.1109/SOSE.2014.16

[11] Kästner, C., Apel, S. and Kuhlemann, M., Granularity in software
product lines, Procedings of the 30th Int. Conf. on Software
Engineering (ICSE), pp. 311-320, 2008. DOI:
10.1145/1368088.1368131

[12] Aleixo, F.A., Kulesza, U. and Junior, E.A.O., Modeling variabilities
from software process lines with compositional and annotative
techniques: A quantitative study. Proceedings of the Int. Conf. on
Product Focused Software Process Improvement, pp. 153-168,
Springer, Berlin, 2013. DOI: 10.1007/978-3-642-39259-7_14

[13] Jordan, H.R., Russell, S.E., O'Hare, G.M. and Collier, R.W., Reuse
by inheritance in agent programming languages. In: Intelligent
Distributed Computing V, Studies in Computational Intelligence, pp.
279-289, Springer, Berlin, Heidelberg, 2011. DOI: 10.1007/978-3-
642-24013-3_30

[14] Le, D.M., Lee, H., Kang, K.C. and Keun, L., Validating consistency
between a feature model and its implementation. In: ICSR, pp. 1-16,
2013. DOI: 10.1007/978-3-642-38977-1_1

[15] Kästner, C., Apel, S. and Ostermann, K., The road to feature
modularity?, Proceedings of the 15th Int. Software Product Line
Conference, 2, pp. 5, 2011. DOI: 10.1145/2019136.2019142

[16] FragOP, GitHub [Online]. [date of reference: April 26th of 2018].
Available at: https://github.com/danielgara/FragOP

[17] VariaMos - Families of systems & SAS modeling tool [Online]. [date
of reference: September 9th of 2018]. Available at:
https://variamos.com/home/

[18] Mazo, R., Muñoz-Fernández, J.C., Rincón, L., Salinesi, C. and
Tamura, G., VariaMos: an extensible tool for engineering (dynamic)
product lines, Proceedings of the 19th Int. Conf. on Software Product
Line, pp. 374-379, 2015. DOI: 10.1145/2791060.2791103

[19] Kang, K.C., Cohen, S.G., Hess, J.A., Novak,W.E. and Peterson, A.S.,
Feature-oriented domain analysis (FODA) feasibility study. technical
report, Carnegie Mellon Software Engineering Institute, 1990.

Correa et al / Revista DYNA, 85(207), pp. 74-83, Octubre - Diciembre, 2018.

83

[20] Lecoutre, C., Constraint Networks. Wiley-IEEE Press, 2009. DOI:
10.1002/9780470611821

[21] Parr, T., The definitive ANTLR 4 reference. Pragmatic Bookshelf,
2013.

[22] Oneproduct.jsp file P5 – FragOP, GitHub [Online]. [date of reference:
September 13th of 2018]. Available at:
https://github.com/danielgara/FragOP/blob/master/cstoresp5/integrat
ed/WebContent/views/oneproduct.jsp

[23] Oneproduct.jsp file P1 – FragOP, GitHub [Online]. [date of reference:
September 13th of 2018]. Available at:
https://github.com/danielgara/FragOP/blob/master/cstoresp1/integrat
ed/WebContent/views/oneproduct.jsp

[24] Mezini, M. and Ostermann, K., Variability management with feature-
oriented programming and aspects. In: ACM SIGSOFT Software
Engineering Notes, 29(6), pp. 127-136, 2004. DOI:
10.1145/1041685.1029915

[25] Kästner, C. and Apel, S., Integrating compositional and annotative
approaches for product line engineering, Proceedings of the GPCE
Workshop on Modularization, Composition and Generative
Techniques for Product Line Engineering, pp. 35-40, 2008.

[26] Apel, S. and Hutchins, D., A calculus for uniform feature
composition. ACM Transactions on Programming Languages and
Systems (TOPLAS), 32(5), pp. 19, 2010. DOI:
10.1145/1745312.1745316

[27] Rincón, L. and Mazo, R., Análisis y diseño de componentes
reutilizables de dominio. In: Guía para la adopción industrial de líneas
de productos de software, pp. 259-306, Editorial Eafit, Medellín,
Colombia, 2018. ISBN 978-958-720-506-0

[28] Correa, D. and Mazo, R., Implementación de componentes
reutilizables de dominio. In: Guía para la adopción industrial de líneas
de productos de software, pp. 307-368, Editorial Eafit, Medellín,
Colombia, 2018. ISBN 978-958-720-506-0

D. Correa, received the BSc. Eng in Systems and Informatics Engineering
in 2012, and the MSc. degree in Systems and Informatics Engineering in
2015 all of them from the Universidad Nacional de Colombia. Medellin,
Colombia. He is currently a PhD candidate in Systems and Informatics
Engineering for the Universidad Nacional de Colombia; and he is an
auxiliary professor in the Computing and Decision Sciences Department,
Universidad Nacional de Colombia. His research interests include: software
product lines, software engineering and software frameworks.
ORCID: 0000-0001-5767-2447

R. Mazo, is associate professor at Paris1 Panthéon Sorbonne University
from September 2012, and visiting professor at Eafit University (Colombia)
from September 2016. He received a BSc. in Computer Science Engineering
in 2005 from the University of Antioquia (Medellin, Colombia), a MSc. of
Science degree in Information Systems in 2008 and a PhD. degree in
Computer Science in 2011, both from the Panthéon Sorbonne University.
His research and teaching topics include: software engineering, and
(dynamic) product line engineering.
ORCID: 0000-0003-0629-1542

G.L. Giraldo-Gómez, is associate professor in the Computing and Decision
Sciences Department. Universidad Nacional de Colombia, located in
Medellín. She is BSc. in System Engineer of the Antioquia University in
Medellín, Colombia and the same university she obtained a title as Sp. in
Electronic Sciences and Informatics. She is MSc. in theory and database
engineering at Paris I Pantheon Sorbonne University, France. She is PhD. in
Computer Science at Paris-Sud 11 University, Orsay, France. Her research
areas are the software engineering, requirements of software engineering,
software product lines, ontologies and information systems.
ORCID: 0000-0001-7487-2707

Área Curricular de Ingeniería
de Sistemas e Informática

Oferta de Posgrados

Especialización en Sistemas
Especialización en Mercados de Energía

Maestría en Ingeniería - Ingeniería de Sistemas
Doctorado en Ingeniería- Sistemas e Informática

Mayor información:

E-mail: acsei_med@unal.edu.co

Teléfono: (57-4) 425 5365

	1. Introduction
	1.1. Design and implementation of domain components
	1.2. Contribution

	2. Fragment-Oriented Programming (FragOP)
	3. Domain engineering process
	3.1. Modelling product line requirements
	3.2. Modelling domain components
	3.3. Implementing domain components
	3.3.1. Implementation of files
	3.3.2. Implementation of fragmentation points
	3.3.3. Implementation of fragments
	3.4. Binding domain requirements and domain components

	4. Application engineering process
	4.1. Configuring products

	5. Preliminary evaluation of FragOP
	6. Related work
	7. Conclusions and future work
	References

