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Abstract
Aim of study: To predict genomic accuracy of binary traits considering different rates of disease incidence. 
Area of study: Simulation.
Material and methods: Two machine learning algorithms including Boosting and Random Forest (RF) as well as threshold BayesA 

(TBA) and genomic BLUP (GBLUP) were employed. The predictive ability methods were evaluated for different genomic architectures 
using imputed (i.e. 2.5K, 12.5K and 25K panels) and their original 50K genotypes. We evaluated the three strategies with different rates of 
disease incidence (including 16%, 50% and 84% threshold points) and their effects on genomic prediction accuracy.

Main results: Genotype imputation performed poorly to estimate the predictive ability of GBLUP, RF, Boosting and TBA methods when 
using the low-density single nucleotide polymorphisms (SNPs) chip in low linkage disequilibrium (LD) scenarios. The highest predictive 
ability, when the rate of disease incidence into the training set was 16%, belonged to GBLUP, RF, Boosting and TBA methods. Across diffe-
rent genomic architectures, the Boosting method performed better than TBA, GBLUP and RF methods for all scenarios and proportions of 
the marker sets imputed. Regarding the changes, the RF resulted in a further reduction compared to Boosting, TBA and GBLUP, especially 
when the applied data set contained 2.5K panels of the imputed genotypes. 

Research highlights: Generally, considering high sensitivity of methods to imputation errors, the application of imputed genotypes using 
RF method should be carefully evaluated. 
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Introduction
For several decades, most phenotypic variation in dairy 

cattle populations has focused on continuous traits, espe-
cially milk yield (Egger-Danner et al., 2015). However, 
economic benefits require better understanding of novel 
functional traits and their direct inclusion in dairy cattle 
breeding program (Naderi et al., 2016). Functional traits 
(e.g. resistance to disease and direct information on animal 
health) are vital, due to the importance of animal welfare 
and the human tendency for healthy and high-quality pro-
ducts. These traits are generally categorical, influenced by 

multiple genes, and deviate from Mendelian inheritance 
and normal distribution, all of which pose statistical cha-
llenges for genomic estimated breeding values (GEBV) 
estimation (Wang et al., 2013; Naderi et al., 2016).

Meuwissen et al. (2001) introduced the statistical pa-
ttern of genomic selection (GS) which has shown a com-
prehensive gain in the types of statistical models applied 
in genomic evaluation for approximately two decades (De 
Los Campos et al., 2009). Generally, these methods (e.g. 
genomic best linear unbiased prediction –GBLUP– and 
Bayesian methods) are based on linear regression. In recent 
years, machine learning methodology (Breiman, 2001) as 
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a non-parametric method along with GBLUP (VanRaden, 
2008) and threshold versions of Bayesian methods have 
commonly extended to solve the challenges of genomic 
selection in threshold traits (González-Recio & Forni, 
2011; Wang C et al., 2017). Random forest (RF) and boos-
ting are powerful machine learning methods to recognize 
gene-gene, protein-protein and gene-environment interac-
tions. These methods are able to detect disease associated 
genes and to model the relationship among combinations 
of markers in order to select genes associated with the tar-
get trait. In addition, the regulatory elements in DNA or 
protein sequences are identified by these methods to clas-
sify various samples in gene expression of microarrays 
data (Yang et al., 2010) and also genomic prediction ac-
curacy has been improved using RF and Boosting (Gon-
zález-Recio & Forni, 2011; Ghafouri-Kesbi et al., 2017).

Genomic accuracy of statistical algorithms depends 
mainly on the genetic architecture of target traits, including 
the number of QTL (Wientjes et al., 2015), level of linka-
ge disequilibrium (LD) (Yin et al., 2014), marker densi-
ty (Wang Q et al., 2017) and heritability (Bohlouli et al., 
2017). Furthermore, the rate of disease incidence into trai-
ning set is another important factor affecting the accuracy 
of genomic prediction in threshold traits. Recently, some 
studies have shown that genomic accuracy can be influen-
ced by the different compositions of the training set (Mc 
Hugh et al., 2011; Pimentel et al., 2013). A study by Naderi 
et al. (2016) found that the genomic prediction accuracy in-
creased with high rate of disease incidence into the training 
set, especially when applying the RF method.

Despite the important role of genomic selection in 
achieving high genomic accuracy and its long-term 
cost-effectiveness, the cost of genotyping and the econo-
mic aspects should not be disregarded in the short term. 
Animal breeding programmers require harmony among 
these factors in order to maximize the benefits to farmers. 
In this regard, genotype imputation could be applied to 
infer higher density genotypes with an acceptable estima-
tion of genomic accuracy to reduce the cost of genotyping 
(Ventura et al., 2016; Friedrich et al., 2018). Furthermore, 
imputation could assist GS by allowing screening on a 
larger number of young individuals (Chen et al., 2014; 
Lakhssassi & Recio, 2017).

Whereas real data offer the advantage of reflecting 
complexity, simulated data allow the researcher to explo-
re important aspects, such as the genetic architecture of 
the trait, number of markers used for analysis and degree 
of relatedness between the training and prediction popu-
lations. It also offers the possibility of evaluating some 
sources of variability, such as drift, which cannot be as-
sessed with most real data (Daetwyler et al., 2013). The 
objective of this study has been to assess the performance 
of GBLUP, threshold BayesA and machine learning me-
thods (RF and Boosting) for the evaluation of binary di-
seases traits, considering different genotyping strategies 

(from very low to mid density), different incidence rates 
of diseases in the populations and different genetic archi-
tectures for the disease trait, in order to define an optimal 
strategy to evaluate these type of traits.

Material and methods
Population structure

QMSim software was used (Sargolzaei & Schenkel, 
2009) to generate phenotypes, genotypes, and true bree-
ding values by applying stochastic simulations. Along the 
genome, 50010 bi-allelic single nucleotide polymorphism 
(SNP) markers (1667 per chromosome) were evenly spa-
ced along 30 chromosomes, each 100 cM long. During the 
first phase of the historical population, the population star-
ted to achieve the intended level LD for a basic population 
with an effective population size (Ne) = 1472 (400 males 
and 4600 females), which in turn were randomly mated 
for 1000 generations. In the second phase of the historical 
population, the effective size of over 100 generations was 
decreased from 1472 to 500 individuals by a “bottleneck” 
to produce a higher level of LD. In the third phase of the 
historical population, the effective size was increased from 
500 to 1472 for 100 generations, by considering 400 males 
and 4600 females. After that, 5000 animals from the last 
generation were used as founders of the recent population 
andexpanded via a random mating design for other 10 ge-
nerations. In the meantime, one offspring for each mating 
was considered, with an equal proportion of both genders, 
and replacement proportions were 0.2 and 0.5 for fema-
les and males, respectively. In each generation, the criteria 
for selection/culling was estimated breeding value (EBV)/
age. Four different scenarios were considered to reflect va-
riations of genomic architecture, including the level of LD 
and heritability and number of QTL (Table 1).

Two different QTL sets (450 and 150 QTLs) were 
randomly located along each chromosome with effects 
sampled from a gamma (β=0.4) distribution (Meuwissen 
et al., 2001). To simulate a wide range of polymorphic 
SNP loci, the mutation rate was considered to be 2.5×10-5 
and 2.5×10-3 for QTL per locus and per generation and 

Table 1. Different scenarios with respect to level of LD and  
heritability and number of QTL

aQTL: quantitative trait loci. bLD: linkage disequilibrium.

Variable
Scenarios

I II III IV
Heritability 0.25 0.25 0.1 0.1
No. of QTLa 450 150 150 150
Level of LDb low low low high
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marker, respectively. Phenotypes were simulated with 
low (0.1) and moderate (0.25) heritabilities.

Discrete phenotype

Individuals of the last generation (1210 generation) as 
the validation set and individuals of three generations be-
fore the validation set were considered as the training set 
(1207 to 1209 generation). Three strategies were used to 
create a binary phenotype. In the first strategy, the pheno-
type of the individuals was coded as 0 (12600 healthy in-
dividuals; approx. 84%) or 1 (2400 diseased individuals; 
a disease incidence rate of approx. 16%) depending on 
whether their simulated phenotype was respectively abo-
ve or below 𝑥̅𝑥-  SD (standard deviation). In the second stra-
tegy, 5100 healthy individuals from the first strategy were 
randomly recoded as sick to create a disease incidence 
rate of approx. 50%. In the third strategy, 10200 healthy 
individuals from the first strategy were randomly recoded 
as sick to create a disease incidence rate of approx. 84%. 
Phenotypes of the validation set were assumed unknown. 
To ensure data quality control, minor allele frequency 
(MAF) < 3% was considered as the criteria to filter out 
markers of low frequency. Ten repetitions were conside-
red at all stages of the process in each scenario.

Scenarios for masking genotypes

Different changes in simulated scenarios with 50K 
SNPs densities (original scenarios) were made to imitate 
the real condition of genotyping for uncalled genotypes 
with imputing genomic data. For this purpose, 95%, 75% 
and 50% of marker (to create 2.5K, 12.5K and 25K pa-
nels) were removed. Afterwards, missing genotypes were 
imputed using FImpute program (Sargolzaei et al., 2011). 
FImpute uses the family imputation algorithm followed 
by population imputation steps based on a sliding win-
dow technique. The imputation accuracy was calculated 
per animal and per SNP by the correlation between the 
imputed and original genotypes for all replications as 
an appropriate approach to minimize dependence on the 
allele frequency. This criterion was calculated for every 
marker and individual with genotypes coded 0, 1 and 2 as 
described above.

Statistical methods

―Random Forest (RF)

RF uses different variables at each split for each tree. 
This algorithm uses an ensemble of unpruned decision 
trees. It also uses a random subset of predictors to detect 

the best split at each node grown on bootstrap samples 
of observations. The RF predictions for each observation 
(𝑓̂𝑓𝑟𝑟𝑟𝑟

𝑃𝑃  (𝑥𝑥))  were calculated through averaging the performan-
ces over P trees ([𝑇𝑇(𝑥𝑥. 𝛹𝛹𝑝𝑝)]1

𝑃𝑃)  for those observations that 
are not applied to build the tree. 𝛹𝛹𝑝𝑝  determines the pth tree 
of RF in terms of split variables, cut points at each node, 
and terminal node amounts. The java package RanFoG 
(González-Recio & Forni, 2011) was used for RF analysis 
in the framework of the following model:

 Out of bag (OOB) error is a basic feature in RF. Each 
tree is grown through a bootstrapping sample of the data 
irrespective of 1/3 observations. Some individuals will 
emerge more than once and others will not emerge at all. 
The ones that do not emerge are called OOB observations 
and used as internal training set for trees. These OOB 
samples are the source of data used in RF for estimation 
of the OOB error by which the performance of RF can be 
assessed. To achieve the best performance of the model, 
parameters of RF should be tuned. These include ntree 
(the number of trees to grow), mtry (number of variables 
randomly sampled as candidates at each split) and no-
desize (minimum size of terminal nodes). In this study, 
different combinations of tuning parameters were tested 
to ensure the optimum combination of these parameters 
using OOB error value. Eventually, the best combination 
of tuning parameters, including ntree=5000, mtry=10000 
and nodesize=2, were used to analyze the RF method.

―Stochastic gradient Boosting

Boosting algorithm (Freund & Schapire, 1996) in-
volves training multiple models in a sequence in which 
the error function that is used to train a particular model 
depends on the performance of the previous models. In 
Boosting model, the base classifiers are trained in sequen-
ce, and each base classifier is trained using a weighted 
form of the data set in which the weighting coefficient as-
sociated with each data point depends on the performance 
of the previous classifiers (Bishop, 2006). Boosting me-
thods improve predictive ability as it concerns the inte-
ractions among predictive variables and enabling variable 
selection, unaffected by numerous correlated and irrele-
vant variables, outliers and missing data. The following 
formula was applied to the Boosting method (Ghafou-
ri-Kesbi et al., 2017):

where  𝛽𝛽𝑚𝑚  (m= 1,2,…,M) represents the basis expansion 
coefficients and 𝑏𝑏(𝑥𝑥; 𝛾𝛾𝑚𝑚)  denotes sample functions of 
the multivariate argument x, along with a collection of 

𝑓̂𝑓𝑟𝑟𝑟𝑟
𝑃𝑃  (𝑥𝑥)=1

𝑃𝑃
∑ [𝑇𝑇(𝑥𝑥. 𝛹𝛹𝑝𝑝)]𝑃𝑃

𝑝𝑝=1  
 

𝑓𝑓(𝑥𝑥) = ∑ 𝛽𝛽𝑚𝑚

𝑚𝑚

𝑚𝑚=1
𝑏𝑏(𝑥𝑥; 𝛾𝛾𝑚𝑚)  
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parameters (γ=𝛾𝛾1,𝛾𝛾2, …, 𝛾𝛾𝑀𝑀) . Prediction takes place by 
weighting the ensemble outputs of all the regression trees. 
The package gbm (Wimmer et al., 2015) in R software 
was applied to run Boosting. The number of tree (ntree), 
shrinkage rate or learning rate (lr) and tree depth or tree 
complexity (tc) are the most tuning parameters in Boos-
ting. Different combinations of parameters were applied 
to achieve the best combinations of tuning parameters 
using the least cross-validation error. In this process, the 
10-fold cross-validation was used to evaluate the efficien-
cy of Boosting. Eventually, the best combination of tu-
ning parameters, including ntree=5000, lr=0.02 and tc=8, 
was used to analyze data in all the scenarios using the 
Boosting method.

―Genomic best linear unbiased prediction 
(GBLUP)

In order to analyze the GBLUP method, AI-REML 
algorithms of the DMU software package were used 
(Madsen & Jensen, 2013). They allow the specification of 
a generalized linear mixed model with a logit link func-
tion for discrete data. For this purpose, the following mo-
del was applied:

where 𝜋𝜋𝑟𝑟  is the probability of disease incidence for animal 
r; Ø  is the total mean effect; 𝛾𝛾𝑟𝑟  is the random individual 
effect. It was included by considering the genomic rela-
tionships among individuals based on SNP marker data. 
Gmatrix software (Su & Madsen, 2013) was employed to 
calculate the genomic relationship matrix (G) according to 
the method presented by VanRaden (2008). To circumvent 
problems with matrix singularity, a value of 0.01 was ad-
ded to the diagonal of genomic relationship matrix G.

―Threshold Bayes A (TBA)

To infer SNPs effects in genomic selection, Meuwis-
sen et al. (2001) proposed BayesA methods. Later Gon-
zález-Recio & Forni (2011) and Wang et al. (2013) deve-
loped a version of BayesA to estimate genomic breeding 
values of animal discrete traits. This method assumed that 
all SNPs are effective, and each has a different variance. 
The R-package BGLR (De Los Campos et al., 2009) was 
applied to analyze TBA using the following model.

where λ represents the underlying liability variable vec-
tor for a vector of phenotypes recorded (0 or 1); µ  repre-
sents the population mean; 1 represents a column vector 

of ones (n×1); b= [bj] corresponds to the vector for the 
regression coefficient estimates of the p markers, SNP 
assumed independently and normally distributed a priori 
as N (0, σj

2); the prior distribution of σj
2 (an unknown va-

riance associated with SNP j) assumed to be σj
2~ υjs2

jχ-1
υj 

with υj = 4 and s2
j = 0.002.X=[xi] represents a n×p matrix 

(n animals genotyped for p SNPs) including values 0, 1 
or 2; e represents the residuals assuming N (µe=0, σe

2=1). 
The predictive accuracy of the methods for the training 
set was assessed using the correlation coefficient between 
the predicted GBV and true GBV. For this purpose, 10 
replicates were considered.

Results and discussion
Imputation accuracy

Table 2 presents the imputation accuracy for different 
proportions of missing genotypes which were imputed 
to the 50K SNPs panels under different scenarios. In the 
simulated scenarios, the average imputation accuracy 
across all replicates was 0.955 (0.908 to 0.989). The co-
rrelation between imputed and true genotypes increased 
markedly as the percentage of missing genotypes decrea-
sed from the 2.5K to 25K panels. In comparison with low-
LD scenarios, the correlation between imputed and ori-
ginal genotypes was higher in high-LD scenarios (0.938 
to 0.989), showing an average genotypes correlation of 
0.952 (0.908 to 0.978). However, there was a considera-
ble increase in the accuracy of imputation when the sparse 
panels from original panels were imputed. The explana-
tion is that similarity of LD patterns between the imputed 
panel and the reference population serves as an important 
source for imputing the missing genotypes.

In addition to quantifying imputation accuracy in 
different scenarios, the results of current study shed light 
on the effects that the two factors (proportion of missing 
genotypes and LD patterns) have on imputation accuracy. 
These outcomes are in agreement with several researchers 
who reported that the accuracy of conventional imputation 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝜋𝜋𝑟𝑟) = log [ 𝜋𝜋𝑟𝑟
1 − 𝜋𝜋𝑟𝑟

] = Ø +  𝛾𝛾𝑟𝑟 

 

λ = µ1 + Xb + e 

Table 2. Correlation between imputed and original 50k SNPs  
genotypes by scenario.

aI (h2 = 0.25, LD = low and 450 QTL), II (h2 = 0.25, LD = low 
and 150 QTL), III (h2 = 0.1, LD = low and 150 QTL) and IV  
(h2 = 0.1, LD = high and 150 QTL).

Scenariosa
Proportion of missing genotypes

95% (2.5K) 75% (12.5K) 50% (25K)
I 0.910 (0.016) 0.963 (0.016) 0.975 (0.012)
II 0.914 (0.021) 0.966 (0.019) 0.976 (0.015)
III 0.908 (0.020) 0.967 (0.019) 0.978 (0.014)
IV 0.938 (0.019) 0.980 (0.015) 0.989 (0.011)
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methods are strongly dependent on proportion of missing 
genotypes in validation set and the similarity of LD pa-
tterns in reference population (Hickey et al., 2012; Ka-
bisch et al., 2017; Pausch et al., 2017; Friedrich et al., 
2018; Sadeghi et al., 2018). The current results showed 
that imputation based on family and population-based 
algorithm, such as the one was implemented in FImpute 
program, could produce reasonable accuracy of imputa-
tion for different scenarios containing different propor-
tions of missing genotypes. In other words, because of 
high LD among SNPs in dense panels and decreasing im-
putation errors, the accuracy of imputation improved with 
the increase of markers density. However, as the results in 
the low-LD sparse panels have shown, this is not always 
the case (Pimentel et al., 2013).

Rate of disease incidence

Accuracy of genomic prediction in the validation set 
via the GBLUP and TBA, RF and Boosting methods 
when the rates of disease incidence allocated to the trai-
ning set were 50, 84 and 16%, respectively are shown in 
Tables 3, 4 and 5. The rate of disease incidence allocated 
to the training set directly affected the predictive ability 
of all models. Highest prediction accuracies were obser-
ved for disease incidences in training sets that reflected 
the population disease incidence of 0.16%. Generally, the 
accuracy of genomic prediction improved as long as the 
rate of disease incidence decreased, showing the best ac-
curacy for Boosting in all scenarios. In other methods, the 
accuracy of genomic prediction was also influenced by 
the type of considered scenarios. For example, Boosting 
and TBA for scenario II and RF and GBLUP for scenario 
I had the highest values when different rates of disease 
incidence were used.

Specifically, the total average of prediction accuracies 
increased from 0.449, 0.498, 0.411 and 0.479 in the third 
strategy to 0.496, 0.564, 0.478, 0.529 in the first strategy 
for GBLUP, Boosting, RF and TBA, respectively. There 
are very limited researches available about the effect of 
different rates of disease incidence on genomic prediction 
accuracy using different methods. Naderi et al. (2016) 
simulated different rates of disease incidence in order to 
compare the performance of RF and GBLUP for genomic 
predictions of threshold phenotypes based on cow cali-
bration groups. Their results indicated that distribution of 
binary phenotypic in training set affected the predictive 
ability of RF and GBLUP so that their performance im-
proved by the increase in proportions of disease incidence 
up to 20%, and then decreased insignificantly, yet it was 
more tangible for RF. González-Recio & Forni (2011) 
investigated genomic accuracy of binary traits (with the 
same rate of disease incidence in training set) including 
2500 animals using machine learning and Bayesian re-

gressions methods. They observed better performance of 
Lh-Boosting (0.41) and RF (0.36) than TBA (0.26). Also, 
Sadeghi et al. (2018) simulated different scenarios of bi-
nary traits (considering the rate of disease incidence equal 
to 0.5 into training set) to evaluate the accuracy of ge-
nomic prediction via RF, TBA, and Bayesian LASSO by 
altering genetic architectures. They reported that genomic 
prediction for each method depends on the genomic ar-
chitecture of population. Shirali et al. (2012) investigated 
the accuracy of BayesC and GBLUP for different rates of 

aI (h2 = 0.25, LD = low and 450 QTL), II (h2 = 0.25, LD = low 
and 150 QTL), III (h2 = 0.1, LD = low and 150 QTL) and IV (h2 

= 0.1, LD = high and 150 QTL).

Table 3. Accuracies of genomic estimated breeding values 
(GEBVs) from genomic BLUP (GBLUP), Boosting, Random 
Forest (RF) and threshold BayesA (TBA) methods for 50% 
threshold point (standard deviation across 10 replicates in  
parentheses)

Model SNP panels Scenariosa

I II III IV
GBLUP 2.5K 0.457

(0.06)
0.442
(0.06)

0.289
(0.07)

0.398
(0.05)

12.5K 0.495
(0.05)

0.463
(0.06)

0.338
(0.06)

0.436
(0.06)

25K 0.500
(0.05)

0.479
(0.06)

0.349
(0.07)

0.436
(0.06)

50K 0.522
(0.06)

0.508
(0.06)

0.376
(0.05)

0.448
(0.06)

Boosting 2.5K 0.482
(0.04)

0.493
(0.05)

0.493
(0.05)

0.429
(0.05)

12.5K 0.529
(0.04)

0.565
(0.06)

0.409
(0.05)

0.465
(0.04)

25K 0.550
(0.04)

0.575
(0.03)

0.422
(0.04)

0.471
(0.03)

50K 0.586
(0.04)

0.592
(0.04)

0.446
(0.05)

0.498
(0.03)

RF 2.5K 0.473
(0.03)

0.397
(0.04)

0.269
(0.04)

0.382
(0.04)

12.5K 0.527
(0.04)

0.434
(0.05)

0.306
(0.04)

0.411
(0.04)

25K 0.542
(0.04)

0.443
(0.04)

0.316
(0.05)

0.413
(0.03)

50K 0.578
(0.03)

0.470
(0.03)

0.343
(0.04)

0.421
(0.03)

TBA 2.5K 0.436
(0.06)

0.489
(0.06)

0.348
(0.07)

0.409
(0.06)

12.5K 0.482
(0.06)

0.557
(0.06)

0.382
(0.06)

0.447
(0.06)

25K 0.495
(0.07)

0.568
(0.07)

0.381
(0.06)

0.457
(0.06)

50K 0.514
(0.06)

0.581
(0.06)

0.432
(0.07)

0.472
(0.06)
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disease incidence in threshold traits and showed that an 
obvious decrease in the proportions of disease incidence 
resulted in approximately a loss of 30-40% in the geno-
mic accuracy.

In the current study, a reduction in the number of sick 
individuals in the training set was associated with an in-
crease in the accuracy of genomic prediction in all three 
models and was in agreement with results presented by 
Naderi et al. (2018) for disease traits in Holstein Friesian 
cow. In brief, these authors specified that correlation be-

tween pre-corrected phenotypes and genomic breeding 
values (rGBV) increased with the decrease in the percen-
tage of sick cows in the training set from 37 to 20% for 
claw disorders, from 32 to 25% for clinical mastitis and 
from 29 to 19% for female infertility. One possible ex-
planation for different reactions of different traits to the 
decreased percentage of sick individuals in the training 
sets is the different distributions of response variables. 
Generally, for binary traits as response variables, the 
optimal individuals training sets had disease incidences 

Table 4. Accuracies of genomic estimated breeding values 
(GEBVs) from genomic BLUP (GBLUP), Random Forest 
(RF), Boosting and threshold BayesA (TBA) methods for 84% 
threshold point (standard deviation across 10 replicates in  
parentheses)

aI (h2 = 0.25, LD = low and 450 QTL), II (h2 = 0.25, LD = low 
and 150 QTL), III (h2 = 0.1, LD = low and 150 QTL) and IV  
(h2 = 0.1, LD = high and 150 QTL).

Model SNP panels Scenariosa

I II III IV
GBLUP 2.5K 0.427

(0.06)
0.418
(0.07)

0.271
(0.07)

0.370
(0.06)

12.5K 0.471
(0.05)

0.418
(0.07)

0.311
(0.05)

0.412
(0.06)

25K 0.489
(0.06)

0.467
(0.06)

0.322
(0.07)

0.417
(0.06)

50K 0.520
(0.06)

0.498
(0.05)

0.351
(0.07)

0.427
(0.06)

Boosting 2.5K 0.437
(0.04)

0.446
(0.04)

0.301
(0.05)

0.390
(0.06)

12.5K 0.487
(0.05)

0.536
(0.06)

0.367
(0.06)

0.439
(0.04)

25K 0.502
(0.04)

0.536
(0.05)

0.394
(0.04)

0.443
(0.05)

50K 0.537
(0.04)

0.568
(0.03)

0.411
(0.04)

0.478
(0.03)

RF 2.5K 0.424
(0.05)

0.357
(0.03)

0.220
(0.04)

0.343
(0.03)

12.5K 0.475
(0.03)

0.398
(0.05)

0.264
(0.03)

0.381
(0.04)

25K 0.493
(0.04)

0.397
(0.03)

0.271
(0.04)

0.382
(0.03)

50K 0.532
(0.04)

0.424
(0.04)

0.298
(0.04)

0.390
(0.04)

TBA 2.5K 0.420
(0.07)

0.465
(0.06)

0.316
(0.07)

0.396
(0.05)

12.5K 0.469
(0.06)

0.519
(0.07)

0.356
(0.07)

0.435
(0.06)

25K 0.479
(0.06)

0.534
(0.07)

0.363
(0.07)

0.441
(0.06)

50K 0.493
(0.05)

0.562
(0.06)

0.405
(0.07)

0.456
(0.05)

Model SNP panels Scenariosa

I II III IV
GBLUP 2.5K 0.459

(0.05)
0.448
(0.06)

0.316
(0.07)

0.442
(0.06)

12.5K 0.509
(0.06)

0.494
(0.06)

0.372
(0.05)

0.481
(0.06)

25K 0.520
(0.06)

0.502
(0.06)

0.388
(0.07)

0.486
(0.07)

50K 0.542
(0.06)

0.524
(0.06)

0.415
(0.05)

0.502
(0.06)

Boosting 2.5K 0.529
(0.05)

0.515
(0.04)

0.415
(0.05)

0.449
(0.04)

12.5K 0.573
(0.05)

0.589
(0.05)

0.469
(0.05)

0.504
(0.04)

25K 0.587
(0.05)

0.601
(0.04)

0.473
(0.04)

0.519
(0.03)

50K 0.605
(0.04)

0.619
(0.04)

0.495
(0.05)

0.539
(0.03)

RF 2.5K 0.496
(0.04)

0.427
(0.04)

0.273
(0.04)

0.364
(0.03)

12.5K 0.552
(0.04)

0.471
(0.04)

0.324
(0.05)

0.418
(0.04)

25K 0.562
(0.04)

0.483
(0.03)

0.338
(0.04)

0.429
(0.04)

50K 0.587
(0.04)

0.504
(0.03)

0.368
(0.05)

0.455
(0.03)

TBA 2.5K 0.454
(0.06)

0.509
(0.06)

0.387
(0.07)

0.444
(0.06)

12.5K 0.493
(0.06)

0.562
(0.06)

0.408
(0.06)

0.479
(0.06)

25K 0.514
(0.07)

0.587
(0.07)

0.413
(0.06)

0.487
(0.06)

50K 0.535
(0.06)

0.614
(0.06)

0.454
(0.07)

0.515
(0.06)

Table 5. Accuracies of genomic estimated breeding values 
(GEBVs) from genomic BLUP (GBLUP), Random Forest 
(RF), Boosting and threshold BayesA (TBA) methods for 16 
% threshold point (standard deviation across 10 replicates in  
parentheses)

aI (h2 = 0.25, LD = low and 450 QTL), II (h2 = 0.25, LD = low 
and 150 QTL), III (h2 = 0.1, LD = low and 150 QTL) and IV  
(h2 = 0.1, LD = high and 150 QTL).
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close to the main population disease incidence (Naderi &  
Sadeghi, 2019).

Design and optimization of the training set, disease 
incidence rate and recording registration are among the 
most important factors affecting accuracies of genomic 
predictions in threshold traits. As a result, random assign-
ment of a number of healthy individuals in the first strate-
gy as sick in the second and third strategies leads to more 
individuals without considering their merit be encoded. 
Therefore, this theorem leads to more classification errors 
for binary phenotypes in these strategies. In conclusion, 
the prediction accuracy unintentionally decreased.

Original and imputed 50K SNPs panels

Tables 3, 4 and 5 show the genomic prediction results 
for different models using original and imputed 50K SNPs 
panels (with different proportions of missing genotypes 
including 95, 75 and 50%). For imputed scenarios, the 
highest accuracy was 0.619 using Boosting on imputed 
50% genotypes for the first strategy. Also, the accuracy of 
genomic prediction for imputed 95% genotypes was the 
lowest (0.220) when RF was used for the third strategy. 
The higher sensitivity of machine learning methods on 
very sparse scenarios (2.5K panels) reduced with increase 
in imputation rate (12.5K and 25K panels).

Currently, nearly all Bayesian and GBLUP methods 
for genomic prediction are improved using imputed geno-
types, such that many researchers recommend this strate-
gy to decrease costs in animal breeding programs (Chen et 
al., 2014; Wang et al., 2016). In this study, the application 
of RF and Boosting comparing the above-mentioned me-
thods was kept constant regarding the use of imputation. 
We observed that the accuracies of genomic prediction of 
machine learning methods were more sensitive to imputa-
tion errors. The results of this study are in line with the re-
ports by Felipe et al. (2014), where different proportions 
of masking genotypes were used to evaluate accuracy of 
genomic prediction and showed that genotype imputation 
of low-density panels is not always helpful.

Number of QTL

To investigate the effect of the number of QTL on the 
genomic prediction of GBLUP, RF, Boosting and TBA 
methods under different rates of disease incidence, sce-
narios I (450 QTL) and II (150 QTL) were used (Tables 3 
to 5). Boosting and RF method performed similarly, sli-
ghtly better than GBLUP and TBA when the binary traits 
were affected by many QTL each with a small effect and 
considerably better than RF and GBLUP and similar to 
TBA when the binary traits were influenced by a few large 
QTL. The highest accuracy was identified for the scenario 

of 150 QTL when 16% of phenotypes were considered 
as sick.

The influence of the number of QTL on the genomic 
prediction accuracy depends on the statistical model 
(Sadeghi et al., 2018). Despite the positive effect of de-
creasing the number of QTL on prediction of genomic 
accuracy via Boosting and especially TBA, and being in 
agreement with Ghafouri-Kesbi et al. (2017), the accu-
racy of genomic prediction via GBLUP and RF dropped 
with decrease in the number of QTL, as was previous-
ly shown by Naderi et al. (2016). Regarding prediction 
accuracies in scenarios I and II, Boosting outperformed 
other models although in some cases the differences were 
negligible. It seems that higher accuracy obtained from 
Boosting is due to the capability of this method to define 
interactions among markers by changing the tree depth 
parameter aimed at finding the value. 

Heritability

To evaluate the effect of heritability on the genomic 
prediction of GBLUP, RF, Boosting and TBA methods 
under all the SNP types and different rates of disease inci-
dence, scenarios II (ℎ2 =0.25) and III (ℎ2 =0.1) were used 
(Tables 3 to 5). Generally, both TBA and Boosting me-
thods performed better than GBLUP and RF. The highest 
and least of prediction accuracies were observed for the 
first and third strategies, respectively. We recognized an 
increase in genomic accuracy with increase in heritabi-
lity and a pronounced decrease in disease incidence rate, 
which was more obvious for RF. Furthermore, the accura-
cy of genomic predicted via RF, GBLUP, TBA and Boos-
ting increased with the increase in heritability by a rate of 
56.7, 51.5, 31.4 and 27.3%, respectively.

Hayes et al. (2009) showed that by increasing heri-
tability from 0.1 to 0.9 the accuracy of genomic predic-
tion increased from 0.3 to 0.7. Moreover, Daetwyler et 
al. (2013), through the accuracy formula r=√𝑁𝑁𝑝𝑝ℎ2 𝑁𝑁𝑝𝑝ℎ2 + 𝑀𝑀𝑒𝑒⁄  , 
showed that genomic prediction has a direct relationship 
with heritability. In this formula 𝑁𝑁𝑝𝑝  is the number of in-
dividuals in the training, Me the number of independent 
chromosome segments and ℎ2  represents the heritabili-
ty of the target trait. Guo et al. (2014) indicated that the 
accuracy of genomic prediction improved by increasing 
genomic heritability (or less environmental noise) in tra-
ining set, which is largely attributed to improved estima-
tions of SNPs effects via presenting more genetic varia-
tion into sets.

LD structure

To evaluate the effect of LD structure on genomic 
prediction of different methods under all the SNP types 
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and different rates of disease incidence, scenarios III 
(r2 = 0.229 at distances of 0.05 cM) and IV  (r2 = 0.417 
at distances of 0.05 cM) were simulated (Tables 3 to 5). 
Results showed a gain in genomic accuracies with the in-
crease in the level of LD in all of the models and increase 
in disease incidence rate.

In the present study, imputed scenarios were more 
sensitive than original scenarios to the LD variation. For 
example, for 84% threshold point to the training set, ac-
curacy via RF, GBLUP, Boosting and TBA improved with 
increasing LD by a rate of 56, 36.2, 29.2 and 25.6% for 
2.5K panel and 30.6, 21.6, 16.3 and 12.6% for original 
data, respectively. Moreover, LD affects the genomic pre-
diction accuracy in imputed data in two ways: 1) direct 
effect on imputation accuracy, and 2) direct effect on the 
models’ predictive ability. Not only high LD means that 
lower marker density cover the genome, but also higher 
collinearity among linked markers is required (Liu et al., 
2015). With regard to the high LD scenario, the highest 
accuracy was identified for 16% threshold point to the 
training set when applying the Boosting method. As the 
level of LD between SNP and QTL increases, the more 
markers capture a higher rate of the genetic variance (Go-
ddard, 2009), a prerequisite for the efficient performance 
of machine learning methods.

Conclusions
In this study, the advantage of imputing genotypes 

was shown to be highly dependent on the number of 
SNPs available and the LD levels of the reference set. 
For GBLUP, RF, Boosting and TBA methods, the com-
position of disease incidence in training set was one 
of the major factors affecting the accuracy of genomic 
prediction. To achieve the highest prediction accuracy, 
optimal training set was characterized by 16% thres-
hold point. Generally, for different genomic architectu-
res, the Boosting outperformed the TBA, GBLUP and 
RF method under all SNPs panels and with different 
rates of disease incidence and the markers set being 
imputed. Looking at the change in genetic architecture 
of all scenarios, the RF resulted in a bigger reduction 
than Boosting, TBA, GBLUP, especially when the data 
set containing 2.5K panels was used. Therefore, due to 
their high sensitivity to imputation errors, the applica-
tion of imputed genotypes using RF methods should be  
carefully evaluated.

References
Bishop CM, 2006. Pattern recognition and machine 

learning (information science and statistics). Sprin-
ger-Verlag, NY.

Bohlouli M, Alijani S, Javaremi AN, König S, Yin T, 
2017. Genomic prediction by considering genotype 
× environment interaction using different genomic 
architectures. Ann Anim Sci 17: 683-701. https://doi.
org/10.1515/aoas-2016-0086

Breiman L, 2001. Random forests. Machine Learning 45: 
5-32. https://doi.org/10.1023/A:1010933404324

Chen L, Li C, Sargolzaei M, Schenkel F, 2014. Impact of 
genotype imputation on the performance of GBLUP 
and Bayesian methods for genomic prediction. PLoS 
One 9: e101544. https://doi.org/10.1371/journal.
pone.0101544

Daetwyler HD, Calus MP, Pong-Wong R, de los Campos 
G, Hickey JM, 2013. Genomic prediction in animals 
and plants: simulation of data, validation, reporting, 
and benchmarking. Genetics 193: 347-365. https://doi.
org/10.1534/genetics.112.147983

De Los Campos G, Naya H, Gianola D, Crossa J, Legarra 
A, Manfredi E, Weigel K, Cotes JM, 2009. Predicting 
quantitative traits with regression models for dense 
molecular markers and pedigree. Genetics 182: 375-
385. https://doi.org/10.1534/genetics.109.101501

Egger-Danner C, Cole J, Pryce J, Gengler N, Heringstad 
B, Bradley A, Stock KF, 2015. Invited review: over-
view of new traits and phenotyping strategies in dairy 
cattle with a focus on functional traits. Animal 9: 191-
207. https://doi.org/10.1017/S1751731114002614

Felipe VP, Okut H, Gianola D, Silva MA, Rosa GJ, 2014. 
Effect of genotype imputation on genome-enabled 
prediction of complex traits: an empirical study with 
mice data. BMC Gent 15: 149. https://doi.org/10.1186/
s12863-014-0149-9

Freund Y, Schapire RE, 1996. Experiments with a new 
boosting algorithm. Icml 96: 148-156. https://dl.acm.
org/doi/10.5555/3091696.3091

Friedrich J, Antolín R, Edwards S, Sánchez‐Molano E, 
Haskell M, Hickey J, Wiener P, 2018. Accuracy of 
genotype imputation in Labrador Retrievers. Anim 
Genet 49: 303-311. https://doi.org/10.1111/age.12677

Ghafouri-Kesbi F, Rahimi-Mianji G, Honarvar M, Ne-
jati-Javaremi A, 2017. Predictive ability of Random 
Forests, Boosting, Support Vector Machines and Ge-
nomic Best Linear Unbiased Prediction in different 
scenarios of genomic evaluation. Anim Prod Sci 57: 
229-236.

Goddard M, 2009. Genomic selection: prediction of accu-
racy and maximisation of long term response. Gene-
tica 136: 245-257. https://doi.org/10.1071/AN15538

González-Recio O, Forni S, 2011. Genome-wide predic-
tion of discrete traits using Bayesian regressions and 
machine learning. Genet Sel Evol 43: 7. https://doi.
org/10.1186/1297-9686-43-7

Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo 
B, Xu Z, Wang D, Gay G, 2014. The impact of po-
pulation structure on genomic prediction in stratified 

https://doi.org/10.1515/aoas-2016-0086
https://doi.org/10.1515/aoas-2016-0086
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pone.0101544
https://doi.org/10.1371/journal.pone.0101544
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1017/S1751731114002614
https://doi.org/10.1186/s12863-014-0149-9
https://doi.org/10.1186/s12863-014-0149-9
https://dl.acm.org/doi/10.5555/3091696.3091
https://dl.acm.org/doi/10.5555/3091696.3091
https://doi.org/10.1111/age.12677
https://doi.org/10.1071/AN15538
https://doi.org/10.1186/1297-9686-43-7
https://doi.org/10.1186/1297-9686-43-7


Spanish Journal of Agricultural Research September 2020 • Volume 18 • Issue 3 • e0405

9The importance of disease incidence rate on accuracy of genomic selection methods

populations. Theor Appl Genet 127: 749-762.  
https://doi.org/10.1007/s00122-013-2255-x

Hayes B, Daetwyler H, Bowman P, Moser G, Tier B, 
Crump R, Khatkar M, Raadsma H, Goddard M, 2009. 
Accuracy of genomic selection: comparing theory 
and results. Proc Assoc Advmt Anim Breed Genet,  
pp: 34-37.

Hickey JM, Crossa J, Babu R, de los Campos G, 2012. 
Factors affecting the accuracy of genotype imputation 
in populations from several maize breeding programs. 
Crop Sci 52: 654-663. https://doi.org/10.2135/crops-
ci2011.07.0358

Kabisch M, Hamann U, Bermejo JL, 2017. Imputation of 
missing genotypes within LD-blocks relying on the 
basic coalescent and beyond: consideration of popu-
lation growth and structure. BMC genomics 18: 798. 
https://doi.org/10.1186/s12864-017-4208-2

Lakhssassi K, González-Recio O, 2017. A haplotype 
regression approach for genetic evaluation using se-
quences from the 1000 bull genomes Project. Span 
J Agric Res 15 (4): e0407. https://doi.org/10.5424/
sjar/2017154-11736

Liu H, Zhou H, Wu Y, Li X, Zhao J, Zuo T, Zhang X, 
Zhang Y, Liu S, Shen Y, 2015. The impact of gene-
tic relationship and linkage disequilibrium on geno-
mic selection. PLoS One 10: e0132379. https://doi.
org/10.1371/journal.pone.0132379

Madsen P, Jensen J, 2013. A users guide to DMU. A pac-
kage for analysing multivariate mixed models, Version 
6. Center for Quantitative Genetics and Genomics, Uni-
versity of Aarhus, Denmark. https://dmu.ghpc.au.dk/

Mc Hugh N, Meuwissen T, Cromie A, Sonesson A, 
2011. Use of female information in dairy cattle geno-
mic breeding programs. J Dairy Sci 94: 4109-4118.  
https://doi.org/10.3168/jds.2010-4016

Meuwissen T, Hayes B, Goddard M, 2001. Prediction of 
total genetic value using genome-wide dense marker 
maps. Genetics 157: 1819-1829.

Naderi S, Yin T, König S, 2016. Random forest estimation 
of genomic breeding values for disease susceptibility 
over different disease incidences and genomic archi-
tectures in simulated cow calibration groups. J Dairy 
Sci 99: 7261-7273. https://doi.org/10.3168/jds.2016-
10887

Naderi S, Bohlouli M, Yin T, König S, 2018. Genomic 
breeding values, SNP effects and gene identification 
for disease traits in cow training sets. Anim Genet 49: 
178-192.

Naderi Y, Sadeghi S, 2019. Assessment of the genomic 
prediction accuracy of discrete traits with imputa-
tion of missing genotypes. Anim Sci Papers Rep 37:  
149-168.

Pausch H, MacLeod IM, Fries R, Emmerling R, Bowman 
PJ, Daetwyler HD, Goddard ME, 2017. Evaluation 
of the accuracy of imputed sequence variant geno-

types and their utility for causal variant detection in 
cattle. Genet Sel Evol 49: 24. https://doi.org/10.1186/
s12711-017-0301-x

Pimentel EC, Wensch-Dorendorf M, König S, Swalve 
HH, 2013. Enlarging a training set for genomic selec-
tion by imputation of un-genotyped animals in popu-
lations of varying genetic architecture. Genet Sel Evol 
45: 12. https://doi.org/10.1186/1297-9686-45-12

Sadeghi S, Rafat sA, Alijani S, 2018. Evaluation of impu-
ted genomic data in discrete traits using Random forest 
and Bayesian threshold methods. Acta Sci Anim Sci 
40: e39007. https://doi.org/10.4025/actascianimsci.
v40i1.39007

Sargolzaei M, Schenkel FS, 2009. QMSim: a large-sca-
le genome simulator for livestock. Bioinformatics 25: 
680-681. https://doi.org/10.1093/bioinformatics/btp045

Sargolzaei M, Chesnais J, Schenkel F, 2011. FImpute-An 
efficient imputation algorithm for dairy cattle popula-
tions. J Dairy Sci 94: 421.

Su G, Madsen P, 2013. User’s Guide for GMATRIX ver-
sion 2, a program for computing genomic relationship 
matrix.

VanRaden PM, 2008. Efficient methods to compu-
te genomic predictions. J Dairy Sci 91: 4414-4423.  
https://doi.org/10.3168/jds.2007-0980

Ventura RV, Miller SP, Dodds KG, Auvray B, Lee M, 
Bixley M, Clarke SM, McEwan JC, 2016. Assessing 
accuracy of imputation using different SNP panel den-
sities in a multi-breed sheep population. Genet Sel Evol 
48: 71. https://doi.org/10.1186/s12711-016-0244-7

Wang C, Ding X, Wang J, Liu J, Fu W, Zhang Z, Yin 
Z, Zhang Q, 2013. Bayesian methods for estimating 
GEBVs of threshold traits. Heredity 110: 213-219.  
https://doi.org/10.1038/hdy.2012.65

Wang Y, Lin G, Li C, Stothard P, 2016. Genotype imputa-
tion methods and their effects on genomic predictions 
in cattle. Spr Sci Rev 4: 79-98. https://doi.org/10.1007/
s40362-017-0041-x

Wang C, Li X, Qian R, Su G, Zhang Q, Ding X, 2017. 
Bayesian methods for jointly estimating genomic bre-
eding values of one continuous and one threshold trait. 
PloS One 12: e0175448. https://doi.org/10.1371/jour-
nal.pone.0175448

Wang Q, Yu Y, Yuan J, Zhang X, Huang H, Li F, Xiang J, 
2017. Effects of marker density and population struc-
ture on the genomic prediction accuracy for growth 
trait in Pacific white shrimp Litopenaeus vannamei. 
BMC Gent 18: 45. https://doi.org/10.1186/s12863-
017-0507-5

Wientjes YC, Calus MP, Goddard ME, Hayes BJ, 2015. 
Impact of QTL properties on the accuracy of mul-
ti-breed genomic prediction. Genet Sel Evol 47: 42. 
https://doi.org/10.1186/s12711-015-0124-6

Wimmer V, Auinger HJ, Albrecht T, Schoen CC, 2015. 
Framework for the analysis of genomic prediction 

https://doi.org/10.1007/s00122-013-2255-x
https://doi.org/10.2135/cropsci2011.07.0358
https://doi.org/10.2135/cropsci2011.07.0358
https://doi.org/10.1186/s12864-017-4208-2
https://doi.org/10.5424/sjar/2017154-11736
https://doi.org/10.5424/sjar/2017154-11736
https://doi.org/10.1371/journal.pone.0132379
https://doi.org/10.1371/journal.pone.0132379
https://dmu.ghpc.au.dk/
https://doi.org/10.3168/jds.2010-4016
https://doi.org/10.3168/jds.2016-10887
https://doi.org/10.3168/jds.2016-10887
https://doi.org/10.1186/s12711-017-0301-x
https://doi.org/10.1186/s12711-017-0301-x
https://doi.org/10.1186/1297-9686-45-12
https://doi.org/10.4025/actascianimsci.v40i1.39007
https://doi.org/10.4025/actascianimsci.v40i1.39007
https://doi.org/10.1093/bioinformatics/btp045
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1186/s12711-016-0244-7
https://doi.org/10.1038/hdy.2012.65
https://doi.org/10.1007/s40362-017-0041-x
https://doi.org/10.1007/s40362-017-0041-x
https://doi.org/10.1371/journal.pone.0175448
https://doi.org/10.1371/journal.pone.0175448
https://doi.org/10.1186/s12863-017-0507-5
https://doi.org/10.1186/s12863-017-0507-5
https://doi.org/10.1186/s12711-015-0124-6


10 Yousef Naderi and Saadat Sadeghi

Spanish Journal of Agricultural Research September 2020 • Volume 18 • Issue 3 • e0405

data using R (synbreed). https://cran.rproject.org/web/
packages/synbreed/index.html. 

Yang P, Hwa Yang Y, B Zhou B, Y Zomaya A, 2010. 
A review of ensemble methods in bioinforma-
tics. Curr Bioinform 5: 296-308. https://doi.
org/10.2174/157489310794072508

Yin T, Pimentel E, Borstel UKv, König S, 2014. Stra-
tegy for the simulation and analysis of longitudi-
nal phenotypic and genomic data in the context of a 
temperature× humidity-dependent covariate. J Dairy 
Sci 97: 2444-2454. https://doi.org/10.3168/jds.2013- 
7143

https://cran.rproject.org/web/packages/synbreed/index.html. 
https://cran.rproject.org/web/packages/synbreed/index.html. 
https://doi.org/10.2174/157489310794072508
https://doi.org/10.2174/157489310794072508
https://doi.org/10.3168/jds.2013-7143
https://doi.org/10.3168/jds.2013-7143

