
Dyna, year 81, no. 183, pp. 68-77. Medellin, February, 2014. ISSN 0012-7353

IDENTIFYING DEAD FEATURES AND THEIR CAUSES IN
PRODUCT LINE MODELS: AN ONTOLOGICAL APPROACH

IDENTIFICANDO CARACTERÍSTICAS MUERTAS Y SUS CAUSAS
EN MODELOS DE LÍNEAS DE PRODUCTOS: UN ENFOQUE

ONTOLÓGICO
GLORIA-LUCIA GIRALDO

PhD, Associate Professor, Universidad Nacional de Colombia Sede Medellín, Colombia, glgiraldog@unal.edu.co

LUISA RINCÓN-PEREZ
Master of Engineering- Engineering Systems, Universidad Nacional de Colombia Sede Medellín, Colombia, lufrinconpe@unal.edu.co

RAUL MAZO
PhD, Associate Professor, CRI, Université Paris 1 Panthéon Sorbonne, raul.mazo@univ-paris1.fr

Received for review December 30 th, 2012, accepted August 22th, 2013, final version September, 23 th, 2013

ABSTRACT: Feature Models (FMs) are a notation to represent differences and commonalities between products derived from a product
line. However, product line modelers could unintentionally incorporate dead features in FMs. A dead feature is a type of defect, which
implies that one or more features are not present in any product of the product line. Some authors have used ontologies in product lines,
but they have not exploited ontology reasoning to identify and explain causes for defects in FMs in natural language. In this paper, we
propose an ontology that represents FMs in OWL (Web Ontology Language). Then, we use SQWRL (Semantic Query-enhanced Web Rule
Language) to identify dead features in a FM and identify and explain certain causes of this defect in natural language. Our preliminary
empirical evaluation confirms the benefits of our approach.

Key words: Product lines, feature models, ontologies, dead features, SQWRL.

RESUMEN: Los modelos de características (en inglés Feature Models FMs) son una notación para representar diferencias y similitudes
entre productos derivados de una línea de productos. Sin embargo, quienes modelan la línea de productos pueden introducir sin intención
en los FMs defectos como las características muertas. Una característica es muerta si no puede estar presente en ningún producto derivado
de la línea de productos. Algunos autores han identificado características muertas en los FMs, pero ninguno ha aprovechado las capacidades
de razonamiento de las ontologías para identificar y explicar las causas de estos defectos en lenguaje natural. En este trabajo, se propone
una ontología para identificar las características muertas en un FM y se proponen consultas sobre la ontología, para identificar y explicar
en lenguaje natural ciertas causas de las características muertas detectadas. Nuestra evaluación empírica preliminar confirma los beneficios
de nuestra propuesta.

Palabras clave: Líneas de productos, modelo de características, ontologías, características muertas, SQWRL.

1. INTRODUCTION

A product line is a family of related products distinguished
by different sets of features that each product provides [1].
A particular application of product line is the software
product line (SPL). Software Product Line Engineering
(SPLE) is thus the software development paradigm geared
for the construction of SPLs. Extensive research and
industrial experience widely prove the significant benefits
of SPLE practices, which among them are reduced time
to market, increased asset reuse and increased software
quality [2]. In order to do that, SPLE usually uses Product
Line Models (PLMs) to represent the correct combination
of features that represent valid products.

A common notation to represent PLMs is Feature
Models (FMs). FMs describe the features, their relations
and the valid feature combinations of a product line [3].
FMs have also proven useful to communicate with
customers and other stakeholders, such as marketing
representatives, managers, production engineers,
system architects, etc. Consequently, having FMs that
correctly represent the domain of the product line is of
paramount importance for ensuring quality in SPLE.
However, creating feature models with features that
correctly represent the domain described by the model
is not trivial [4]. In fact, when a FM is constructed,
defects may be unintentionally introduced, which
decreases the quality of the FM and hence also the

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014. 69

expected benefits of product line. Dead features are
one such defect. A feature is dead if it cannot appear
in any products of the product line [5–8].

Some studies in the literature automatically identify
whether a FM present dead features or not [5, 9–11].
However, few studies have focused on identifying causes
for such defect [12, 13]. Identifying the cause consist in
identifying the dependencies that, combined in a certain
manner, produce a dead feature. Such identification helps
product line engineers to understand the problem and to
determine the best solution to fix dead features [4, 14].
In addition, in an end-users configuration process, it is
important to identify defects and explain the cause of
these defects to users [15].

FMs and ontologies are comparable because both
represent concepts of a particular domain and their
dependencies [16]. However, FMs only offer a
graphical means to represent a particular domain,
whereas ontologies also offer an efficient mechanism
to reason on domain models.

In this paper, we discuss an approach based on OWL-
DL (Web Ontology Language–Description Logic) [17]
ontology and SQWRL (Semantic Query-enhanced
Web Rule Language) [18]. The ontologies are formal
domain models, which have powerful inference
mechanisms. The ontologies are recommended for
sharing terminologies and understanding. Therefore,
modeling with ontologies offers interoperability,
reusability and extensibility. We represent our
ontology in OWL-DL because this formalism provides
computational completeness and expressiveness for
representing knowledge [19]. Moreover, we use a
rule-based language because the rules are a natural and
declarative way to represent knowledge [20]. SQWRL
is a rule-based language to extract information from
OWL ontologies. Therefore, we use this language to
identify dead features in FMs, and some of their causes
from the proposed ontology.

Our proposal has two main contributions. First, it
provides an ontology that represents FM concepts;
second, it identifies and explains in natural language
certain causes that produce dead features.

The remainder of the paper is as follows. In Section
2, we give a brief overview of the necessary concepts

for understanding the study described herein. Section
3 presents our approach to identify the causes for
dead features in FMs. In Section 4, we present the
preliminary validation of our proposal. In Section 5,
we present related research. Finally, Section 6 presents
the conclusions and suggests future research directions.

2. GENERAL CONCEPTS

Feature Models

Feature Models (FMs) are a notation for representing
product line models. Using this notation, a feature is
a distinctive element, which is visible to users. Each
feature is a node in a tree structure, and the model
dependencies are arcs [3].

The tree structure represents hierarchical organization
of the features, wherein only one feature is the model
root feature. In addition, except for the root, each
feature has a parent feature [3]. Figure 2 shows a FM,
which exemplifies the application of our proposal.
Features can have different types of dependencies.
Table 1 describes and graphically represents each type
of dependency.

After Kang et al. [3] reported a first notation of FMs, other
authors proposed extensions to the original notation [21]
(e.g., the group cardinality dependency [22]).

Figure 1 shows an UML-based meta-model for a
cardinality base FM. This meta-model relates the
concepts presented in Table 1.

of Utility Functions, Settings, and Media features,
among others. As shows Figure 2, each child feature in
the Media feature is optional. Additionally, each child
feature in the Utility Functions and Settings features
are mandatory. Each dependency connects two features
with a unique nomenclature for easy identification.

In order to illustrate our approach, we intentionally
introduced in the original model four dead features
(MSN, Camera, VGA and Megapixels). For that
purpose, we use two additional dependencies (R16
and R17).

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014.70

Table 1. Types of dependencies in FMs
Notation Type of Dependency

Mandatory [3]
Child feature B should be included in all valid
products containing the parent feature A and
vice versa.
It a feature is mandatory and all its ancestors
are also mandatory, then, this feature is a full-
mandatory feature [5].

Optional [3]
Child feature B may or may not be included in
valid products containing parent feature A.
However, if feature B is included in a product,
its parent A should be included too.

Group cardinality [22]
Represents the minimum (m) and the maximum
(n) number of child features (B...C) grouped in
a cardinality (<m..n>) that a product can have
when the parent feature (A) is included in the
product.
If at least one of the child features is included
into a product, the parent feature should be
included too.

Transverse Dependencies
Requires [3]
Feature B should be included in valid products
with feature A. This dependency is unidirec-
tional.
Excludes [3]
Features A and B cannot be in valid products
at the same time. This dependency is bidirec-
tional.

Figure 1. FM meta-model based on the one proposed by
Mazo et al. [15]

2.2. Application Example

Figure 2 shows a reduced version of a FM based on
the one proposed by Segura for mobile phones [23]. In
this example, a Mobile Phone is composed

Figure 2. Summary of a mobile phone FM based on
Segura’s proposal [23]

2.3. Dead features

Features are distinctive elements that are visible to
user [3]. A feature is dead when it is not present in any
product of the product line [5–8]. When a FM has dead
features, the model is not an accurate representation
of the domain. Indeed, if a feature belongs to a FM,
the feature is important for the domain that we want to
represent. Therefore, it should be possible to incorporate
that feature in at least one product of the product line [7].

2.4. Ontologies

An ontology is a formal explicit specification for a
shared conceptualization [24, 25]. In the same way that
FMs, ontologies help to identify and define the domain
basic concepts and the dependencies among them.

Representing information with ontologies aids
the identification and definition of the basic terms
of a domain. In addition, ontologies represent the
dependencies and rules for combining such terms, and
provide a common vocabulary for the domain model.
Ontologies comprises classes, instances, properties and
constraints [26].

Classes are the main concepts related to the ontology
domain. Instances represent objects in the domain
of interest. Properties are object properties or data-
type properties: Object properties relate ontology
instance among them, whereas data-type properties
relate ontology instances with concrete values, for
example, an integer value. Finally, constraints describe
the restrictions that instances must satisfy in order to
belong to a class [26].

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014. 71

2.5. SQWRL Queries

The Semantic Query-enhanced Web Rule Language
(SQWRL) is a language that provides query operations
for ontologies represented in OWL [18]. A SQWRL
query comprises an antecedent and a consequent
expressed in terms of OWL classes and properties.
The antecedent defines the criteria that instances must
satisfy to be selected, and the consequent specifies
the instances to select in the query results [18]. each
SQWRL uses classes and properties defined in the
proposed ontology to query for information of the FM
represented as ontology instances. A semantic reasoner,
such as JESS (Java Expert System Shell) [27], executes
SQWRL queries.

3. PROPOSED SOLUTION

In the previous section, we described the basic concepts
underlying our work. Following sub-sections present
our approach, which uses ontologies and SQWRL to
identify certain dead features in FMs, and to explain
their causes in natural language.

3.1. Ontology-based representation of product line
models

Figure 3 shows the proposed OWL ontology to represent
the FMs concepts as an ontology. This representation
allows us to exploit the semantic relationships among the
concepts involved in FMs. For instance, we can ask for
features that have the same parent, or features related by
mandatory and exclude dependencies at the same time.
We develop this ontology using the methodology proposed
by Noy Noy & McGuinness (2001)and McGuinness [28]
with a top-down approach, and we take the FM concepts
from the meta-model presented in Figure 1.

Figure 3. Proposed ontology to represent FMs

In our ontology, meta-model classes correspond to
classes of the ontology. In addition, we separate the class
Feature in classes RootFeature and NotRootFeature
to represent that a FM only has one root feature. We
represent the attributes of the groupCardinality meta-
model class with ontology datatype properties, and we
relate ontology classes with ontology object properties.
For example, every dependency within the FM
comprises an origin and a destination feature. Then, we
create the object properties hasDependencySource and
hasDependencyDestination to relate the Dependency
ontology class with the Feature ontology class.
Thus, we can relate each dependency with its feature
source and its feature destination. Furthermore, in the
optional and mandatory dependencies, the property
hasDependencySource identifies the parent feature,
and the property hasDependencyDestination identifies
the child feature. In the example shown in Figure 2,
the Mobile Phone feature is the origin feature of the
optional dependency R1, and the Utility Functions
feature is the destination feature. Moreover, Mobile
Phone is the parent feature of the Utility Functions
feature.

3.2. Rules for identifying dead features

According to the literature [4, 7, 13], misuse of
dependency in FMs causes dead features. Our proposal
considers that a feature can become a dead feature if
a full-mandatory feature excludes an optional feature
(see Rule 1), or if the parent feature is a dead feature
(see Rule 2). Other cases that cause dead features are
outside the scope of this initial proposal.

Rule 1: Full-mandatory feature excludes an optional
feature: An optional feature becomes dead when a
full-mandatory feature excludes it.

In the example, the Camera feature is optional due to its
dependency (R11) with the Media feature. Furthermore,
product cannot have the Games and Camera features
simultaneously due to the exclude dependency (R17)
between both features. Because Games is a full-
mandatory feature [5] (i.e., it is present in all products),
the Camera feature is a dead feature.

Rule 2: The parent feature is a dead feature: If a child
feature is included during product configuration, the
parent feature should be included too [3]. If the parent

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014.72

feature is already a dead feature, its children features
cannot be included in any product. In the example,
features VGA and MegaPixels are children of dead
feature Camera. Thus, these children features are dead
features too.

We use SQWRL to implement the rules proposed in
this section. For the sake of space, we only present
and explain in the Table 2 the source code of the
Rule 1, in which full- mandatory features exclude an
optional feature. Nevertheless, both rules have a similar
structure.

It is important to highlight that in queries, we use
WILDCARD word as an argument that depends
on each rule (e.g. in rule 1 WILDCARD belongs to
full-mandatory features, while in rule 2 it belongs to
dead features). Each statement SQWRL requires a
constant value in the argument WILDCARD. Therefore,
we create dynamically a SQWRL for each possible
value of WILDCARD. For instance, WILDCARD can
take seven different values in our application example
(see Table 2); hence, we create seven different SQWRL
queries.

Table 2. SQWRL query for dead features that satisfy Rule 1.

(1)Excludes(?y) ^
(2)Optional(?w) ^

(3) NotRootFeature(?x) ^
(4) NotRootFeature(WILDCARD) ^

(5)hasDependencySource(?y, WILDCARD)^
(6)hasDependencyDestination(?y,?x) ^ (7)hasDependen
cyDestination(?w,?x)-> (8)sqwrl:selectDistinct(?x)

Rule 1: Consequent result
selectDistinct(?x):Optional feature, which is excluded by a full-

mandatory feature.
Example Value:Camera ,MSM

Rule 1: Antecedent construction
SQWRL

instruction Definition Example Value

Excludes(?y) Excludes
dependencies R16,R17,R18

Optional(?w) Optional
dependencies R3,R9,R15,R19,R20

NotRoot
Feature
(?x)

Features non-root of
the FM

Utility Functions, Settings,
Calls, Messaging, Games,
Java support, OS, Media,

MP3,MP4,

Camera,Voice,
Data,SMS,MSM,VGA,

Megapixels

NotRoot
Feature

(WILDCARD)

In this rule,
WILDCARD

correspond to full-
mandatory features

Utility Functions, Settings,
Calls, Messaging,Games,

Java support, OS

has
Dependency
Destination
(?w,?x)

Data are restricted,
so x corresponds to
features destination

of optional
dependencies

Value of x
Media, MP3,

Camera,Voice,Data,SMS,
MSM,VGA,
Megapixels

has
Dependency
Source
(?y,

WILDCARD)

Data are restricted,
so y corresponds

to excludes
dependencies whose
source feature is full-

mandatory

Values of y

R16,R17

has
Dependency
Destination
(?y,?x)

Data are restricted so
x now corresponds to
features excluded by

the dependency y.

Values of x

Camera and MSM Both are
dead features

3.3. Natural Language Explanations

We have a predefined explanation text for each
proposed rule to identify dead features. Then, after
identifying the dead features that satisfy rules 1 or 2,
we explain the defect in natural language, as follows:

a) We determine if the dead feature satisfies rule 1 or
rule 2.

b) We generate the predefined text that explains rule
1 or rule 2 in natural language.
Text to explain rule 1 is “Optional feature
featureName is dead because the full-mandatory feature
fullMandatoryFeatureName excludes it through the
dependency exclusionDependencyName”.
Text to explain rule 2 is “Feature featureName is dead
because parentFeatureName, its ancestor feature, is a
dead feature too”

c) We execute a new SQWRL query to get dependencies
and features names related to the predefined text,
which explains the dead feature.

d) We replace information from the FM at hand as
needed in the predefined text. Figure 4 shows
and example of each explanation applied to our
application example.

3.4. Implementation Details

We implemented our approach in two stages. In the first

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014. 73

stage, we created the proposed ontology with Protégé
3.4.8 to represent concepts of the FMs meta-model. In
the second stage, we developed a tool to integrate our
proposed OWL ontology with Java. This integration
allows us to manage and query information of each
analyzed FM.

The implementation process of our second stage was
as follows:

a) We read the proposed ontology in Java.

b) We use Jena [29] to populate and manage the
ontology with information of the analyzed FM.

c) We use JESS library, as reasoner engine, to execute
from Java SQWRL queries to identify dead features
(i.e., features that satisfy the rule 1 or rule 2).

d) We produce a natural language text, which explains
the cause of each dead feature. The explanatory
text depends on whether the property satisfies rule
1 or rule 2. We complete the explanations from
information gather from SQWRL queries.

Figure 4 presents one snapshot of the developed
tool with a feedback obtained when we analyzed
dead features in our application example. This
case comprises features with mandatory, optional,
excludes and group cardinality type dependencies.
It also comprises an exclusive dependency that does
not generate dead features (R18) and additional
dependencies that generate dead features.

Figure 4. Snapshot corresponding to results generated
from analyzing our FM running example

4. PRELIMINARY EVALUATION

4.1. Correctness

We assessed the correctness of our approach with 5
FMs with 25 features and 5 FM with 50 features.
We generated these FMs with the BEnchmarking and
TesTing on the analYsis (BeTTy) tool [30].

We manually tested our approach in three steps. First,
we verified that it did not generate false positives.
Second, we verified that the proposed solution
identified 100% of dead features considered in our
two rules. Finally, if the FMs had dead features, we
validated that the cause corresponds to the case that
produced the defect, and that the filled spaces in the
explanation text corresponded to the correct situation
for each one of the models.

In the first stage, we manually compared the dead
features with the results obtained using FaMa [12].
We found that our proposal identified the 100% of the
dead features that satisfied our rules, with 0% false
positive. For the second and third stage, we made
a manual inspection of correctness over 2 models
(randomly selected) of 25 features and 2 models of
50 features.

We found that our proposal constructed correct
explanations; i.e., they corresponded to the cause(s)
that originated each defect. Results are available online
in https://sites.google.com/site/raulmazo/.

4.2. Comparison of results

We compared results obtained in our proposal with the
proposals of Trinidad et al. [4] and Rincón et al. [31]
for the example application.

Table 3 presents the comparison of the results. The
first column shows dead features identified by all
approaches. The second column shows causes, in
natural language, found by our proposal. Finally, the
third column shows corrections proposed by Trinidad
et al. [4] and Rincón et al. [31] (In this case, both
approaches identified the same corrections).

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014.74

Table 3. Comparison our proposal vs other approaches

Dead
feature

Our proposal

Trinidad et
al. [4]

Rincón et al.
[31]

Causes in natural language Corrections

Camera

Optional feature Camera is dead because
the full-mandatory feature Games
excludes it through the dependency

traversal_Games_TO_Camera

R1

R6

R17

MSN Optional feature MSN is dead because
the full-mandatory feature Java support

excludes it through the dependency
traversal_ MSN _TO_ Java support

R2

R7

R16

Mega

pixels

Megapixels is dead feature because
Camara its ancestor feature is dead

feature too

R1

R6

R17

R19

VGA VGA is dead feature because Camara its
ancestor feature is dead feature too

R1

R6

R17

R19

The results obtained shows that in the application
example all approaches identified the same dead
features. However, in other FMs, Trinidad et al.
[4] and Rincón et al. [31] could identify other dead
features that our approach will not identify. This
is because we have not implemented all the cases
to identify all dead features. Trinidad et al. [4] and
Rincón et al. [31] identify all cases because they use
a constraint satisfaction approach. However, our rule-
based approach is extensible: we can create new rules
for identifying and explaining in natural language
other cases of dead features. Regarding explanations,
Trinidad et al. [4] and Rincón et al. [31] identify the
list of dependencies that must be deleted to remove
dead features (Corrections). Our work instead focuses
on explaining the cause of each dead feature in natural
language. This information helps feature modelers to
understand why dead features appear. Therefore, our
approach is complementary to proposal of Trinidad et al.
[4] and Rincón et al. [31] because the feature modeler
could find dead features, their causes in natural language
and possible corrections combining those proposals.

5. RELATED RESEARCH

We divide the research studies on identifying causes for
dead features into two types: studies related to using

ontologies in product line models, and those related to
identifying causes of dead features. For the first type,
Wang et al. [32] Wang et al., (2007)propose representing
FMs and their constraints in OWL ontology language.
In their proposal, the authors represent each feature as
an ontology class, and each dependency as an ontology
property. Their study identifies inconsistencies in
particular FMs configurations and provide explanations
for inconsistencies. However, their approach does not
analyze the FM itself to identify the shortcomings, but
each particular configuration.

In [15] Abo et al. propose two SWRL rules to validate
model consistency. The first one detects features
that excludes and requires the same feature, and the
second one detects cycles in the FM, i.e, feature x
requires feature y, and feature y requires feature x.
Authors define inside ontology, as an antecedent, each
situation that creates an inconsistency, and define as
the consequence, the elements involved. Our work
as the proposal of Abo et al. [15] uses ontology to
represent FM in a formal way. However, additionally
to use the ontology for formal representation, we use
ontologies for two different purposes: (a) we exploit the
ontological representation to perform dynamic SQWRL
in FMs (i.e. Table 2); and (b) we explain defects in
natural language. This is possible due to integration of
our approach with Java. Abo et al. [15] implemented
their proposal only in Protégé-OWL, therefore they do
not have those advantages.

Lee et al. [33] Lee, Kim, Song, & Baik (2007) use
ontologies to represent FMs and to analyze their
variability and commonality. However, they use
ontologies to analyze the semantic similarity of the FM,
whereas that our approach uses ontologies to identify
dead features and explain their causes.

Regarding the second category, several works were
carried out to automatically identify dead features (and
other defects) on [5, 9–11]. However, none of these
works deals with identification of causes that explain
in natural language why each dead feature occurs.

Trinidad et al. [4] present an automated method for
identifying and explaining defects, such as dead
features in FMs. For Trinidad et al. [4], an explanation
is the minimal subset of dependencies that should be
modified to remove the defect. They implemented their

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014. 75

approach transforming FMs into a diagnostic problem
and then into a constraint satisfaction problem. This
Implementation is available in FaMa [12], an Eclipse
Plug-in for automatic analysis of FMs.

Rincón et al. [31] propose a method to identify
corrections in FMs. In this approach, authors transform
FMs into a constraint problem, then they identify
all minimal corrections subsets (MCSes) [34] of
dependencies that could be modified to correct each
dead feature of the FM. This approach like FaMa[12],
identify the list of dependencies that entail the fewest
changes to fix the defect, but also identify others set
of dependencies that imply more changes and fix the
defect. This information provides more complete
information about how to correct each dead feature.

Trinidad and Ruiz-Cortés [13] Trinidad & Ruiz-
Cortes, (2009)use abductive reasoning to identify dead
features and their causes. Unfortunately, the authors
did not describe a method or algorithm to support their
proposal.

Constraint satisfaction techniques are not enough to
explain causes of a dead feature in natural language
because, for instance, the structure needed to provide
these explanations, is lost when authors transform the
models into constraint programs. In fact, explanations
generated by Trinidad et al.[4] and Rincón et al. [31]
are not the causes that explain why a feature is dead,
but corrections to apply in order to remove the defect.

6. CONCLUSIONS AND DISCUSSION

In this paper, we present an approach, which takes
advantage of the inherent characteristics of ontologies,
in order to identify dead features in FMs and explain
certain causes of that defect in natural language. We
use OWL to create an ontology to represent the FMs
and their dependencies, and SQWRL as an ontology
query language. We validate our proposal through the
implementation and application of two SQWRL rules
on a well-known case study and ten other FMs.

Our approach, in contrast to the black box-like
approaches found in literature, can be easily extended
with other rules to identify and explain other causes
that create dead features.

Although ontologies were initially proposed for the
semantic web, given their expressive power and formal
semantics, they are useful in product lines to support
identification of defects in feature models and to
obtain information to produce explanations in a human
understandable form.

We are currently extending this approach to identify
other causes to explain dead features and other defects
on FMs (e.g., false optional features or void FM).
Other future directions include validating performance,
accuracy, and scalability of the proposed approach for
application to industrial cases.

ACKNOWLEDGMENTS

We perform this research under the project “Formation,
evolution, and consistency of solutions based on the
concept of product lines in organizations”. This project
is part of the scientific cooperation program between
France and Latin America.

REFERENCES

[1] Clements, P. and Northrop, L., Software Product Lines:
Practices and Patterns 1st ed., Addison-Wesley Professional,
2001.

[2] Pohl, K., Böckle, G. and Linden, F.J., van der: Software
Product Line Engineering: Foundations, Principles and
Techniques Springer-Verlag New York, Inc., 2005.

[3] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. and
Peterson, S.P., Feasibility Study Feature-Oriented Domain
Analysis (FODA). Technical Report 1990.

[4] Trinidad, P., Benavides, D., Duran, A., Ruiz-Cortés, A.
and Toro, M., Automated Error Analysis for the Agilization
of Feature Modeling. Journal of Systems and Software., 81,
pp. 883–896, 2008.

[5] Von Der Massen, T. and Lichter, H., Deficiencies in
Feature Models , En: Workshop on Software Variability
Management for Product Derivation - Towards Tool Support.
(Eds.Mannisto T, Bosch J). 2004.

[6] Trinidad, P., Benavides, D. and Ruiz-Cortés, A., Isolated
Features Detection in Feature Models , En: Proceedings of
Conference on Advanced Information Systems Engineering
(CAiSE 2006). pp. 1–4, 2006.

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014.76

[7] Benavides, D., Segura, S. and Ruiz-Cortés, A., Automated
analysis of feature models 20 years later: A literature review.
Information Systems., 35, pp. 615–636, 2010.

[8] Sun, J., Zhang, H. and Wang, H., Formal Semantics
and Verification for Feature Modeling , En: Proceedings
of the 10th IEEE International Conference on Engineering
of Complex Computer Systems. IEEE Computer Society,
Washington, DC, USA, pp. 303–312, 2005.

[9] Salinesi, C. and Mazo, R., Defects in Product Line
Models and how to identify them , En: Software Product
Line - Advanced Topic.(Eds.Elfaki A). pp. 97–122, 2012.

[10] Thüm, T., Kastner, C., Benduhn, F. and Meinicke, J.,
SAAK: FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer
Programming., 2012.

[11] Mazo, R., Salinesi, C. and Diaz, D., VariaMos : a Tool
for Product Line Driven Systems , En: Proceedings of the
24th International Conference on Advanced Information
Systems Engineering (CAiSE Forum’12). Springer Press,
Gdansk-Poland, pp. 25–29, 2012.

[12] Trinidad, P., Benavides, D., Ruiz-Cortés, A., Segura,
S. and Jimenez, A., FAMA Framework , En: Proceedings of
the 12th International Software Product Line Conference.
IEEE Computer Society, Washington, DC, USA, 359, 2008.

[13] Trinidad, P. and Ruiz-Cortés, A., Abductive Reasoning
and Automated Analysis of Feature models: How are they
connected , En: Proceedings of the Third International
Workshop on Variability Modelling of Software-Intensive
Systems. pp. 145–153, 2009.

[14] Batory, D., Benavides, D. and Ruiz-Cortés, A.,
Automated analysis of feature models: challenges ahead.
Communications of the ACM., 49, pp. 45–47, 2006.

[15] Abo, L., Kleinermann, F. and De Troyer, O., Applying
semantic web technology to feature modeling , En: Proceedings
of the 2009 ACM symposium on Applied Computing (SAC
’09). ACM, New York, pp. 1252–1256, 2009.

[16] Czarnecki, K., Peter Kim, C.H. and Kalleberg, K.T., Feature
Models are Views on Ontologies , En: Proceedings of the 10th
International on Software Product Line Conference. IEEE
Computer Society, Washington, DC, USA, pp. 41–51, 2006.

[17] Mcguinness, D.L. and Van Harmelen, F., OTHERS: OWL
web ontology language overview. W3C recommendation.,
10, 10, 2004.

[18] O’connor, M., and Das, A., SQWRL: a Query Language
for OWL , En: Proceedings of the 6th International Workshop
OWL: Experiences and Directions. Chantilly, 2009.

[19] Tsetsos, V., Papataxiarhis, V. and Hadjiefthymiades,
S., Personalization based on Semantic Web Technologies.
Semantic Web Engineering in the Knowledge Society,
Information Science Reference., pp. 52–75, 2008.

[20] Breitman, K.K., Casanova, M.A. and Truszkowski,
W., Semantic web: concepts, technologies and applications
Springer-Verlag, pp. 105–127, 2007.

[21] Djebbi, O. and Salinesi, C., Criteria for Comparing
Requirements Variability Modeling Notations for Product
Lines , En: Proceedings of the Fourth International Workshop
on Comparative Evaluation in Requirements Engineering.
IEEE, pp. 20–35, 2006.

[22] Czarnecki, K., Helsen, S. and Eisenecker, U.,
Formalizing Cardinality-based Feature Models and their
Specialization. Software Process: Improvement and
Practice., 10, pp. 7–29, 2005.

[23] Segura, S., Automated Analysis of Feature Models
Using Atomic Sets , En: Proceedings of the First Workshop
on Analyses of Software Product Lines (ASPL08). 2008.

[24] Borst, W., Construction of Engineering Ontologies
for Knowledge Sharing and Reuse: Ph.D. Dissertation [Ph
Thesis].Enschede, Netherlands: University of Twente,1998.

[25] Gruber, T., Toward Principles for the Design of
Ontologies Used for Knowledge Sharing , En: International
Workshop on Formal Ontology.(Eds.Guarino N, Poli R).
Padova,Italy, 1993.

[26] Horridge, M., Knublauch, H., Rector, A., Stevens, R. and
Wroe, C., A Practical Guide To Building OWL Ontologies
Using The Protege-OWL Plugin and CO-ODE Tools Edition
1.02004.

[27] Friedman-Hill, E., Java expert system shell,
Available:http://herzberg.ca.sandia.gov/jess.

[28] Noy, N. and Mcguinness, D., Ontology Development
101 : A Guide to Creating Your First Ontology, pp. 1–25,
2001.

[29] APACHE SOFTWARE FOUNDATION: Apache Jena,
Available:http://jena.apache.org/documentation/ontology/.

[30] Segura, S., Galindo, J.A., Benavides, D., Parejo, J.A.

Giraldo et al / Dyna, year 81, no. 183, pp. 68-77, February, 2014. 77

and Ruiz-Cortés, A., BeTTy: benchmarking and testing on
the automated analysis of feature models , En: Proceedings
of the Sixth International Workshop on Variability Modeling
of Software-Intensive Systems. ACM, New York, NY, USA,
pp. 63–71, 2012.

[31] Rincón, L.F., Giraldo, G.L., Mazo, R., Salinesi, C.
and Diaz, D., Subconjuntos Minimos de Correccion para
explicar caracteristicas muertas en Modelos de Lineas de
Productos. El caso de los Modelos de Caracteristicas , En:
Proceedings of the 8th Colombian Computer Conference
(CCC). Armenia-Colombia, 2013.

[32] Wang, H., Li, Y., Sun, J., Zhang, H. and Pan, J.,
Verifying feature models using OWL. Web Semantics:

Science, Services and Agents on the World Wide Web., 5,
pp. 117–129, 2007.

[33] Lee, S., Kim, J., Song, C. and Baik, D., An Approach
to Analyzing Commonality and Variability of Features
using Ontology in a Software Product Line Engineering
, En: Proceedings of the Fifth International Conference
on Software Engineering Research, Management and
Applications. IEEE, pp. 727–734, 2007.

[34] Liffiton, M. and Sakallah, K., Algorithms for Computing
Minimal Unsatisfiable Subsets of Constraints. Journal of
Automated Reasoning., 40, pp. 1–33, 2008.

